JP7614480B1 - Portable staircase ascending/descending limb strain control device and method - Google Patents

Portable staircase ascending/descending limb strain control device and method Download PDF

Info

Publication number
JP7614480B1
JP7614480B1 JP2024007678A JP2024007678A JP7614480B1 JP 7614480 B1 JP7614480 B1 JP 7614480B1 JP 2024007678 A JP2024007678 A JP 2024007678A JP 2024007678 A JP2024007678 A JP 2024007678A JP 7614480 B1 JP7614480 B1 JP 7614480B1
Authority
JP
Japan
Prior art keywords
descending
ascending
handrail
rope
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2024007678A
Other languages
Japanese (ja)
Other versions
JP2025106177A (en
Inventor
一幸 森
洋子 森
完圭 朴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2024007678A priority Critical patent/JP7614480B1/en
Application granted granted Critical
Publication of JP7614480B1 publication Critical patent/JP7614480B1/en
Publication of JP2025106177A publication Critical patent/JP2025106177A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Rehabilitation Tools (AREA)

Abstract

【課題】下肢の負担を腰部で分担し免荷し、実用的に下肢負担感を評価し、下肢負担感を適切下肢負担感範囲内に収める改良された携行型階段昇降下肢負担制御装置及び方法を提供する。
【解決手段】階段手摺10に設置した手摺昇降器にロープ3及び腰ベルト1を介して腰部を吊り、昇段時は身体前方の階段手摺10に把持部4を及び身体後方にブレーキ部5を配置し、ブレーキ部5の電磁石を停止し及び把持部4の電磁石を稼働し、電動ウィンチ2でロープ3を介し腰部を把持部4のある昇段上方向に引き、降段時は身体前方に把持部4を及び身体後方にブレーキ部5を配置し、電磁石を稼働し、ブレーキ部5の摩擦部と階段手摺10との摩擦力で腰部をブレーキ部5のある降段と反対上方向に引き、下肢負担を腰部で分担し免荷する。
【選択図】図1

[Problem] To provide an improved portable stair-ascending/descending limb burden control device and method that shares and relieves the burden on the lower limbs at the lower back, practically evaluates the sense of lower limb burden, and keeps the sense of lower limb burden within an appropriate range of lower limb burden.
[Solution] The waist is suspended via a rope 3 and a waist belt 1 from a handrail elevator installed on a staircase handrail 10, and when ascending a step a gripping unit 4 is placed on the staircase handrail 10 in front of the body and a brake unit 5 behind the body, the electromagnet in the brake unit 5 is stopped and the electromagnet in the gripping unit 4 is activated, and the waist is pulled upwards via the rope 3 by an electric winch 2 in the ascending direction towards the gripping unit 4, and when descending a step the gripping unit 4 is placed in front of the body and the brake unit 5 behind the body, the electromagnet is activated, and the frictional force between the friction part of the brake unit 5 and the staircase handrail 10 pulls the waist in the opposite upward direction to the descending direction where the brake unit 5 is located, relieving the load on the lower limbs by sharing it with the waist.
[Selected Figure] Figure 1

Description

下肢の負担を腰部で分担し免荷し、実用的に下肢負担感を評価し、下肢負担感を適切下肢負担感範囲内に収める携行型階段昇降下肢負担制御装置及び方法に関するものである。The present invention relates to a portable limb load control device and method for ascending and descending stairs that shares and relieves the load on the lower limbs at the waist, practically evaluates the feeling of lower limb load, and keeps the feeling of lower limb load within an appropriate range.

特許文献4では、放射能汚染度の大きな個所を探索するため、移動中の測定器で測定した時系列の放射線量と移動速度から、関数フィッティング法、2サンプリング秒遅れの差分からの計数増加傾向の判定法及び事前の時系列の時系列の自然放射線量の計測を用いて、当該測定器を静止して測定した場合の放射線量を推定している。In Patent Document 4, in order to search for areas with a high level of radioactive contamination, the radiation dose that would be measured if the measuring device were stationary is estimated from the time series of radiation doses and moving speed measured by the measuring device while moving, using a function fitting method, a method of determining an increasing trend in counts from the difference between two sampling seconds delayed, and a prior time series measurement of natural radiation doses.

非特許文献1では、階段昇降(以下「昇降」という)非自立の高齢者は自立する高齢者に比べて、筋力が弱く転倒恐怖感が強いため生活範囲が狭く活動的な生活を実現できないことが示されている。Non-Patent Document 1 shows that elderly people who are unable to climb and descend stairs (hereinafter referred to as "ascending and descending") have weaker muscles and a stronger fear of falling than independent elderly people, which means that their range of activities is narrower and they are unable to lead an active life.

非特許文献2では、関節には外力ベクトルと当該ベクトルと作用点までの距離の積の外部関節モーメント(以下「負荷」という)が働き、又移動加速度が生じた場合は逆向きに慣性力が働き、
非特許文献3では、スクワット運動の場合で関節が損傷しない限度内では、負荷と大きさが同じで反対周りの筋肉及び靭帯による筋張力ベクトルと当該ベクトルと作用点までの距離の積である内部関節モーメント(以下「耐力」という)が生ずることが示されている。
In Non-Patent Document 2, an external joint moment (hereinafter referred to as "load") acts on a joint, which is the product of an external force vector and the distance to the point of application of that vector. In addition, when movement acceleration occurs, an inertial force acts in the opposite direction.
Non-Patent Document 3 shows that in the case of squatting, within the limits where joints are not damaged, an internal joint moment (hereinafter referred to as "proof strength") is generated which is equal to the load and is the product of the muscle tension vector of the muscles and ligaments on the opposite side and the distance between the vector and the point of application.

