JP4345307B2 - Control device for internal combustion engine with variable compression ratio mechanism - Google Patents

Control device for internal combustion engine with variable compression ratio mechanism Download PDF

Info

Publication number
JP4345307B2
JP4345307B2 JP2003006699A JP2003006699A JP4345307B2 JP 4345307 B2 JP4345307 B2 JP 4345307B2 JP 2003006699 A JP2003006699 A JP 2003006699A JP 2003006699 A JP2003006699 A JP 2003006699A JP 4345307 B2 JP4345307 B2 JP 4345307B2
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
compression ratio
valve
load region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003006699A
Other languages
Japanese (ja)
Other versions
JP2004218522A (en
Inventor
和久 茂木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003006699A priority Critical patent/JP4345307B2/en
Publication of JP2004218522A publication Critical patent/JP2004218522A/en
Application granted granted Critical
Publication of JP4345307B2 publication Critical patent/JP4345307B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Supercharger (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、圧縮比を変更可能な可変圧縮比機構、吸気バルブの開弁・閉弁時期を変更可能な可変動弁機構を備える内燃機関における内燃機関の制御装置に関する。
【0002】
【従来の技術】
内燃機関の運転状態に応じて、内燃機関の圧縮比を変更する可変圧縮比機構が提案されている。また、内燃機関の運転状態に応じて、主に吸気バルブの開弁・閉弁時期を変更する可変動弁機構が実用化されている。さらに、内燃機関の気筒内に圧縮された吸入空気を供給する過給機構が実用化されている。
【0003】
また、高効率、低燃費、高出力を得るために内燃機関の運転状態を低負荷領域、中負荷領域および高負荷領域の3つの領域に区分し、各負荷領域において、可変圧縮比機構、可変動弁機構、および過給機構の動作を制御する技術が提案されている(例えば、特許文献1)。この他にも、専らノッキングを抑制するために内燃機関の負荷に応じて可変圧縮比機構および過給機構を制御する技術が提案されている(例えば、特許文献2)。
【0004】
【特許文献1】
特開昭63−120820号公報
【特許文献2】
実開昭63−150048号公報
【0005】
【発明が解決しようとする課題】
しかしながら、上記先行技術によっては、燃費率の向上が十分ではなく、特に中負荷領域における燃費率の向上が十分でないという問題があった。また、高負荷領域において出力トルクが頭打ちとなるという問題があった。
【0006】
本発明は、上記課題を解決するためになされたものであり、可変圧縮比機構、可変動弁機構および過給機構を備える内燃機関において、中負荷領域における燃費率を向上させることを目的とする。また、可変圧縮比機構、可変動弁機構および過給機構を備える内燃機関において、高負荷領域における出力トルクの増大を図ることを目的とする。
【0007】
【課題を解決するための手段および作用・効果】
上記課題を解決するために本発明の第1の態様は、内燃機関の気筒内と大気とを連通または遮断する吸気バルブを有する内燃機関の制御装置を提供する。本発明の第1の態様に係る内燃機関における制御装置は、前記吸気バルブの閉弁時期を変更する可変動弁機構と、前記内燃機関の機械的な圧縮比を変更する可変圧縮比機構と、前記内燃機関の気筒内へ圧縮された吸入空気を供給する過給機構と、前記内燃機関に対する要求トルクを検出する要求トルク検出手段と、前記検出された要求トルクが中負荷領域にある場合には、前記可変動弁機構によって前記吸気バルブの閉弁時期を遅らせ、前記可変圧縮比機構によって前記内燃機関の機械圧縮比を高くし、前記過給機構を作動させて前記内燃機関の気筒内へ圧縮された吸入空気を供給させる運転制御手段とを備えることを特徴とする。
【0008】
本発明の第1の態様に係る内燃機関の制御装置によれば、要求トルクが中負荷領域にある場合には、可変動弁機構によって吸気バルブの閉弁時期を遅らせ、可変圧縮比機構によって内燃機関の機械圧縮比を高くし、過給機構を作動させて内燃機関の気筒内へ圧縮された吸入空気を供給させるので、可変圧縮比機構、可変動弁機構および過給機構を備える内燃機関において、中負荷領域における燃費率を向上させることができる。
【0009】
本発明の第1の態様に係る内燃機関の制御装置はさらに、前記過給機構より前記内燃機関の気筒内に導入される圧縮された吸入空気の温度を低下させる冷却器を備えても良い。かかる場合には、気筒内にて圧縮された後も吸入空気の温度を低く保つことができるので、過給器を作動させた場合のノッキングの発生をより防止することができる。
【0010】
本発明の第1の態様に係る内燃機関の制御装置において、前記中負荷領域は、前記過給機構作動時において前記内燃機関が出力する最大トルクの約1/2のトルクが要求トルクとして要求される負荷領域であっても良い。
【0011】
本発明の第1の態様に係る内燃機関の制御装置において、前記運転制御手段は、前記検出された要求トルクが前記中負荷領域よりも負荷が大きい高負荷領域にある場合には、前記可変動弁機構によって前記吸気バルブの閉弁時期を進め、前記可変圧縮比機構によって前記内燃機関の機械圧縮比を低くし、前記過給機構を作動させて前記内燃機関の気筒内へ圧縮された吸入空気を供給させても良い。
【0012】
本発明の第1の態様に係る内燃機関における制御装置によれば、要求トルクが中負荷領域よりも負荷が大きい高負荷領域にある場合には、可変動弁機構によって吸気バルブの閉弁時期を進め、可変圧縮比機構によって内燃機関の機械圧縮比を低くし、過給機構を作動させて内燃機関の気筒内へ圧縮された吸入空気を供給させるので、可変圧縮比機構、可変動弁機構および過給機構を備える内燃機関において、高負荷領域における出力トルクの増大を図ることができる。
【0013】
本発明の第2の態様は、内燃機関の制御装置を提供する。本発明の第2の態様に係る内燃機関における制御装置は、過給機構と、少なくとも吸気バルブの閉弁時期を変更させる可変動弁機構と、前記内燃機関の機械的な圧縮比を変更させる可変圧縮比機構と、前記内燃機関に対する要求トルクを検出する要求トルク検出手段と、前記検出された要求トルクが第1の負荷領域にある場合には、前記可変動弁機構によって前記吸気バルブの閉弁時期を遅角させ、前記可変圧縮比機構によって前記内燃機関の機械的な圧縮比を高くし、前記過給機構による過給を行わず、前記検出された要求トルクが前記第1の負荷領域よりも大きい第2の負荷領域にある場合には、前記可変動弁機構によって前記吸気バルブの閉弁時期を遅角させ、前記可変圧縮比機構によって前記内燃機関の機械圧縮比を高くし、前記過給機構による過給を行い、前記検出された要求トルクが前記第2の負荷領域よりも大きい第3の負荷領域にある場合には、前記可変動弁機構によって前記吸気バルブの閉弁時期を進角させ、前記可変圧縮比機構によって前記内燃機関に機械圧縮比を低くし、前記過給機構による過給を行う運転制御手段とを備えることを特徴とする。
【0014】
本発明の第2の態様に係る内燃機関における制御装置によれば、要求トルクが中負荷領域にある場合には、可変動弁機構によって吸気バルブの閉弁時期を遅らせ、可変圧縮比機構によって内燃機関の機械圧縮比を高くし、過給機構を作動させて内燃機関の気筒内へ圧縮された吸入空気を供給させると共に、要求トルクが中負荷領域よりも負荷が大きい高負荷領域にある場合には、可変動弁機構によって吸気バルブの閉弁時期を進め、可変圧縮比機構によって内燃機関の機械圧縮比を低くし、過給機構を作動させて内燃機関の気筒内へ圧縮された吸入空気を供給させる。したがって、可変圧縮比機構、可変動弁機構および過給機構を備える内燃機関において、中負荷領域における燃費率を向上させることができると共に、高負荷領域における出力トルクの増大を図ることができる。
【0015】
本発明の第2の態様に係る内燃機関における制御装置において、前記運転制御手段は、前記第2の負荷領域から前記第3の負荷領域へと移行するときには、前記内燃機関の実圧縮比を一定に保つよう前記可変動弁機構および前記可変圧縮比機構を制御しても良い。また、前記運転制御手段は、前記可変動弁機構によって前記吸気バルブの閉弁時期を進角させ、前記可変圧縮比機構によって前記内燃機関の機械圧縮比を低くすることによって、前記内燃機関の実圧縮比を一定に保っても良い。かかる場合には、第2の負荷領域を実質的に拡張することとなり、燃費性能を向上させることができる。
【0016】
本発明の第3の態様は、内燃機関の気筒内と大気とを連通または遮断する吸気バルブを有する内燃機関の制御装置を提供する。本発明の第3の態様に係る内燃機関における制御装置は、前記吸気バルブの閉弁時期を変更する可変動弁機構と、前記内燃機関の機械的な圧縮比を変更する可変圧縮比機構と、前記内燃機関の気筒内へ圧縮された吸入空気を供給する過給機構と、前記過給機構より前記内燃機関の気筒内に導入される圧縮された吸入空気の温度を低下させる冷却器と、前記内燃機関に対する要求トルクを検出する要求トルク検出手段と、前記検出された要求トルクが、前記過給機構作動時において前記内燃機関が出力する最大トルクの約1/2のトルクよりも大きなトルクが要求される高負荷領域にある場合には、前記可変動弁機構によって前記吸気バルブの閉弁時期を進め、前記可変圧縮比機構によって前記内燃機関の機械圧縮比を低くし、前記過給機構を作動させて前記内燃機関の気筒内へ圧縮された吸入空気を供給させる運転制御手段とを備えることを特徴とする。
【0017】
本発明の第3の態様に係る内燃機関における制御装置によれば、検出された要求トルクが、過給機構作動時において内燃機関が出力する最大トルクの約1/2のトルクよりも大きなトルクが要求される高負荷領域にある場合には、可変動弁機構によって吸気バルブの閉弁時期を進め、可変圧縮比機構によって内燃機関の機械圧縮比を低くし、過給機構を作動させて内燃機関の気筒内へ圧縮された吸入空気を供給させるので、可変圧縮比機構、可変動弁機構および過給機構を備える内燃機関において、高負荷領域における出力トルクの増大を図ることができる。
【0018】
【発明の実施の形態】
以下、図面を参照しつつ実施例に基づいて、本発明に係る内燃機関の制御装置について説明する。
【0019】
図1を参照して本実施例に係る内燃機関の制御装置の概略構成について説明する。図1は本実施例に係る内燃機関の制御装置の概略構成を示す説明図である。
【0020】
本実施例に係る内燃機関の制御装置は、気筒内噴射型内燃機関、内燃機関の運転状態を制御する制御ユニットおよび内燃機関の運転状態を検出する各種センサを備えている。内燃機関10は、内部に複数のシリンダ11を有するシリンダブロック12、シリンダ11内を往復動するピストン13、シリンダブロック12の底部に配置されたクランクケース14、シリンダブロック12(シリンダ11)の上部に配置されたシリンダヘッド15を備えている。
【0021】
本実施例における内燃機関10には、内燃機関10の機械圧縮比を所定の範囲内において任意に設定可能な可変圧縮比機構20が備えられている。可変圧縮比機構20は、シリンダブロック12をクランクケース14に対してピストン12の運動方向(シリンダ11の軸方向)に移動させることによって圧縮比を変更する。具体的には、シリンダブロック12側に備えられたアクチュエータ21(例えば、モータ)によってシリンダブロック12の長手方向両側に配置された偏心カム(図示しない)を駆動して、シリンダブロック12をクランクケース14から離間若しくは密着させる。シリンダブロック12がクランクケース14から離間する方向へ移動させることによって機械圧縮比は低くなる。
【0022】
シリンダヘッド15は、各シリンダ11毎に吸気ポート16および排気ポート17を有している。各吸気ポート16には、吸気側カムICによって駆動されて吸気ポート16を開閉する吸気バルブ161が配置されており、各排気ポート17には、排気側カムECによって駆動されて排気ポート17を開閉する排気バルブ171が配置されている。シリンダヘッド15には、この他に、各シリンダ11に対応する位置に火花点火のための点火プラグ31が配置されている。
【0023】
吸気側カムIC(吸気側カムシャフト)には、クランクシャフトに対する吸気側カムシャフトの位相を変位させて、吸気バルブ161の開弁時期および閉弁時期を通常タイミング(進角)に対して遅らせる(遅角させる)可変動弁機構25が備えられている。可変動弁機構25は、例えば、モータ、油圧制御バルブといったアクチュエータ26によってカムシャフトを変位させる。なお、可変動弁機構25には、バルブタイミングを変更するもののみならず、作用角、バルブリフト量を変更するものも含まれる。本実施例では、吸気バルブ161の閉弁時期を遅らせることができればどのような可変動弁機構であっても良い。また、吸気バルブ161をアクチュエータによって直接駆動するものであっても良い。
【0024】
各吸気ポート16には、吸気管18の分岐端が連結され、各排気ポート17には、排気管(排気マニホールド)19の分岐端が連結されている。吸気管19の途中には、燃焼室への流入吸気量を制御する吸気制御バルブ30が配置されている。
【0025】
吸気管18および排気管19の途中には、排気管19を流れる排気ガス流によって吸入空気を圧縮する過給器28が備えられている。過給器28には、過給圧力を任意の値に設定可能なウェストゲートバルブ281が備えられている。ウェストゲートバルブ281が開かれると、排気ガスは過給器28の排気側タービンを迂回して大気中に放出されるため過給器28は作動しない。吸気管18には、過給器28よりも下流側に、過給された吸入空気を冷却するためのインタークーラー(冷却器)が配置されている。なお、過給器28は、排気ガス流によって吸入空気を圧縮するものばかりでなく、クランクシャフトからの動力によって機械的に駆動されて吸入空気を圧縮するものも含まれる。
【0026】
各吸気ポート16には燃料噴射弁IJが配置されている。すなわち、本実施例に用いられる内燃機関10はポート噴射タイプの内燃機関である。各燃料噴射弁IJは、燃料デリバリパイプFDを介して燃料が供給される。
【0027】
制御ユニット40は、演算処理機能、マップ、プログラム等を格納する記憶機能を備えている。制御ユニット40には、アクセルペダルの踏み込み量を検出するアクセルポジションセンサ50、車両速度を検出する車速センサ51、機関回転数を検出するクランクポジションセンサ52といった各種センサが接続されており、内燃機関10の運転状態を検出する各種センサからの信号が入力される。制御ユニット40には、燃料噴射弁IJ、可変圧縮比機構20のアクチュエータ21、可変動弁機構25のアクチュエータ26、ウェストゲートバルブ281、吸気制御バルブ30、点火プラグ31が接続されており、吸気バルブ161の開弁・閉弁時期、機械圧縮比、過給のオン・オフ、燃料噴射時期、点火時期、吸入空気量等が適宜制御される。
【0028】
本実施例に係る内燃機関の制御装置によって実行される内燃機関の運転制御処理について図2〜図8を参照して説明する。図2は本実施例における内燃機関の運転制御処理において実行される処理ルーチンを示すフローチャートである。図3は要求トルクおよび機関回転数に基づいて内燃機関10の負荷領域を判定するためのマップの一例を示す説明図である。図4は判定された負荷領域に応じて設定される負荷別制御条件を示す説明図である。図5は吸気バルブの閉弁時期の変化を示す説明図である。図6は従来の制御に対する本実施例の利点を説明する、低・中・高負荷領域における燃費率とトルクとの関係を表す特性線を示す説明図である。図7は特に中負荷領域における本実施例と従来制御との燃費率とトルクとの対比を示す説明図である。図8は本実施例における、中負荷領域から高負荷領域への移行時における吸気バルブタイミングによる圧縮比の変化、機械圧縮比の変化、実圧縮比の変化の様子を模式的に示す説明図である。
【0029】
図2を参照して内燃機関の運転制御処理について説明する。本処理ルーチンは所定の時間間隔にて繰り返し実行される。制御ユニット40は、アクセルポジションセンサ50によって検出されたアクセルペダルの踏み込み量に基づいて要求トルクを検出し(ステップS100)、算出された要求トルクとクランクポジションセンサから検出された機関回転数とをパラメータとして図3に示すマップから負荷領域を判定する(ステップS110)。
【0030】
制御ユニット40は、内燃機関10の運転負荷が低負荷領域にあると判定した場合には、圧縮比、吸気バルブ閉弁時期および過給状態を図4に示す低負荷領域条件に設定する(ステップS120)。すなわち、機械圧縮比は高く設定され、吸気バルブの閉弁時期は図5に示すように遅角され、過給は行わない。制御ユニット40は、アクチュエータ21に対して駆動信号を送信してシリンダブロック12とクランクケース14とを密着させることによって機械圧縮比を高くし、アクチュエータ26に対して駆動信号を送信して吸気バルブの閉弁時期を通常タイミングより遅角させ、ウェストゲートバルブ281に対して駆動信号を送信してウェストゲートバルブ281を開く(ステップS130)。
【0031】
この結果、吸気バルブ161の遅閉じによってポンピングロスが低減され、また、機械圧縮比が高く設定されるので、図6に示すように燃費率を下げる(低燃費化)を実現することができる。
【0032】
制御ユニット40は、内燃機関10の運転負荷が中負荷領域にあると判定した場合には、圧縮比、吸気バルブ閉弁時期および過給状態を図4に示す中負荷領域条件に設定する(ステップS140)。すなわち、機械圧縮比は高く設定され、吸気バルブの閉弁時期は図5に示すように遅角され、過給を実行する。制御ユニット40は、アクチュエータ21に対して駆動信号を送信してシリンダブロック12とクランクケース14とを密着させることによって機械圧縮比を高くし、アクチュエータ26に対して駆動信号を送信して吸気バルブの閉弁時期を通常タイミングより遅角させ、ウェストゲートバルブ281に対して駆動信号を送信してウェストゲートバルブ281を閉じる(ステップS150)。
【0033】
本実施例に係る内燃機関の制御装置では、中負荷領域において機械圧縮比を高く設定し、吸気バルブ161を遅閉じし、過給を実行するので(本実施例:図6中L1)、機械圧縮比を低く設定し、吸気バルブ161を早閉じし(通常のタイミング)、過給を実行しない場合(従来制御:図6中L2)と比較して、燃費率を下げる(低燃費化)を図ることができる。なお、中負荷領域とは、例えば、過給器28の作動時において内燃機関10が出力可能な最大トルクの約1/2のトルク程度の負荷領域を言う。
【0034】
すなわち、本実施例によれば、機械圧縮比を高く設定することによって膨張の度合いが高められるため、混合気の燃焼により得られた圧力がピストンに効率的に伝達され(燃焼圧力の損失の低減)、機械圧縮比が低い場合よりも燃費を向上させることができる。また、吸気バルブ161の遅閉じによって、吸気バルブ161を通常のタイミング(進角)で閉じる場合と比較して吸入空気量が減少するため図7中特性線L1上に中黒点で示すように遅角時トルクしか出力できないが、減少した吸入空気量を過給によって補うことにより吸気バルブ161の閉弁時期を進角させた場合(図7中L2)の進角トルク(図7中L2上の中黒点)と同様のトルクを得ることができる。
【0035】
一般的に、機械圧縮比が高い場合には、過給を行うことによるノッキングの発生が問題となるが、本実施例では、吸気バルブ161の閉弁時期を遅らせることによって吸気バルブ161の閉弁時期によって定まる圧縮比(吸気バルブ161が閉弁してからピストン13が圧縮上死点に到達するまでの圧縮比)を下げ、実圧縮比を低くして圧縮による混合気(吸気)の温度上昇を小さくすると共に、過給器28によって圧縮された吸気をインタークーラー29によって冷却する。この結果、点火前の混合気温度の上昇が抑制されノッキングを抑制することができる。なお、実圧縮比とは、吸気バルブ161の閉弁時期と機械圧縮比で定まるシリンダ11内における現実の圧縮比を意味する。
【0036】
したがって、従来制御によって得られるトルクと同一のトルクをより低い燃費にて得ることができる。
【0037】
制御ユニット40は、内燃機関10の運転負荷が高負荷領域にあると判定した場合には、圧縮比、吸気バルブ閉弁時期および過給状態を図4に示す高負荷領域条件に設定する(ステップS160)。すなわち、機械圧縮比は低く設定され、吸気バルブの閉弁時期を図5に示すように進角させ、過給を実行する。制御ユニット40は、アクチュエータ21に対して駆動信号を送信してシリンダブロック12とクランクケース14とを離間させることによって機械圧縮比を低くし、アクチュエータ26に対して駆動信号を送信して吸気バルブの閉弁時期を通常タイミングである進角時期に変更させ、ウェストゲートバルブ281に対して駆動信号を送信してウェストゲートバルブ281を閉じる(ステップS170)。
【0038】
中負荷領域から高負荷領域への切り替えに際しては、制御ユニット40は、吸気バルブ161の閉弁時期の切り替え(遅角から進角)と共に内燃機関10の機械圧縮比の切り替え(高圧縮比から低圧縮比)を同時に実行して、図8に示すように中負荷領域から高負荷領域への移行時における実圧縮比を一定に保つ。
【0039】
本実施例に係る内燃機関の制御装置では、高負荷領域において機械圧縮比を低く設定し、吸気バルブ161を早閉じし、過給を実行するので(本実施例:図6中L1)、機械圧縮比を低く設定し、吸気バルブ161を遅閉じし(通常のタイミング)、過給を実行する場合(従来制御:図6中L2)と比較して、燃費率を下げる(低燃費化)と共により大きなトルクを得ることができる。
【0040】
すなわち、従来制御では吸気バルブ161の閉弁時期が遅角されていたため図7中L3上に中黒点で示す遅角時トルクから過給器によって更なる出力トルクを得ていた(図7中L3)ので、到達可能な出力トルクが小さかった。これに対して、本実施例では、図7中特性線L4として示すように、吸気バルブ161の閉弁時期を進角(通常のタイミング)させているので過給器によらなくとも進角時トルク(特性線L4上の中黒点)を得ることが可能となり、過給器を使用することによって更に大きなトルクを得ることができる。
【0041】