非特許文献4では、床反力計と身体につけた赤外線反射マーカーを用い床反力ベクトルと当該ベクトルと対象関節までの距離の情報から解析ソフトで下肢の負荷が算定され、
非特許文献5では、負荷は波形波型をなし、昇降時の下肢関節の負荷は足を接地してから離地するまでの期間(以下「昇降周期」という)中の1踏面の移動所要時間の約50パーセント経過時に最大となり、
非特許文献6では、身体に外部刺激-感覚-知覚-運動の無意識の動作系列(以下「反射動作機能」という)があり、
非特許文献7では外部刺激を運動に伝達する反射動作時間は、応答の遅い長潜時の伸張反射で50ミリ秒であり、人間の意識・思考が関わる随意運動の100から150ミリ秒に比べて小さく、
非特許文献8では、老人の階段昇降の速度は0.21メートル毎秒であり、
建築基準法での踏面の幅は26センチメートル以上である。
In Non-Patent Document 4, a floor reaction force meter and an infrared reflective marker attached to the body are used to calculate the load on the lower limbs using analysis software based on the floor reaction force vector and the distance between the vector and the target joint.
In Non-Patent Document 5, the load is wavy, and the load on the joints of the lower limbs when ascending or descending is maximum when about 50% of the time required for one step during the period from when the foot touches the ground to when it leaves the ground (hereinafter referred to as the "ascending and descending cycle") has elapsed,
In Non-Patent Document 6, it is said that the body has an unconscious movement sequence of external stimuli-sensation-perception-movement (hereinafter referred to as "reflex movement function").
In Non-Patent Document 7, the reflex action time that transmits an external stimulus to a movement is 50 milliseconds for a long-latency stretch reflex with a slow response, which is shorter than the 100 to 150 milliseconds of voluntary movement that involves human consciousness and thought.
In Non-Patent Document 8, the average speed of an elderly person climbing or descending stairs is 0.21 meters per second.
The Building Standards Act requires that the tread width must be at least 26 centimeters.

非特許文献9では、身体部分が複数の関節で連結されている剛体リンクモデルとした場合は身体の部分の動きが隣り合う部分に影響する運動連鎖機能があり、
非特許文献10では、昇降に必要なバランスは動作速度等の課題要因、身体機能等の個人要因及び段差等の環境要因(以下「昇降条件」という)に影響され、
非特許文献11では縦型手摺を掴み椅子から起立する動作で、肘の負荷と膝の負荷は逆相関関係にあり、
又非特許文献12では足把持力測定にひずみゲージを用いている。
In Non-Patent Document 9, when a body part is modeled as a rigid link model in which the body parts are connected by multiple joints, there is a kinetic chain function in which the movement of one part of the body affects the adjacent parts,
In Non-Patent Document 10, the balance required for ascending and descending is affected by task factors such as movement speed, personal factors such as physical function, and environmental factors such as steps (hereinafter referred to as "ascending and descending conditions");
In the non-patent document 11, when grasping a vertical handrail and standing up from a chair, the load on the elbows and the load on the knees are inversely correlated.
In addition, Non-Patent Document 12 uses a strain gauge to measure foot grip strength.

特開2022-161457Patent Publication 2022-161457 特開2001-58758JP2001-58758A 特開2013-40543Patent Publication No. 2013-40543 特許6843350Patent 6843350 『地域在住高齢者における階段昇降動作が運動機能と活動量・心身機能に及ぼす影響について』 福尾実人 理学療法科学29(5)793-797,2014 頁795表1"The effects of stair climbing on motor function, activity level, and mental and physical function in community-dwelling elderly people" by Minoru Fukuo, Physical Therapy Science 29 (5) 793-797, 2014, p. 795, Table 1 『動作分析に必要な力学的知識』 谷埜予士次 関西理学 2:11-16,2002 頁12、13"Kinematic knowledge necessary for motion analysis" by Shiji Tanino, Kansai Rigaku 2: 11-16, 2002, pp. 12-13 『バイオメカニクスで考える理学療法』 佐藤 久友他 頁921(図4、5)JpnJRehabitMed2021;50:919-924 accessed 2023.10.20"Physical Therapy Considered from Biomechanics" Sato Hisatomo et al. Page 921 (Figures 4 and 5) JpnJRehabitMed2021; 50: 919-924 accessed 2023.10.20 『健常者の階段降段動作における下肢のバイオメカニクス』 田邊泰雅他 理学療法科学30(2)207-212,2015 頁208"Biomechanics of the lower limbs during stair descent in healthy individuals" Yasumasa Tanabe et al. Physical Therapy Science 30 (2) 207-212, 2015, p. 208 『関節モーメントによる健常者の段昇降分析』黒後裕彦他 リハビリテーション医学2000;37:389-397 頁394(図4)、頁396(図5)"Analysis of Ascending and Descending Steps in Healthy Subjects Using Joint Moments" Hirohiko Kurogo et al. Rehabilitation Medicine 2000; 37: 389-397, p. 394 (Fig. 4), p. 396 (Fig. 5) 『人間の知覚と運動の相互作用』 小堀 聡 頁24図1 https://www.rikou.ryukoku.ac.jp/images/journal60/RJ60-04.PDF accessed 2023.10.20"Interaction between human perception and movement" Satoshi Kobori, page 24, Figure 1 https://www. rikou. ryuko. ac. jp/images/journal60/RJ60-04. PDF accessed 2023.10.20 『巧みで素早い運動を支える脳内情報処理-視覚的な身体情報による伸身反射の調整』 伊藤 翔他 NTT技術ジャーナル 2020.9 頁24"Brain information processing that supports skillful and rapid movements - Regulation of the stretch reflex by visual body information" Sho Ito et al. NTT Technical Journal, September 2020, p. 24 『千葉県津波避難計画策定指針(H28年10月改訂版)』 資料編 歩行速度設定の目安"Chiba Prefecture Tsunami Evacuation Plan Guidelines (revised October 2016)" Reference: Guide to setting walking speed 『股関節の運動連鎖』建内宏重 日本医事新報社 頁31 https://jmedi.co.jp/files/item/booksPDF/978-4-7849-5907-5-para:pdf accessed 2023.10.20"The movement chain of the hip joint" Hiroshige Takeuchi, Nihon Iji Shinposha, page 31 https://jmedi.co.jp/files/item/booksPDF/978-4-7849-5907-5-para:pdf accessed 2023.10.20 『階段昇降バランスの見るべき視点』 萬井太規 理学療法学49-1 83-91,2022 頁83、84(図2)"Perspectives on balance when ascending and descending stairs" by Taiki Manai, Physical Therapy 49-1, 83-91, 2022, pp. 83 and 84 (Fig. 2) 『縦型手すりの最適位置とその生体力学的評価』 川口亜紀他 人間生活工学Vol.2 No.4,2001.10 頁36(図3)"Optimal Position of Vertical Handrails and Its Biomechanical Evaluation" Aki Kawaguchi et al. Human Life Engineering Vol. 2 No. 4, October 2001, p. 36 (Figure 3) 『ひずみゲージを用いた足把持力測定器の開発』村田伸他 理学療法科学21(4)363-367,2006 頁364"Development of a foot grip strength measuring device using strain gauges" Shin Murata et al. Physical Therapy Science 21 (4) 363-367, 2006, p. 364