制御ユニット40は、負荷条件に応じた条件の実行が終了すると、実行された条件下において内燃機関10の運転制御を実行し(ステップS180)、本処理ルーチンを終了する。具体的には、内燃機関10の運転状態(負荷)に応じて吸気バルブ30の開弁角度の制御、燃料噴射時期制御並びに点火時期制御を実行する。
【0042】
以上説明したように、本実施例に係る内燃機関の制御装置によれば、中負荷領域において機械圧縮比を高く設定し、吸気バルブ161を遅閉じし、過給を実行するので、従来制御と比較して中負荷領域における燃費率を向上することができる。また、高負荷領域においては、機械圧縮比を低く設定し、吸気バルブ161を早閉じし、過給を実行するので、従来制御と同等の燃費率において出力トルクを増大させることができる。
【0043】
また、本実施例に係る内燃機関の制御装置によれば、中負荷領域から高負荷領域への移行時における実圧縮比を一定に保つので、略中負荷領域を拡大することが可能となり、圧縮比に起因する燃費の向上を図ることができる。
【0044】
・その他の実施例:
上記実施例では、可変圧縮比機構20としてシリンダブロック12がクランクケース14に対して移動するシリンダ伸縮タイプを例に取って説明したが、この他にも、例えば、ピストンコンロッドの中間にジョイント部を設け、ピストンの上死点位置を変更する中間折れコンロッドタイプを用いても良い。すなわち、内燃機関10の機械圧縮比(幾何学圧縮比)を変更可能な機構を備える可変圧縮機構であれば上記実施例によって、可変動弁機構25、過給器28と相まって中負荷領域における燃費性能の向上、高負荷領域における出力トルクの増大といった効果を得ることができる。
【0045】
以上、いくつかの実施例に基づき本発明に係る内燃機関の制御装置について説明してきたが、上記した発明の実施の形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨並びに特許請求の範囲を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物が含まれることはもちろんである。
【図面の簡単な説明】
【図1】本実施例に係る内燃機関の制御装置の概略構成を示す説明図である。
【図2】本実施例における内燃機関の運転制御処理において実行される処理ルーチンを示すフローチャートである。
【図3】要求トルクおよび機関回転数に基づいて内燃機関10の負荷領域を判定するためのマップの一例を示す説明図である。
【図4】判定された負荷領域に応じて設定される負荷別制御条件を示す説明図である。
【図5】吸気バルブの閉弁時期の変化を示す説明図である。
【図6】従来の制御に対する本実施例の利点を説明する、低・中・高負荷領域における燃費率とトルクとの関係を表す特性線を示す説明図である。
【図7】特に中負荷領域における本実施例と従来制御との燃費率とトルクとの対比を示す説明図である。
【図8】本実施例における、中負荷領域から高負荷領域への移行時における吸気バルブタイミングによる圧縮比の変化、機械圧縮比の変化、実圧縮比の変化の様子を模式的に示す説明図である。
【符号の説明】
10…内燃機関
11…シリンダ
12…シリンダブロック
13…ピストン
14…クランクケース
15…シリンダヘッド
16…吸気ポート
161…吸気バルブ
17…排気ポート
171…排気バルブ
18…吸気管
19…排気管
20…可変圧縮比機構
21…アクチュエータ
25…可変動弁機構
26…アクチュエータ
28…過給器
281…ウェストゲートバルブ
29…インタークーラー
30…吸気制御バルブ
31…昇圧ポンプ
32…点火プラグ
40…制御ユニット
50…アクセル開度センサ
51…速度センサ
52…クランクポジションセンサ
IC…吸気側カム
EC…排気側カム
IJ…燃料噴射弁(インジェクタ)
FD…燃料デリバリパイプ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a control device for an internal combustion engine in an internal combustion engine including a variable compression ratio mechanism that can change a compression ratio and a variable valve mechanism that can change the valve opening / closing timing of an intake valve.
[0002]
[Prior art]
A variable compression ratio mechanism that changes the compression ratio of an internal combustion engine in accordance with the operating state of the internal combustion engine has been proposed. In addition, a variable valve mechanism that mainly changes the opening / closing timing of the intake valve in accordance with the operating state of the internal combustion engine has been put into practical use. Furthermore, a supercharging mechanism for supplying compressed intake air into a cylinder of an internal combustion engine has been put into practical use.
[0003]
Also, in order to obtain high efficiency, low fuel consumption, and high output, the operating state of the internal combustion engine is divided into three regions, a low load region, a medium load region, and a high load region. A technique for controlling the operation of the variable valve mechanism and the supercharging mechanism has been proposed (for example, Patent Document 1). In addition to this, a technique for controlling the variable compression ratio mechanism and the supercharging mechanism according to the load of the internal combustion engine in order to suppress knocking exclusively has been proposed (for example, Patent Document 2).
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 63-120820 [Patent Document 2]
Japanese Utility Model Publication No. 63-150048 gazette
[Problems to be solved by the invention]
However, depending on the above prior arts, there has been a problem that the fuel consumption rate is not sufficiently improved, and in particular, the fuel consumption rate in the middle load region is not sufficiently improved. In addition, there is a problem that the output torque reaches a peak in a high load region.
[0006]
The present invention has been made to solve the above-described problems, and an object of the present invention is to improve fuel efficiency in a medium load region in an internal combustion engine including a variable compression ratio mechanism, a variable valve mechanism, and a supercharging mechanism. . Another object of the present invention is to increase output torque in a high load region in an internal combustion engine including a variable compression ratio mechanism, a variable valve mechanism, and a supercharging mechanism.
[0007]
[Means for solving the problems and actions / effects]
In order to solve the above-described problems, a first aspect of the present invention provides a control device for an internal combustion engine having an intake valve that communicates or blocks the inside of the cylinder of the internal combustion engine and the atmosphere. A control apparatus for an internal combustion engine according to a first aspect of the present invention includes: a variable valve mechanism that changes a closing timing of the intake valve; a variable compression ratio mechanism that changes a mechanical compression ratio of the internal combustion engine; A supercharging mechanism for supplying compressed intake air into the cylinders of the internal combustion engine; required torque detection means for detecting a required torque for the internal combustion engine; and when the detected required torque is in a medium load region The closing timing of the intake valve is delayed by the variable valve mechanism, the mechanical compression ratio of the internal combustion engine is increased by the variable compression ratio mechanism, and the supercharging mechanism is operated to compress the cylinder into the cylinder of the internal combustion engine. And an operation control means for supplying the supplied intake air.
[0008]
According to the control apparatus for an internal combustion engine according to the first aspect of the present invention, when the required torque is in the middle load region, the valve closing timing of the intake valve is delayed by the variable valve mechanism, and the internal combustion engine by the variable compression ratio mechanism. In an internal combustion engine having a variable compression ratio mechanism, a variable valve mechanism, and a supercharging mechanism, since the mechanical compression ratio of the engine is increased and the supercharging mechanism is operated to supply the compressed intake air into the cylinder of the internal combustion engine. In addition, the fuel efficiency in the middle load region can be improved.
[0009]
The control apparatus for an internal combustion engine according to the first aspect of the present invention may further include a cooler for reducing the temperature of the compressed intake air introduced into the cylinder of the internal combustion engine from the supercharging mechanism. In such a case, since the temperature of the intake air can be kept low even after being compressed in the cylinder, it is possible to further prevent the occurrence of knocking when the supercharger is operated.
[0010]
In the control device for an internal combustion engine according to the first aspect of the present invention, in the intermediate load region, a torque that is approximately ½ of the maximum torque that is output from the internal combustion engine when the supercharging mechanism is operated is required as the required torque. It may be a load area.
[0011]
In the control apparatus for an internal combustion engine according to the first aspect of the present invention, the operation control means may be configured such that when the detected required torque is in a high load region where the load is larger than the medium load region, the variable operation is performed. The intake air compressed by the valve mechanism advances the closing timing of the intake valve, lowers the mechanical compression ratio of the internal combustion engine by the variable compression ratio mechanism, operates the supercharging mechanism, and is compressed into the cylinder of the internal combustion engine May be supplied.
[0012]
According to the control apparatus for an internal combustion engine according to the first aspect of the present invention, when the required torque is in the high load region where the load is larger than the medium load region, the valve closing timing of the intake valve is set by the variable valve mechanism. Since the mechanical compression ratio of the internal combustion engine is lowered by the variable compression ratio mechanism and the supercharging mechanism is operated to supply the compressed intake air into the cylinder of the internal combustion engine, the variable compression ratio mechanism, the variable valve mechanism and In an internal combustion engine having a supercharging mechanism, output torque can be increased in a high load region.
[0013]
A second aspect of the present invention provides a control device for an internal combustion engine. The control apparatus for an internal combustion engine according to the second aspect of the present invention includes a supercharging mechanism, a variable valve mechanism that changes at least the closing timing of the intake valve, and a variable that changes the mechanical compression ratio of the internal combustion engine. A compression ratio mechanism; requested torque detecting means for detecting a requested torque for the internal combustion engine; and when the detected requested torque is in a first load region, the variable valve mechanism closes the intake valve. The timing is retarded, the mechanical compression ratio of the internal combustion engine is increased by the variable compression ratio mechanism, supercharging by the supercharging mechanism is not performed, and the detected required torque is greater than that of the first load region. In the second large load region, the valve timing of the intake valve is retarded by the variable valve mechanism, and the mechanical compression ratio of the internal combustion engine is increased by the variable compression ratio mechanism. When supercharging by a mechanism is performed and the detected required torque is in a third load region larger than the second load region, the valve closing timing of the intake valve is advanced by the variable valve mechanism. And an operation control means for lowering the mechanical compression ratio of the internal combustion engine by the variable compression ratio mechanism and performing supercharging by the supercharging mechanism.