特許文献1の階段天井に設置した移動機器に身体を吊り下げる方法は身体重力による負荷を減少させる(以下「免荷」という)効果が有るが、施設改造工事が必要であり又装置が大きいため階段を占有し多くの人が共用する階段では使用できず、
又特許文献2、3の階段手摺に組み入れた電動引き上げ装置のニギリ柄を手で掴み身体を引かせながら昇段する方法は免荷効果が有るが施設改造工事が必要である。
The method of suspending the body from a mobility device installed on the ceiling of a staircase in Patent Document 1 has the effect of reducing the load caused by gravity on the body (hereinafter referred to as "weight relief"); however, it requires facility modification work and the device is large, so it occupies the stairs and cannot be used on stairs shared by many people.
In addition, the method of ascending the stairs by grabbing the handle of an electric lifting device incorporated in the staircase handrail as described in Patent Documents 2 and 3 and pulling one's body against the weight of the person ascending the stairs has a load-relieving effect, but requires modification of the facility.

特許文献2、3に示す方法では、ニギリ棒を把持する手腕の機能が弱化している場合は握った状態を維持できないため、ニギリ棒の引張力を身体に伝搬できず免荷することができない。In the methods shown in Patent Documents 2 and 3, if the function of the arm holding the gripping bar is weakened, the grip cannot be maintained, and the tensile force of the gripping bar cannot be transmitted to the body, making it impossible to relieve the load.

非特許文献4で床反力計と身体に付着する赤外線反射マーカーを用いて実験の場合には負荷を算定できるが、
実用時は床反力計及び赤外線反射マーカーを使用できず、非特許文献5に示す負荷の評価のために必要な外力ベクトルの大きさ及び当該ベクトルから関節までの距離を計測できず、当該方法では負荷の評価はできないため、
非特許文献5の昇降周期中に刻々に変動する負荷と非特許文献10の昇降条件によって個人毎に変化する耐力の関係で生ずる、個人毎かつ時間毎に変化する負担感を評価する実用的な方法が必要である。
In the case of experiments in Non-Patent Document 4, the load can be calculated using a floor reaction force meter and infrared reflective markers attached to the body,
In practical use, it is not possible to use a floor reaction force meter or an infrared reflective marker, and it is not possible to measure the magnitude of the external force vector and the distance from the vector to the joint, which are necessary for the load evaluation shown in Non-Patent Document 5, and therefore it is not possible to evaluate the load with this method.
A practical method is needed to evaluate the sense of burden that changes for each individual and over time, which arises from the relationship between the load that changes from moment to moment during the ascending and descending cycle (Non-Patent Document 5) and the endurance strength that changes for each individual depending on the ascending and descending conditions (Non-Patent Document 10).

複数の者が同時に使用する場合、
特許文献2、3ではニギリ棒の引張力は斉一的なため、引張力が強すぎて浮いた感覚の不安定な状態になる者が存在したり、逆に弱すぎて免荷が不十分で耐力が不足し関節の損傷を受けたり昇降できない者が存在する可能性があるため、個人毎かつ時間毎に変化する負担感に対応した制御方法が必要である。
When multiple people use it at the same time,
In Patent Documents 2 and 3, the tensile force of the gripping bar is uniform, so there is a possibility that some people will feel as if they are floating because the force is too strong, or conversely, that the force is too weak, resulting in insufficient load relief and insufficient strength, which can damage their joints or make it impossible for them to ascend or descend. Therefore, a control method is needed that can respond to the sense of burden that changes from person to person and over time.

ブレーキ台座6、ブレーキ部の摩擦部7、電磁石B24を配置した二本の棒が一点で交叉し接合するハサミ状の圧力変換具8のブレーキ部5(図2)と、電磁石A13、引きばね14、把持部の摩擦部15及び接触感知電気信号端子17が配置された二本の棒が一点で交叉し接合するハサミ状の把持部4(図3)からなる手摺昇降器18、腰ベルト1、電動ウィンチ2、ロープ3、把手内蔵ひずみゲージ16、電気操作制御装置9、角度計25及び加速度計26を備えた携行型階段昇降下肢負担制御装置を用いる。The device used is a brake section 5 (Figure 2) of a scissors-shaped pressure converter 8 consisting of a brake base 6, a friction section 7 of the brake section, and two rods on which an electromagnet B24 is arranged, which cross and join at one point, and a handrail elevator 18 consisting of a scissors-shaped gripping section 4 (Figure 3) on which an electromagnet A13, a pull spring 14, a friction section 15 of the gripping section, and a contact-sensing electrical signal terminal 17 are arranged, which cross and join at one point, a waist belt 1, an electric winch 2, a rope 3, a strain gauge 16 built into the handle, an electric operation control device 9, an angle meter 25, and an accelerometer 26.

階段手摺10に設置した手摺昇降器18にロープ3及び腰ベルト1を介して腰部を吊り、昇段時は身体前方の階段手摺10に把持部4を及び身体後方にブレーキ部5を配置し、ブレーキ部5の電磁石B24を停止し及び把持部4の電磁石A13を稼働し、電動ウィンチ2でロープ3を介し腰部を把持部4のある昇段上方向に引き、
又降段時は身体前方に把持部4を及び身体後方にブレーキ部5を配置し、電磁石A13及び電磁石B24を稼働し、ブレーキ部の摩擦部7と階段手摺との摩擦力で腰部をブレーキ部5のある降段と反対上方向に引き、下肢負担を腰部で分担し免荷する工程(以下「腰部活用式免荷工程」という)を用いる。
The waist is suspended from a handrail lift 18 attached to a staircase handrail 10 via a rope 3 and a waist belt 1. When ascending the stairs, a gripping part 4 is attached to the handrail 10 in front of the body and a brake part 5 is attached to the rear of the body. The electromagnet B24 of the brake part 5 is stopped and the electromagnet A13 of the gripping part 4 is operated. The waist is pulled upwards via the rope 3 by the electric winch 2 toward the gripping part 4.
When descending steps, the gripping part 4 is placed in front of the body and the brake part 5 is placed behind the body, electromagnets A13 and B24 are operated, and the frictional force between the friction part 7 of the brake part and the staircase handrail pulls the waist in the opposite upward direction to the step where the brake part 5 is located, thereby relieving the load on the lower limbs by having the waist share the load (hereinafter referred to as the "lumbar activation type load relieving process").