[0014]
According to the control apparatus for an internal combustion engine according to the second aspect of the present invention, when the required torque is in the middle load region, the valve closing timing of the intake valve is delayed by the variable valve mechanism, and the internal combustion engine by the variable compression ratio mechanism. When the mechanical compression ratio of the engine is increased, the supercharging mechanism is operated to supply the compressed intake air into the cylinder of the internal combustion engine, and the required torque is in a high load region where the load is larger than the medium load region Advances the closing timing of the intake valve by the variable valve mechanism, lowers the mechanical compression ratio of the internal combustion engine by the variable compression ratio mechanism, operates the supercharging mechanism, and compresses the intake air compressed into the cylinder of the internal combustion engine Supply. Therefore, in an internal combustion engine that includes a variable compression ratio mechanism, a variable valve mechanism, and a supercharging mechanism, it is possible to improve the fuel efficiency in the middle load region and increase the output torque in the high load region.
[0015]
In the control apparatus for an internal combustion engine according to the second aspect of the present invention, when the operation control means shifts from the second load region to the third load region, the actual compression ratio of the internal combustion engine is kept constant. The variable valve mechanism and the variable compression ratio mechanism may be controlled so as to maintain the same. Further, the operation control means advances the valve closing timing of the intake valve by the variable valve mechanism, and lowers the mechanical compression ratio of the internal combustion engine by the variable compression ratio mechanism, so that the actual operation of the internal combustion engine is reduced. The compression ratio may be kept constant. In such a case, the second load region is substantially expanded, and the fuel efficiency can be improved.
[0016]
According to a third aspect of the present invention, there is provided a control device for an internal combustion engine having an intake valve for communicating or blocking the inside of a cylinder of the internal combustion engine and the atmosphere. A control apparatus for an internal combustion engine according to a third aspect of the present invention includes: a variable valve mechanism that changes a closing timing of the intake valve; a variable compression ratio mechanism that changes a mechanical compression ratio of the internal combustion engine; A supercharging mechanism for supplying compressed intake air into the cylinder of the internal combustion engine; a cooler for lowering the temperature of the compressed intake air introduced into the cylinder of the internal combustion engine from the supercharging mechanism; Requested torque detecting means for detecting required torque for the internal combustion engine, and the detected required torque is required to be larger than about half of the maximum torque output from the internal combustion engine when the supercharging mechanism is operated. In the high load range, the valve timing of the intake valve is advanced by the variable valve mechanism, the mechanical compression ratio of the internal combustion engine is lowered by the variable compression ratio mechanism, and the supercharging mechanism is By moving, characterized in that it comprises a driving control means for supplying the intake air compressed into the cylinder of the internal combustion engine.
[0017]
According to the control apparatus for an internal combustion engine according to the third aspect of the present invention, the detected required torque is greater than about half of the maximum torque output from the internal combustion engine when the supercharging mechanism is activated. When in the required high load region, the valve closing timing of the intake valve is advanced by the variable valve mechanism, the mechanical compression ratio of the internal combustion engine is lowered by the variable compression ratio mechanism, and the supercharging mechanism is operated to operate the internal combustion engine. Since the compressed intake air is supplied into the cylinder, the output torque can be increased in the high load region in the internal combustion engine including the variable compression ratio mechanism, the variable valve mechanism, and the supercharging mechanism.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a control device for an internal combustion engine according to the present invention will be described based on an embodiment with reference to the drawings.
[0019]
With reference to FIG. 1, a schematic configuration of the control apparatus for an internal combustion engine according to the present embodiment will be described. FIG. 1 is an explanatory diagram showing a schematic configuration of a control device for an internal combustion engine according to the present embodiment.
[0020]
The control apparatus for an internal combustion engine according to this embodiment includes an in-cylinder injection internal combustion engine, a control unit that controls the operation state of the internal combustion engine, and various sensors that detect the operation state of the internal combustion engine. The internal combustion engine 10 includes a cylinder block 12 having a plurality of cylinders 11 therein, a piston 13 reciprocating in the cylinder 11, a crankcase 14 disposed at the bottom of the cylinder block 12, and an upper portion of the cylinder block 12 (cylinder 11). A cylinder head 15 is provided.
[0021]
The internal combustion engine 10 in the present embodiment is provided with a variable compression ratio mechanism 20 that can arbitrarily set the mechanical compression ratio of the internal combustion engine 10 within a predetermined range. The variable compression ratio mechanism 20 changes the compression ratio by moving the cylinder block 12 with respect to the crankcase 14 in the movement direction of the piston 12 (the axial direction of the cylinder 11). Specifically, an eccentric cam (not shown) disposed on both sides in the longitudinal direction of the cylinder block 12 is driven by an actuator 21 (for example, a motor) provided on the cylinder block 12 side, and the cylinder block 12 is moved to the crankcase 14. Separate from or closely contact. The mechanical compression ratio is lowered by moving the cylinder block 12 away from the crankcase 14.
[0022]
The cylinder head 15 has an intake port 16 and an exhaust port 17 for each cylinder 11. Each intake port 16 is provided with an intake valve 161 that is driven by an intake side cam IC to open and close the intake port 16, and each exhaust port 17 is driven by an exhaust side cam EC to open and close the exhaust port 17. An exhaust valve 171 is disposed. In addition to this, a spark plug 31 for spark ignition is disposed in the cylinder head 15 at a position corresponding to each cylinder 11.
[0023]
In the intake side cam IC (intake side camshaft), the phase of the intake side camshaft with respect to the crankshaft is displaced, and the opening timing and closing timing of the intake valve 161 are delayed with respect to the normal timing (advance angle) ( A variable valve mechanism 25 (which retards) is provided. The variable valve mechanism 25 displaces the camshaft by an actuator 26 such as a motor or a hydraulic control valve. The variable valve mechanism 25 includes not only one that changes the valve timing but also one that changes the operating angle and the valve lift amount. In the present embodiment, any variable valve mechanism may be used as long as the closing timing of the intake valve 161 can be delayed. Further, the intake valve 161 may be directly driven by an actuator.
[0024]
Each intake port 16 is connected to a branch end of an intake pipe 18, and each exhaust port 17 is connected to a branch end of an exhaust pipe (exhaust manifold) 19. In the middle of the intake pipe 19, an intake control valve 30 for controlling the amount of intake air flowing into the combustion chamber is disposed.
[0025]
In the middle of the intake pipe 18 and the exhaust pipe 19, a supercharger 28 that compresses the intake air by an exhaust gas flow that flows through the exhaust pipe 19 is provided. The supercharger 28 is provided with a wastegate valve 281 that can set the supercharging pressure to an arbitrary value. When the wastegate valve 281 is opened, the exhaust gas bypasses the exhaust side turbine of the supercharger 28 and is released into the atmosphere, so the supercharger 28 does not operate. An intercooler (cooler) for cooling the supercharged intake air is disposed in the intake pipe 18 on the downstream side of the supercharger 28. The supercharger 28 includes not only one that compresses intake air by an exhaust gas flow, but also one that is mechanically driven by power from a crankshaft to compress intake air.
[0026]
Each intake port 16 is provided with a fuel injection valve IJ. That is, the internal combustion engine 10 used in this embodiment is a port injection type internal combustion engine. Each fuel injection valve IJ is supplied with fuel via a fuel delivery pipe FD.