非特許文献6では身体には反射動作機能があり、非特許文献9では運動連鎖機能があり、又非特許文献11では負担感に影響する昇降条件の一つである負担に関して、肘の負担と膝の負担は逆相関することから、『階段を昇降するうちに下肢の負担感が増し階段手摺を掴む手の力が強くなる』『転倒しかけて下肢の負荷が急に変動した時は階段手摺を握る手の握力が急激に強くなる』という経験則が、下肢の負担感と手の握力の運動連鎖機能に基づく反射動作機能であることが推断でき、又非特許文献12で足の把持力をひずみゲージで測定できるため、
把手内蔵ひずみ計で手の握力を表す時系列の電圧値を測定し及び加速度計によって水平方向移動速度を計測し、特許文献4に示されている方法を参考に関数フィッティング法、2サンプリング秒遅れの差分からの電圧増加傾向の判定法及び、下肢が辛く感じる負担感上限から身体が軽すぎ不安定に感ずる負担感下限までの範囲(以下「適切下肢負担感範囲」という)未満の負担感に相当する時系列のひずみ計の電圧値及び変動によって、波形波型に変化する時系列の負担感の関数モデルを推定し、下肢負担感を評価する工程(以下「反射動作機能活用式下肢負担感評価工程」という)を用いる。
Non-Patent Document 6 states that the body has a reflex action function, Non-Patent Document 9 states that the body has a kinetic chain function, and Non-Patent Document 11 states that, with regard to the load, which is one of the conditions for ascending and descending that affects the sense of load, the load on the elbows and the load on the knees are inversely correlated, so it can be inferred that the empirical rule that "the sense of load on the lower limbs increases as you ascend and descend the stairs, and the strength of your hands gripping the stair railing increases" and "when you are about to fall and the load on your lower limbs suddenly changes, the grip strength of your hands gripping the stair railing suddenly increases" is a reflex action function based on the kinetic chain function of the load on the lower limbs and the grip strength of the hands. Also, Non-Patent Document 12 states that the grip strength of the feet can be measured with a strain gauge, so
A strain gauge built into the handle measures time-series voltage values representing the grip strength of the hand, and an accelerometer measures the horizontal movement speed. Referring to the method shown in Patent Document 4, a function fitting method, a method for determining the tendency for voltage to increase from the difference between two sampling seconds delayed, and a process for evaluating the lower limb burden (hereinafter referred to as a ``reflex action function-utilizing lower limb burden evaluation process'') are used to estimate a function model of the time-series burden that changes into a waveform shape based on the time-series voltage values and fluctuations of the strain gauge that correspond to a burden below the range from the upper limit of the burden where the lower limbs feel painful to the lower limit of the burden where the body feels too light and unstable (hereinafter referred to as the ``appropriate lower limb burden range'').

携行型階段昇降下肢負担制御装置の把手内蔵ひずみゲージ16、電気操作制御装置9、角度計25を用いて、
昇降時に身体前方に配置された把手内蔵ひずみゲージ16を手で握り、
ひずみゲージで計測した手の握力を、適切下肢負担感範囲に相当する手の握力範囲に収斂させるために、
昇降し、外部刺激から下肢の負担感を知覚し、生ずる手の握力を把手内蔵ひずみゲージ16で計測し及び角度計25でロープ3の角度を計測し、電気操作制御装置9で最大負荷量及び出現時刻を算定し、電気操作制御装置9で手の握力が適切下肢負担感範囲になるような荷電圧を算定し、昇段時は電動ウィンチ2の又降段時はブレーキ部5の電磁石B24の荷電圧にフィードバックし、移動時間を調整し、再び昇降を繰り返す工程(以下「下肢負担感フィードバック式制御工程」という)(図6)を用いる。
Using the handle-embedded strain gauge 16, the electric operation control device 9, and the angle meter 25 of the portable stair ascending/descending limb strain control device,
When ascending or descending, the user holds the handle-integrated strain gauge 16 located in front of the body with his or her hands.
In order to converge the hand grip strength measured by the strain gauge to the hand grip strength range corresponding to the appropriate lower limb strain range,
The device ascends and descends, perceives the sense of strain in the lower limbs from external stimuli, measures the resulting grip strength of the hand with a strain gauge 16 built into the handle and measures the angle of the rope 3 with a goniometer 25, calculates the maximum load and the time of appearance with the electric operation control device 9, calculates the load voltage that will bring the grip strength of the hand into an appropriate range for lower limb strain, feeds back this to the load voltage of the electric winch 2 when ascending, and to the load voltage of the electromagnet B24 of the brake unit 5 when descending, adjusts the travel time, and repeats the ascending and descending process (hereinafter referred to as the "lower limb strain feedback control process") (Figure 6).

携行型階段昇降下肢負担制御装置の手摺昇降器は手で持ち運びできる形状及び重量であり、その他の電動ウィンチ及び電気制御装置等は腰ベルトに装着できるため、階段手摺がある場合は当該装置を使用できるため施設改造工事を必要とせず、
及び当該装置を使用しても使用者は通常の階段昇降のために必要な足元面積以上を必要としないため、階段を占有せず他の当該装置使用者又は非使用者と階段を共用できる。
The handrail lift of the portable staircase ascending and descending limb burden control device is of a shape and weight that can be carried by hand, and other components such as the electric winch and electric control device can be attached to a waist belt, so that the device can be used if there are staircase handrails, and no facility modification work is required.
Furthermore, when using the device, the user does not require any more foot space than is required for normal stair climbing and descending, so the user does not occupy the stairs and can share the stairs with other users of the device or non-users.