[0027]
The control unit 40 has a storage function for storing arithmetic processing functions, maps, programs, and the like. The control unit 40 is connected to various sensors such as an accelerator position sensor 50 for detecting the depression amount of the accelerator pedal, a vehicle speed sensor 51 for detecting the vehicle speed, and a crank position sensor 52 for detecting the engine speed. Signals from various sensors that detect the operating state are input. The control unit 40 is connected to the fuel injection valve IJ, the actuator 21 of the variable compression ratio mechanism 20, the actuator 26 of the variable valve mechanism 25, the waste gate valve 281, the intake control valve 30, and the spark plug 31. 161 valve opening / closing timing, mechanical compression ratio, supercharging on / off, fuel injection timing, ignition timing, intake air amount, and the like are appropriately controlled.
[0028]
An internal combustion engine operation control process executed by the internal combustion engine control apparatus according to the present embodiment will be described with reference to FIGS. FIG. 2 is a flowchart showing a processing routine executed in the operation control processing of the internal combustion engine in the present embodiment. FIG. 3 is an explanatory diagram showing an example of a map for determining the load region of the internal combustion engine 10 based on the required torque and the engine speed. FIG. 4 is an explanatory diagram showing control conditions for each load set according to the determined load region. FIG. 5 is an explanatory view showing a change in the closing timing of the intake valve. FIG. 6 is an explanatory diagram illustrating a characteristic line representing the relationship between the fuel consumption rate and the torque in the low / medium / high load region, explaining the advantages of the present embodiment over the conventional control. FIG. 7 is an explanatory diagram showing a comparison of the fuel efficiency and torque between the present embodiment and the conventional control particularly in the middle load region. FIG. 8 is an explanatory diagram schematically showing changes in the compression ratio, mechanical compression ratio, and actual compression ratio according to the intake valve timing at the time of transition from the middle load region to the high load region in the present embodiment. is there.
[0029]
The operation control process of the internal combustion engine will be described with reference to FIG. This processing routine is repeatedly executed at predetermined time intervals. The control unit 40 detects the required torque based on the depression amount of the accelerator pedal detected by the accelerator position sensor 50 (step S100), and sets the calculated required torque and the engine speed detected from the crank position sensor as parameters. Then, the load area is determined from the map shown in FIG. 3 (step S110).
[0030]
When the control unit 40 determines that the operating load of the internal combustion engine 10 is in the low load region, the control unit 40 sets the compression ratio, the intake valve closing timing, and the supercharging state to the low load region conditions shown in FIG. S120). That is, the mechanical compression ratio is set high, the closing timing of the intake valve is retarded as shown in FIG. 5, and supercharging is not performed. The control unit 40 transmits a drive signal to the actuator 21 to bring the cylinder block 12 and the crankcase 14 into close contact with each other to increase the mechanical compression ratio, and transmits a drive signal to the actuator 26 to transmit the intake valve. The valve closing timing is retarded from the normal timing, and a driving signal is transmitted to the waste gate valve 281 to open the waste gate valve 281 (step S130).
[0031]
As a result, the pumping loss is reduced by the late closing of the intake valve 161, and the mechanical compression ratio is set high, so that it is possible to achieve a reduction in fuel consumption (reduction in fuel consumption) as shown in FIG.
[0032]
When the control unit 40 determines that the operating load of the internal combustion engine 10 is in the medium load region, the control unit 40 sets the compression ratio, the intake valve closing timing, and the supercharging state to the medium load region conditions shown in FIG. S140). That is, the mechanical compression ratio is set high, the closing timing of the intake valve is retarded as shown in FIG. 5, and supercharging is executed. The control unit 40 transmits a drive signal to the actuator 21 to bring the cylinder block 12 and the crankcase 14 into close contact with each other to increase the mechanical compression ratio, and transmits a drive signal to the actuator 26 to transmit the intake valve. The valve closing timing is retarded from the normal timing, a drive signal is transmitted to the waste gate valve 281 to close the waste gate valve 281 (step S150).
[0033]
In the control apparatus for an internal combustion engine according to the present embodiment, the mechanical compression ratio is set high in the medium load region, the intake valve 161 is closed late, and supercharging is performed (this embodiment: L1 in FIG. 6). Compared to the case where the compression ratio is set low, the intake valve 161 is closed early (normal timing), and supercharging is not executed (conventional control: L2 in FIG. 6), the fuel consumption rate is lowered (lower fuel consumption). You can plan. Note that the medium load region refers to, for example, a load region having a torque of about ½ of the maximum torque that the internal combustion engine 10 can output when the supercharger 28 is operated.
[0034]
That is, according to the present embodiment, since the degree of expansion is increased by setting the mechanical compression ratio high, the pressure obtained by the combustion of the air-fuel mixture is efficiently transmitted to the piston (reduction of combustion pressure loss). ), Fuel efficiency can be improved as compared with the case where the mechanical compression ratio is low. Further, since the intake air amount is reduced by the slow closing of the intake valve 161 as compared with the case where the intake valve 161 is closed at a normal timing (advance), the intake valve 161 is delayed as indicated by a black dot on the characteristic line L1 in FIG. Although only the angular torque can be output, the advance torque (L2 in FIG. 7) when the valve closing timing of the intake valve 161 is advanced by compensating for the reduced intake air amount by supercharging (L2 in FIG. 7). A torque similar to that of the middle black dot) can be obtained.
[0035]
In general, when the mechanical compression ratio is high, the occurrence of knocking due to supercharging becomes a problem. In this embodiment, the closing timing of the intake valve 161 is delayed by delaying the closing timing of the intake valve 161. Decrease the compression ratio (compression ratio until the piston 13 reaches the compression top dead center after the intake valve 161 is closed) determined by the timing, lower the actual compression ratio and increase the temperature of the mixture (intake) due to compression And the intake air compressed by the supercharger 28 is cooled by the intercooler 29. As a result, the rise of the mixture temperature before ignition is suppressed and knocking can be suppressed. The actual compression ratio means an actual compression ratio in the cylinder 11 determined by the closing timing of the intake valve 161 and the mechanical compression ratio.
[0036]
Therefore, the same torque as that obtained by the conventional control can be obtained with lower fuel consumption.
[0037]
When the control unit 40 determines that the operating load of the internal combustion engine 10 is in the high load region, the control unit 40 sets the compression ratio, the intake valve closing timing, and the supercharging state to the high load region conditions shown in FIG. S160). That is, the mechanical compression ratio is set low, the intake valve closing timing is advanced as shown in FIG. 5, and supercharging is executed. The control unit 40 transmits a drive signal to the actuator 21 to separate the cylinder block 12 and the crankcase 14 to lower the mechanical compression ratio, and transmits a drive signal to the actuator 26 to control the intake valve. The valve closing timing is changed to the advance timing that is the normal timing, a drive signal is transmitted to the waste gate valve 281 and the waste gate valve 281 is closed (step S170).
[0038]
When switching from the medium load region to the high load region, the control unit 40 switches the valve closing timing of the intake valve 161 (from retard to advance) and switches the mechanical compression ratio of the internal combustion engine 10 (from high to low). (Compression ratio) is executed at the same time, and the actual compression ratio at the time of transition from the medium load region to the high load region is kept constant as shown in FIG.
[0039]
In the control apparatus for an internal combustion engine according to the present embodiment, the mechanical compression ratio is set low in the high load region, the intake valve 161 is quickly closed, and supercharging is performed (this embodiment: L1 in FIG. 6). When the compression ratio is set low, the intake valve 161 is closed slowly (normal timing), and supercharging is performed (conventional control: L2 in FIG. 6), the fuel efficiency is lowered (lower fuel consumption). A larger torque can be obtained.
[0040]
That is, in the conventional control, since the closing timing of the intake valve 161 is retarded, further output torque is obtained by the supercharger from the retarded time torque indicated by a black dot on L3 in FIG. 7 (L3 in FIG. 7). Therefore, the reachable output torque was small. On the other hand, in this embodiment, as shown by the characteristic line L4 in FIG. 7, the closing timing of the intake valve 161 is advanced (normal timing). Torque (medium black point on the characteristic line L4) can be obtained, and a larger torque can be obtained by using the supercharger.