非特許文献9に示す運動連鎖及び非特許文献2、3を参考にし作成した図4、5で示すように、腰部活用式免荷工程を用いることによって、
昇降時は手での手摺引張力モーメント、ロープ引張力モーメント、床反力モーメント、重力モーメント及び加速度慣性力モーメントが釣り合うことから、加速度慣性力モーメントを同じにした状態で、大きなロープ引張力を用いた場合(図4C、5C)は、ロープ引張力を用いない場合(図4A、5A)及び小さなロープ引張力を用いた場合(図4B、5B)に比べて下肢負荷が小さく、ロープ引張力と下肢負荷が逆相関の関係にあることから、下肢の負担を腰部で分担することによって免荷ができ、下肢及び手腕の機能が弱化している場合でも昇降できる。
As shown in Figs. 4 and 5, which were created with reference to the kinetic chain shown in Non-Patent Document 9 and Non-Patent Documents 2 and 3, by using a lower back-activating unloading process,
When ascending or descending, the handrail pulling force moment, rope pulling force moment, floor reaction force moment, gravity moment, and accelerated inertia force moment are balanced, so when the accelerated inertia force moment is the same, if a large rope pulling force is used (Figs. 4C, 5C), the load on the lower limbs is smaller than when no rope pulling force is used (Figs. 4A, 5A) or when a small rope pulling force is used (Figs. 4B, 5B). Since the rope pulling force and the load on the lower limbs are inversely correlated, the load on the lower limbs can be relieved by sharing it with the lower back, and even people with weakened function of the lower limbs and arms can ascend or descend.

昇降速度が非特許文献8の老人の階段昇降の速度の0.21メートル毎秒である場合、建築基準法での踏面の幅は26センチメートル以上である(計算では安全側に考慮して26センチメートルとした)ことから、
非特許文献5図4、5を用いて作成した図7の、昇段時の最も負荷が大きい膝関節の負荷(図7A)及び降段時の最も負荷が大きい足関節の負荷(図7B)において、先脚と後脚の合計負荷が増加し始めてから最大になる経過時間(以下「最大値到達時間」という)は昇降段とも0.3秒であり、一方、反射動作時間は50ミリ秒であることから、
当該最大値到達時間内に6個の負担感のデータを取得できるため、波形波型に変化する時系列の負担感の関数モデルを推定し、負担感の最大値及び出現時刻を推定できるため、反射動作機能活用式下肢負担感評価工程は実用可能である。
If the speed of ascent and descent is 0.21 meters per second, which is the speed of an elderly person ascending and descending stairs as described in Non-Patent Document 8, the width of the tread surface under the Building Standards Act is 26 centimeters or more (26 centimeters was used in the calculation to be on the safe side),
In Fig. 7, which was created using Figs. 4 and 5 from Non-Patent Document 5, the load on the knee joint, which is the heaviest load when ascending stairs (Fig. 7A), and the load on the ankle joint, which is the heaviest load when descending stairs (Fig. 7B), the time elapsed from when the total load on the leading and trailing legs begins to increase until it reaches its maximum (hereinafter referred to as the "time to reach maximum value") is 0.3 seconds for both ascending and descending stairs, while the reflex action time is 50 milliseconds.
Since six pieces of data on the sense of burden can be obtained within the time to reach the maximum value, a functional model of the sense of burden that changes over time into a waveform can be estimated, and the maximum value of the sense of burden and the time at which it appears can be estimated, making the lower limb sense of burden evaluation process utilizing reflex action function practical.

図8は昇段周期中の先脚及び後脚の膝関節の経過時間毎の負荷及び負担感を示すもので、負荷は時系列で波形波型状に変動し又昇降周期を繰り返しても同一波型で変動し(図8A)、負担感は昇降周期を繰り返すごとに筋肉及び靭帯が疲労し耐力が減少するため、経過時間とともに増加する波形波型状に変動するが(図8B)、
昇降周期中に電動ウィンチの引張力又はブレーキ部のブレーキ力を増加させた場合負担感を減少させることができ(図8C)、
又昇降周期中に一時休止させた場合移動時間が増え耐力が回復し、負担感を減少させることができる(図8D)ため、
下肢負担感フィードバック式制御工程を用い、適切な引張力・ブレーキ力・移動時間間隔にすることによって、負担感を適切下肢負担感範囲内に収斂させて昇降ができるため、損傷がなく昇降ができ活動範囲が拡がり健康長寿につながり、
負担が大きすぎて耐力で支えきれなく、又負担が少なすぎて浮いた感じで不安定になりバランスを崩しておこる転倒を防止でき、
又意図的に把手内蔵ひずみゲージ16を握る手の握力を変えて引張力又ブレーキ力を増減し又移動時間間隔を変えて下肢の負荷を変えることができるため、適用下肢負担範囲内の任意の負担感を選択し昇降することができ、
FIG. 8 shows the load and sense of strain on the knee joints of the leading and trailing legs over time during an ascent cycle. The load changes in a wavy pattern over time, and the same wave pattern continues even when the ascent cycle is repeated (FIG. 8A). The sense of strain changes in a wavy pattern that increases over time because the muscles and ligaments become fatigued and their resistance decreases with each ascent cycle (FIG. 8B).
If the pulling force of the electric winch or the braking force of the brake unit is increased during the lifting cycle, the burden can be reduced (FIG. 8C).
In addition, if the user pauses during the ascending and descending cycle, the movement time increases, the resistance is restored, and the sense of strain is reduced (Fig. 8D).
By using a lower limb strain feedback control process and setting appropriate pulling force, braking force, and movement time intervals, the strain can be kept within the appropriate range of lower limb strain, allowing the user to ascend and descend without injury, expanding the range of activity, and leading to a long and healthy life.
It prevents falls caused by too much load and not enough strength to support it, or too little load and feeling like it's floating, making it unstable and losing balance.
In addition, the user can intentionally change the grip strength of the hand gripping the built-in strain gauge 16 to increase or decrease the pulling force or braking force, and can also change the load on the lower limbs by changing the movement time interval, so that the user can select any load within the applicable range of load on the lower limbs when ascending or descending.

本発明の一実施例の、携行型階段昇降下肢負担制御装置の構成図である。1 is a block diagram of a portable stair-climbing/descent limb strain control device according to one embodiment of the present invention; 本発明の一実施例の、ブレーキ部の構成図である。FIG. 2 is a diagram showing the configuration of a brake unit according to an embodiment of the present invention. 本発明の一実施例の、把持器の構成図である。FIG. 2 is a configuration diagram of a gripper according to an embodiment of the present invention. 本発明の一実施例の、昇段時の膝関節の外力ベクトル及び負荷である。[A]は上肢と下肢を使用、[B]は上肢と下肢及び小さなロープ引張力を使用、[C]は上肢と下肢及び大きなロープ引張力を使用。The external force vector and load of the knee joint when ascending in one embodiment of the present invention. [A] is using the upper and lower limbs, [B] is using the upper and lower limbs and a small rope pulling force, and [C] is using the upper and lower limbs and a large rope pulling force. 本発明の一実施例の、降段時の足関節の外力ベクトル及び負荷である。[A]は上肢と下肢を使用、[B]は上肢と下肢及び小さなロープ引張力を使用、[C]は上肢と下肢及び大きなロープ引張力を使用。尚図4、図5の各図は比較のため加速度慣性力モーメントを同一にして標準化を行い、非特許文献2、3を参考に作成し、又身体は剛体リンクモデルとした。External force vectors and loads on the ankle joints when descending stairs in one embodiment of the present invention. [A] shows the use of upper and lower limbs, [B] shows the use of upper and lower limbs and a small rope tension, and [C] shows the use of upper and lower limbs and a large rope tension. For comparison, the figures in Figures 4 and 5 were standardized with the same acceleration inertia moment, and were created with reference to Non-Patent Documents 2 and 3. The body was a rigid link model. 本発明の一実施例の、下肢負担感フィードバック式制御工程のブロック図である。FIG. 2 is a block diagram of a lower limb strain feedback control process according to an embodiment of the present invention. 非特許文献5図4、5を用いて作成した反射動作機能活用式下肢負担感評価工程の実用可能性の説明図である。[A]は昇段時に負荷の大きな膝関節の経過時間毎の負荷、[B]は降段時に負荷の大きな足関節の経過時間毎の負荷である。This is an explanatory diagram of the feasibility of the reflex action function-based lower limb burden assessment process, created using Figures 4 and 5 in Non-Patent Document 5. [A] is the load per elapsed time on the knee joint, which is subject to a large load when ascending stairs, and [B] is the load per elapsed time on the ankle joint, which is subject to a large load when descending stairs. 図7Aを基にして作成した昇段時の経過時間毎の負荷及び負担感図である。[A]は昇段時の先脚又は後脚の膝関節の負荷、[B]は昇段時の先脚又は後脚の膝関節の負担感、[C]は昇段時の先脚又は後脚の膝関節の負担感で引張力を増加した時の負担感、[D]は昇段時の先脚又は後脚の膝関節の負担感で一時休止した時の負担感。This is a graph of the load and feeling of strain over time when ascending stairs, created based on Fig. 7A. [A] is the load on the knee joint of the leading or rear leg when ascending stairs, [B] is the feeling of strain on the knee joint of the leading or rear leg when ascending stairs, [C] is the feeling of strain on the knee joint of the leading or rear leg when ascending stairs when the pulling force is increased, and [D] is the feeling of strain on the knee joint of the leading or rear leg when ascending stairs when there is a temporary pause.

図1は携行型階段昇降下肢負担制御装置の構成図であり、ブレーキ部5は身体の後方に、把持部4は身体の前方の階段手摺に配置し、
降段時に階段手摺10を把持したブレーキ部5を牽引し移動するため、階段手摺10が途中で途切れ又は壁からの手摺固定金具等で把持することのできない形状の個所がある場合は、当該箇所で階段手摺10から離し移動しなければならないため転倒リスクがあり、また昇降時に階段手摺10の把持部分が腰ベルト1より低い位置にある場合は免荷効果がないため、把持部4が腰ベルト1より高い位置になり切れ目がなくかつ把持するのに適した形状の階段手摺10を新設するのが望ましい。
FIG. 1 is a block diagram of a portable stair climbing/descending limb strain control device. The brake unit 5 is disposed behind the body, and the grip unit 4 is disposed on the stair railing in front of the body.
When descending the stairs, the brake unit 5 gripping the stair handrail 10 is pulled and moved, so if the stair handrail 10 is interrupted along the way or has a shape that makes it impossible to grip it using handrail fixing brackets attached to the wall, the user will have to move away from the stair handrail 10 at that point, exposing them to the risk of falling. Also, if the gripping part of the stair handrail 10 is lower than the waist belt 1 when going up or down, there is no load-relief effect, so it is desirable to install a new stair handrail 10 with gripping part 4 higher than the waist belt 1, without any gaps, and with a shape suitable for gripping.

手摺昇降器18の移動方法は、昇降時に手摺昇降器のブレーキ部5の電磁石B24及び把持部の電磁石A13を停止し、又把持部4の接触感知電気信号端子17を手で握ることによって引きばねを開き、手摺昇降器18を使用者の任意の移動時間間隔で階段手摺10から離さずに次の到達目標地点に手で持ち移動し、設置後再度電磁石A13を稼働し階段手摺に固定するのが最適であるが、
施設改造工事が必要なく及び階段を占有しない形状及び重さでかつ使用者の任意の移動時間間隔にすることができるならば機械式の移動方法でもよい。
The optimal method for moving the handrail elevator 18 is to stop the electromagnet B24 in the brake section 5 of the handrail elevator and the electromagnet A13 in the grip section when ascending or descending, and to open the tension spring by gripping the contact sensing electric signal terminal 17 in the grip section 4 with the hand, and then to carry the handrail elevator 18 by hand to the next destination without removing it from the staircase handrail 10 at the user's desired travel time interval, and then to operate the electromagnet A13 again after installation to secure it to the staircase handrail.
A mechanical transportation method may be used if it does not require facility modification work, has a shape and weight that does not occupy stairs, and allows users to travel at any desired time interval.

図2はブレーキ部の構成図であり、摩擦力の調整のための圧力変換具8を使用するのが精度よく最適であるが、精度は劣るがロープ3をブレーキ台座6の両下部に直接連結し降段加速度によって生ずるロープ3の張力をブレーキ部の摩擦部7と階段手摺10間の圧力・摩擦力に変換する方法を用いてもよい。Figure 2 is a diagram showing the structure of the brake unit. The most accurate and optimal method is to use a pressure converter 8 to adjust the frictional force, but it is also possible to use a less accurate method in which the rope 3 is directly connected to both bottom parts of the brake base 6 and the tension in the rope 3 generated by the descent acceleration is converted into pressure/friction force between the friction part 7 of the brake unit and the staircase handrail 10.