[0041]
When the execution of the condition according to the load condition is completed, the control unit 40 executes the operation control of the internal combustion engine 10 under the executed condition (Step S180), and ends this processing routine. Specifically, the valve opening angle control, the fuel injection timing control, and the ignition timing control of the intake valve 30 are executed according to the operating state (load) of the internal combustion engine 10.
[0042]
As described above, according to the control apparatus for an internal combustion engine according to the present embodiment, the mechanical compression ratio is set high in the middle load region, the intake valve 161 is closed slowly, and supercharging is executed. In comparison, the fuel efficiency in the middle load region can be improved. Further, in the high load region, the mechanical compression ratio is set low, the intake valve 161 is quickly closed, and supercharging is executed. Therefore, the output torque can be increased at a fuel consumption rate equivalent to that of the conventional control.
[0043]
In addition, according to the control apparatus for an internal combustion engine according to the present embodiment, the actual compression ratio at the time of transition from the medium load region to the high load region is kept constant, so that it is possible to expand the substantially medium load region, and the compression The fuel consumption resulting from the ratio can be improved.
[0044]
Other examples:
In the above embodiment, the variable compression ratio mechanism 20 has been described by taking the cylinder expansion / contraction type in which the cylinder block 12 moves with respect to the crankcase 14 as an example, but in addition, for example, a joint portion is provided in the middle of the piston connecting rod. An intermediate folding connecting rod type that changes the top dead center position of the piston may be used. That is, if it is a variable compression mechanism provided with a mechanism capable of changing the mechanical compression ratio (geometric compression ratio) of the internal combustion engine 10, the fuel efficiency in the medium load region is combined with the variable valve mechanism 25 and the supercharger 28 according to the above embodiment. Effects such as improved performance and increased output torque in a high load region can be obtained.
[0045]
As described above, the control apparatus for an internal combustion engine according to the present invention has been described based on some examples. However, the above-described embodiments of the present invention are for facilitating the understanding of the present invention. It is not limited. The present invention can be changed and improved without departing from the spirit and scope of the claims, and it is needless to say that the present invention includes equivalents thereof.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a schematic configuration of a control device for an internal combustion engine according to an embodiment.
FIG. 2 is a flowchart showing a processing routine executed in an operation control process of the internal combustion engine in the present embodiment.
FIG. 3 is an explanatory diagram showing an example of a map for determining a load region of the internal combustion engine 10 based on a required torque and an engine speed.
FIG. 4 is an explanatory diagram showing load-specific control conditions set in accordance with a determined load region.
FIG. 5 is an explanatory diagram showing a change in the closing timing of the intake valve.
FIG. 6 is an explanatory diagram showing a characteristic line representing a relationship between a fuel consumption rate and a torque in a low / medium / high load region, explaining advantages of the present embodiment over conventional control.
FIG. 7 is an explanatory diagram showing a comparison between fuel efficiency and torque between the present embodiment and conventional control, particularly in a middle load region.
FIG. 8 is an explanatory diagram schematically showing changes in compression ratio, mechanical compression ratio, and actual compression ratio according to the intake valve timing at the time of transition from the middle load region to the high load region in the present embodiment. It is.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Internal combustion engine 11 ... Cylinder 12 ... Cylinder block 13 ... Piston 14 ... Crankcase 15 ... Cylinder head 16 ... Intake port 161 ... Intake valve 17 ... Exhaust port 171 ... Exhaust valve 18 ... Intake pipe 19 ... Exhaust pipe 20 ... Variable compression Ratio mechanism 21 ... Actuator 25 ... Variable valve mechanism 26 ... Actuator 28 ... Supercharger 281 ... Wastegate valve 29 ... Intercooler 30 ... Intake control valve 31 ... Booster pump 32 ... Spark plug 40 ... Control unit 50 ... Accelerator opening sensor 51 ... Speed sensor 52 ... Crank position sensor IC ... Intake side cam EC ... Exhaust side cam IJ ... Fuel injection valve (injector)
FD ... Fuel delivery pipe

Claims (5)

内燃機関の気筒内と大気とを連通または遮断する吸気バルブを有する内燃機関の制御装置であって、
前記吸気バルブの閉弁時期を変更する可変動弁機構と、
前記内燃機関の機械的な圧縮比を変更する可変圧縮比機構と、
前記内燃機関の気筒内へ圧縮された吸入空気を供給する過給機構と、
前記内燃機関に対する要求トルクを検出する要求トルク検出手段と、
前記検出された要求トルクが中負荷領域にある場合には、前記可変動弁機構によって前記吸気バルブの閉弁時期を遅らせ、前記可変圧縮比機構によって前記内燃機関の機械圧縮比を高くし、前記過給機構を作動させて前記内燃機関の気筒内へ圧縮された吸入空気を供給させ、前記検出された要求トルクが前記中負荷領域よりも負荷が大きい高負荷領域にある場合には、前記可変動弁機構によって前記吸気バルブの閉弁時期を進め、前記可変圧縮比機構によって前記内燃機関の機械圧縮比を低くし、前記過給機構を作動させて前記内燃機関の気筒内へ圧縮された吸入空気を供給させ、前記中負荷領域から前記高負荷領域へと移行するときには、前記内燃機関の実圧縮比を一定に保つよう前記可変動弁機構および前記可変圧縮比機構を制御する運転制御手段とを備える内燃機関の運転制御装置。
A control device for an internal combustion engine having an intake valve for communicating or blocking the inside of a cylinder of the internal combustion engine and the atmosphere,
A variable valve mechanism for changing the closing timing of the intake valve;
A variable compression ratio mechanism for changing the mechanical compression ratio of the internal combustion engine;
A supercharging mechanism for supplying compressed intake air into the cylinder of the internal combustion engine;
A required torque detecting means for detecting a required torque for the internal combustion engine;
When the detected required torque is in an intermediate load region, the variable valve mechanism delays the closing timing of the intake valve, the variable compression ratio mechanism increases the mechanical compression ratio of the internal combustion engine, When the supercharging mechanism is operated to supply compressed intake air into the cylinder of the internal combustion engine and the detected required torque is in a high load region where the load is larger than the medium load region, the allowable The intake valve compressed by the variable valve mechanism advances the closing timing of the intake valve, lowers the mechanical compression ratio of the internal combustion engine by the variable compression ratio mechanism, and activates the supercharging mechanism to be compressed into the cylinder of the internal combustion engine. to supply the air, when moving to the front Symbol high load region from the medium load region, and controls the variable valve mechanism and the variable compression ratio mechanism to keep the actual compression ratio of the internal combustion engine constant luck Operation control apparatus for an internal combustion engine and a control unit.
請求項1に記載の内燃機関の制御装置はさらに、
前記過給機構より前記内燃機関の気筒内に導入される圧縮された吸入空気の温度を低下させる冷却器を備える内燃機関の制御装置。
The control apparatus for an internal combustion engine according to claim 1 further includes:
A control apparatus for an internal combustion engine, comprising a cooler for reducing the temperature of compressed intake air introduced into the cylinder of the internal combustion engine from the supercharging mechanism.