円柱型階段手摺の場合ブレーキ台座6の形状は圧力が均等に階段手摺10にかかるように縦に開閉できる円筒型が最適であるが、階段手摺の形状が異なる場合は当該形状に適合した形状とする。In the case of a cylindrical staircase handrail, the optimum shape for the brake base 6 is a cylinder that can be opened and closed vertically so that pressure is applied evenly to the staircase handrail 10, but if the shape of the staircase handrail is different, a shape appropriate to that shape should be used.

図3は把持部の構成図であり、把持部の摩擦部15の形状は摩擦面積を大きくできるように手摺の形状に一致させるのが最適である。FIG. 3 is a structural diagram of the grip part, and it is optimal that the shape of the friction part 15 of the grip part matches the shape of the handrail so as to increase the friction area.

図4Cは昇段時の膝関節の外力ベクトル及び負荷であり、把持部の把手内蔵ひずみゲージ16を手で握り、把持部の電磁石A13に荷電し、ブレーキ部の電磁石B24への荷電は停止する。FIG. 4C shows the external force vector and load on the knee joint when ascending a step. The strain gauge 16 built into the grip of the grip part is grasped by the hand, the electromagnet A 13 of the grip part is charged, and charging of the electromagnet B 24 of the brake part is stopped.

図5Cは降段時の足関節の外力ベクトル及び負荷であり、把持部の把手内蔵ひずみゲージ16を手で握り、把持部の電磁石A13及びブレーキ部の電磁石B24に荷電する。FIG. 5C shows the external force vector and load on the ankle joint when descending stairs. The strain gauge 16 built into the grip of the grip part is grasped by the hand, and the electromagnet A 13 of the grip part and the electromagnet B 24 of the brake part are charged.

負担感を適切下肢負担感範囲に収めるためには下肢負担感フィードバック式制御工程を用いるのが精度よく最適であるが、
昇降速度が大きいため、身体の反射動作時間(高速の半分と言われる回路の通信速度及び電動ウィンチ及びブレーキ部の電磁石のトルクに関係する反応時間が算定のために有意な場合はこれらを加算した時間)と負担感の関数モデルを推定できるデータ数の積の値が最大値到達時間を超える場合は、下肢負担感フィードバック式制御方法だけでは制御できないため、
精度は落ちるが事前に作成した昇降条件毎の個人毎又は一般的な負担感関数モデルを利用したフィードフォワード制御方法を用いてもよい。
In order to keep the sense of strain in the appropriate range of the sense of strain in the lower limbs, it is most accurate and optimal to use a feedback control process for the sense of strain in the lower limbs.
If the lifting speed is high, and the product of the body's reflex action time (the communication speed of the circuit, which is said to be half of the high speed, and the reaction time related to the torque of the electromagnets in the electric winch and brake unit, if these are significant for calculation, is the sum of these) and the number of data points that can estimate the functional model of the sense of burden exceeds the time to reach the maximum value, the lower limbs' sense of burden feedback control method alone cannot control it,
Although the accuracy is reduced, a feedforward control method using a general or individual burden function model for each ascending/descending condition created in advance may be used.

本発明の産業上の利用可能性は、エレベータ又はエスカレータの設置されていない集合住宅、一般家屋又は公共の場における階段昇降、及びリハビリの補助具の提供、及び身体の反射動作を活用した人間―機械系システムの制御に用いることである。The industrial applicability of the present invention is to use it for ascending and descending stairs in apartment buildings, ordinary homes, or public places that are not equipped with elevators or escalators, to provide rehabilitation aids, and to control man-machine systems that utilize the body's reflex actions.

1 腰ベルト
2 電動ウィンチ
3 ロープ
4 把持部
5 ブレーキ部
6 ブレーキ台座
7 ブレーキ部の摩擦部
8 圧力変換具
9 電気操作制御装置
10 階段手摺
11 信号通信線
12 動力線
13 電磁石A
14 引ばね
15 把持部の摩擦部
16 把手内蔵ひずみゲージ
17 接触感知電気信号端子
18 手摺昇降器
19 重力
20 加速度慣性力
21 ロープ引張力
22 手での階段手摺引張力の反作用力
23 床反力
24 電磁石B
25 角度計
26 加速度計
27 手での手摺引張力の反作用力モーメント
28 ロープ引張力モーメント
29 床反力モーメント
30 重心モーメント
31 加速度慣性力モーメント
32 上半身重心
33 重心
34 股関節
35 膝関節
36 足関節
1 Waist belt 2 Electric winch 3 Rope 4 Grip part 5 Brake part 6 Brake base 7 Friction part of brake part 8 Pressure converter 9 Electric operation control device 10 Staircase handrail 11 Signal communication line 12 Power line 13 Electromagnet A
14 Tension spring 15 Friction part of grip 16 Handle built-in strain gauge 17 Contact sensing electric signal terminal 18 Handrail lift 19 Gravity 20 Acceleration inertia force 21 Rope pulling force 22 Reaction force of handrail pulling force by hand 23 Floor reaction force 24 Electromagnet B
25 Angle meter 26 Accelerometer 27 Reaction force moment of handrail pulling force by hand 28 Rope pulling force moment 29 Floor reaction force moment 30 Center of gravity moment 31 Acceleration inertia force moment 32 Upper body center of gravity 33 Center of gravity 34 Hip joint 35 Knee joint 36 Ankle joint

Claims (3)

階段手摺の把持又は把持解除を繰り返しながら前記階段手摺上を手で持ち移動される把持部と、前記階段手摺を把持し摩擦力を生ずるブレーキ部で構成する手摺昇降機と、
前記把持部に連結されたロープと、前記ロープの他端に連結された電動ウィンチと、前記電動ウィンチに連結された腰ベルトと、
前記ブレーキ部に連結されたロープと、前記ロープの他端に連結された前記腰ベルトと、加速度計、前記把持部に付帯し昇降する者の手で握られる把手内蔵ひずみゲージ、前記ロープに設置された角度計及び電気操作制御装置を備える携行型階段昇降下肢負担制御装置で、
前記手摺昇降機が階段手摺上を昇降者の手で持ち移動設置させることができる形態及び重量で、かつ電動ウィンチ、電気操作制御装置、角度計及び加速度計が腰ベルトに装着できる形態及び重量であることを特徴とする携行型階段昇降下肢負担制御装置。
A handrail lift comprising a gripping unit that is held by hand and moved along the handrail while repeatedly gripping and releasing the handrail, and a brake unit that grips the handrail and generates friction;
A rope connected to the gripping portion, an electric winch connected to the other end of the rope, and a waist belt connected to the electric winch;
A portable stair climbing/descent limb strain control device including a rope connected to the brake unit, a waist belt connected to the other end of the rope, an accelerometer, a handle-integrated strain gauge attached to the grip unit and held by the hand of a person ascending or descending, a goniometer installed on the rope, and an electric operation control device,
A portable stair-ascending and -descending limb strain control device characterized in that the handrail lift is of a shape and weight that allows the person ascending or descending the staircase to carry, move and set it up along the handrail of the staircase, and the electric winch, electric operation control device, angle meter and accelerometer are of a shape and weight that allows them to be attached to a waist belt.
昇段時は、前記把持部を構成する電磁石及び摩擦部によって前記階段手摺を把持した状態で、電動ウィンチによって連結されたロープが引かれることによって、前記腰ベルトを装着した人が昇段上方向に引かれることで、
降段時は、ブレーキ部を構成する電磁石及び摩擦部によって前記階段手摺と摩擦力を生じるため、連結されたロープが引かれることによって、前記腰ベルトを装着した人が降段と反対上方向に引かれることで、
下肢負担を腰部で分担し免荷することを特徴とする請求項1に記載の携行型階段昇降下肢負担制御装置。
When ascending the stairs, the staircase handrail is gripped by the electromagnet and friction part constituting the gripping part, and the rope connected by the electric winch is pulled, so that the person wearing the waist belt is pulled upwards.
When descending the stairs, the electromagnet and friction part constituting the brake unit generate frictional force with the stair railing, and the connected rope is pulled, pulling the person wearing the waist belt in the opposite direction to descending the stairs, upwards.
2. The portable limb load control device for ascending and descending stairs according to claim 1, characterized in that the load on the lower limbs is shared and relieved by the lower back.
前記把手内蔵ひずみゲージで下肢負担感に運動連鎖する昇降する者の握力を測ることで下肢負担感を推定し、前記角度計でロープの引張角度を測り、前記加速度計で昇降動作の加速度慣性力を推定し、
前記電気操作制御装置によって前記電動ウィンチ及び前記ブレーキ部電磁石の印加電圧を制御することで適切下肢負担感範囲内での階段昇降を実現することを特徴とする請求項1に記載の携行型階段昇降下肢負担制御装置。
The grip strength of the person ascending or descending the stairs, which is kinetically linked to the sense of strain on the lower limbs, is measured using the strain gauge built into the handle to estimate the sense of strain on the lower limbs, the angle meter measures the pulling angle of the rope, and the accelerometer estimates the acceleration inertia force of the ascending or descending motion,
The portable stair-ascending and -descending limb strain control device according to claim 1, characterized in that the electric operation control device controls the applied voltage of the electric winch and the brake unit electromagnet, thereby enabling the user to ascend and descend stairs within an appropriate range of lower limb strain.
JP2024007678A 2024-01-03 2024-01-03 Portable staircase ascending/descending limb strain control device and method Active JP7614480B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024007678A JP7614480B1 (en) 2024-01-03 2024-01-03 Portable staircase ascending/descending limb strain control device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2024007678A JP7614480B1 (en) 2024-01-03 2024-01-03 Portable staircase ascending/descending limb strain control device and method

Publications (2)

Publication Number Publication Date
JP7614480B1 true JP7614480B1 (en) 2025-01-16
JP2025106177A JP2025106177A (en) 2025-07-15

Family

ID=94213704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2024007678A Active JP7614480B1 (en) 2024-01-03 2024-01-03 Portable staircase ascending/descending limb strain control device and method

Country Status (1)

Country Link
JP (1) JP7614480B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022161457A (en) 2021-04-09 2022-10-21 白澤 誠二 Stair lift auxiliary machine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022161457A (en) 2021-04-09 2022-10-21 白澤 誠二 Stair lift auxiliary machine

Also Published As

Publication number Publication date
JP2025106177A (en) 2025-07-15

Similar Documents

Publication Publication Date Title
Redfern et al. Biomechanics of slips
Grönqvist et al. Human-centred approaches in slipperiness measurement
JP2022110014A (en) Flexible wearable muscle assist device
Maki et al. Efficacy of handrails in preventing stairway falls: a new experimental approach
Lavender et al. Evaluating the physical demands on firefighters using hand-carried stair descent devices to evacuate mobility-limited occupants from high-rise buildings
Pliner et al. Factors affecting fall severity from a ladder: Impact of climbing direction, gloves, gender and adaptation
Dusenberry et al. Effect of handrail shape on graspability
KR20180010838A (en) Training system for leg rehabilitation having saparated treadmil with ambulant staircase function
Nakamura et al. Control of wearable walking support system based on human-model and GRF
Mehta et al. Evaluating the physical demands on firefighters using track-type stair descent devices to evacuate mobility-limited occupants from high-rise buildings
Qu Effects of lower-limb muscular fatigue on stair gait
Lavender et al. Evaluating the physical demands when using sled-type stair descent devices to evacuate mobility-limited occupants from high-rise buildings
Simeonov et al. Effects of aerial ladder rung spacing on firefighter climbing biomechanics
Komisar et al. Individual, task, and environmental influences on balance recovery: a narrative review of the literature and implications for preventing occupational falls
Pennycott et al. Effects of added inertia and body weight support on lateral balance control during walking
JP7614480B1 (en) Portable staircase ascending/descending limb strain control device and method
Wilson et al. Equipment specifications for supported treadmill ambulation training
Pliner et al. Effects of upper body strength, hand placement and foot placement on ladder fall severity
Pliner et al. Hand-rung forces after a ladder climbing perturbation
Daines et al. Sit-to-stand and stand-to-sit crutch use for lower extremity powered exoskeletons
Fu et al. Selected movement and force pattern differences in rail-and rung-climbing of fire apparatus aerial ladders at 52.5° slope
Tseng et al. Effects of load carrying methods and stair slopes on physiological response and postures during stairs ascending and descending
Chang et al. Stability during stairmill ascent with upward and downward applied forces on the pelvis
Pew et al. Development of a novel perturbation platform system for balance response testing and rehabilitation interventions
Bonde et al. Design and analysis of walker with sit to stand assistance

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20241011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20241119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20241205

R150 Certificate of patent or registration of utility model

Ref document number: 7614480

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150