請求項1または請求項2に記載の内燃機関の制御装置において、前記中負荷領域は、前記過給機構作動時において前記内燃機関が出力する最大トルクの約1/2のトルクが要求トルクとして要求される負荷領域である内燃機関の制御装置。  3. The control device for an internal combustion engine according to claim 1, wherein in the intermediate load region, a torque that is approximately ½ of a maximum torque output by the internal combustion engine when the supercharging mechanism is operated is required as a required torque. The control apparatus of the internal combustion engine which is a load area | region to be performed. 内燃機関の制御装置であって、
過給機構と、
少なくとも吸気バルブの閉弁時期を変更させる可変動弁機構と、
前記内燃機関の機械的な圧縮比を変更させる可変圧縮比機構と、
前記内燃機関に対する要求トルクを検出する要求トルク検出手段と、
前記検出された要求トルクが低負荷領域にある場合には、前記可変動弁機構によって前記吸気バルブの閉弁時期を遅角させ、前記可変圧縮比機構によって前記内燃機関の機械的な圧縮比を高くし、前記過給機構による過給を行わず、前記検出された要求トルクが前記低負荷領域よりも大きい中負荷領域にある場合には、前記可変動弁機構によって前記吸気バルブの閉弁時期を遅角させ、前記可変圧縮比機構によって前記内燃機関の機械圧縮比を高くし、前記過給機構による過給を行い、前記検出された要求トルクが前記中負荷領域よりも大きい高負荷領域にある場合には、前記可変動弁機構によって前記吸気バルブの閉弁時期を進角させ、前記可変圧縮比機構によって前記内燃機関に機械圧縮比を低くし、前記過給機構による過給を行い、前記中負荷領域から前記高負荷領域へと移行するときには、前記内燃機関の実圧縮比を一定に保つよう前記可変動弁機構および前記可変圧縮比機構を制御する運転制御手段
とを備える内燃機関の制御装置。
A control device for an internal combustion engine,
A supercharging mechanism;
A variable valve mechanism that changes at least the closing timing of the intake valve; and
A variable compression ratio mechanism for changing the mechanical compression ratio of the internal combustion engine;
A required torque detecting means for detecting a required torque for the internal combustion engine;
When the detected required torque is in a low load region, the valve closing timing of the intake valve is retarded by the variable valve mechanism, and the mechanical compression ratio of the internal combustion engine is adjusted by the variable compression ratio mechanism. And when the detected required torque is in a medium load region that is larger than the low load region, the valve timing of the intake valve is closed by the variable valve mechanism. Is retarded, the mechanical compression ratio of the internal combustion engine is increased by the variable compression ratio mechanism, the supercharging is performed by the supercharging mechanism, and the detected required torque is set to a high load region larger than the medium load region. In some cases, the valve timing of the intake valve is advanced by the variable valve mechanism, the mechanical compression ratio is lowered to the internal combustion engine by the variable compression ratio mechanism, and supercharging is performed by the supercharging mechanism. in front Control of the internal combustion engine comprising the variable valve mechanism and the operation control means for controlling the variable compression ratio mechanism so as to keep the actual compression ratio of the internal combustion engine constant when shifting from the middle load region to the high load region apparatus.
請求項4に記載の内燃機関の制御装置において、
前記運転制御手段は、前記可変動弁機構によって前記吸気バルブの閉弁時期を進角させ、前記可変圧縮比機構によって前記内燃機関の機械圧縮比を低くすることによって、前記内燃機関の実圧縮比を一定に保つ内燃機関の制御装置。
The control apparatus for an internal combustion engine according to claim 4,
The operation control means advances the valve closing timing of the intake valve by the variable valve mechanism, and lowers the mechanical compression ratio of the internal combustion engine by the variable compression ratio mechanism, thereby reducing the actual compression ratio of the internal combustion engine. A control device for an internal combustion engine that keeps constant.
JP2003006699A 2003-01-15 2003-01-15 Control device for internal combustion engine with variable compression ratio mechanism Expired - Fee Related JP4345307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003006699A JP4345307B2 (en) 2003-01-15 2003-01-15 Control device for internal combustion engine with variable compression ratio mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003006699A JP4345307B2 (en) 2003-01-15 2003-01-15 Control device for internal combustion engine with variable compression ratio mechanism

Publications (2)

Publication Number Publication Date
JP2004218522A JP2004218522A (en) 2004-08-05
JP4345307B2 true JP4345307B2 (en) 2009-10-14

Family

ID=32897001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003006699A Expired - Fee Related JP4345307B2 (en) 2003-01-15 2003-01-15 Control device for internal combustion engine with variable compression ratio mechanism

Country Status (1)

Country Link
JP (1) JP4345307B2 (en)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007303423A (en) 2006-05-12 2007-11-22 Toyota Motor Corp Spark ignition internal combustion engine
JP4367439B2 (en) 2006-05-30 2009-11-18 トヨタ自動車株式会社 Spark ignition internal combustion engine
JP4259546B2 (en) * 2006-07-13 2009-04-30 トヨタ自動車株式会社 Spark ignition internal combustion engine
JP4305477B2 (en) 2006-07-25 2009-07-29 トヨタ自動車株式会社 Spark ignition internal combustion engine
GB0617726D0 (en) * 2006-09-08 2006-10-18 Atalla Naji A Device (modifications) to improve efficiency of internal combustion engines
JP4259569B2 (en) 2006-11-10 2009-04-30 トヨタ自動車株式会社 Spark ignition internal combustion engine
JP4277897B2 (en) 2006-12-21 2009-06-10 トヨタ自動車株式会社 Control device for internal combustion engine
JP4835457B2 (en) * 2007-02-14 2011-12-14 トヨタ自動車株式会社 Internal combustion engine
JP4450025B2 (en) 2007-07-12 2010-04-14 トヨタ自動車株式会社 Spark ignition internal combustion engine
JP4450024B2 (en) 2007-07-12 2010-04-14 トヨタ自動車株式会社 Spark ignition internal combustion engine
JP4450026B2 (en) 2007-07-12 2010-04-14 トヨタ自動車株式会社 Spark ignition internal combustion engine
JP4725561B2 (en) 2007-08-13 2011-07-13 トヨタ自動車株式会社 Spark ignition internal combustion engine
JP4420105B2 (en) * 2007-11-06 2010-02-24 トヨタ自動車株式会社 Spark ignition internal combustion engine
JP4367548B2 (en) 2007-11-06 2009-11-18 トヨタ自動車株式会社 Spark ignition internal combustion engine
JP4367551B2 (en) 2007-11-06 2009-11-18 トヨタ自動車株式会社 Spark ignition internal combustion engine
JP4367549B2 (en) 2007-11-06 2009-11-18 トヨタ自動車株式会社 Spark ignition internal combustion engine
JP4816618B2 (en) 2007-11-06 2011-11-16 トヨタ自動車株式会社 Spark ignition internal combustion engine
JP4367547B2 (en) 2007-11-06 2009-11-18 トヨタ自動車株式会社 Spark ignition internal combustion engine
JP4367550B2 (en) 2007-11-06 2009-11-18 トヨタ自動車株式会社 Spark ignition internal combustion engine
JP4428442B2 (en) 2007-11-08 2010-03-10 トヨタ自動車株式会社 Spark ignition internal combustion engine
WO2009091077A1 (en) * 2008-01-16 2009-07-23 Toyota Jidosha Kabushiki Kaisha Spark ignition type internal combustion engine
US8150597B2 (en) 2008-02-26 2012-04-03 Mazda Motor Corporation Method and system for controlling an internal combustion engine
JP5067205B2 (en) * 2008-03-04 2012-11-07 日産自動車株式会社 Control device for internal combustion engine
US8844961B2 (en) 2010-04-27 2014-09-30 Levo Ag Wohlen Stand-up unit for stand-up wheelchairs and chairs, particularly therapy chairs
JP5035163B2 (en) * 2008-07-24 2012-09-26 トヨタ自動車株式会社 Failure determination device for variable compression ratio mechanism
JP4788747B2 (en) * 2008-08-11 2011-10-05 トヨタ自動車株式会社 Spark ignition internal combustion engine
JP4911144B2 (en) * 2008-08-25 2012-04-04 トヨタ自動車株式会社 Spark ignition internal combustion engine
JP4816785B2 (en) 2009-02-20 2011-11-16 マツダ株式会社 Control method and control device for engine with turbocharger
CN102137994B (en) * 2009-04-28 2013-12-04 丰田自动车株式会社 spark ignition internal combustion engine
BRPI0923703B1 (en) * 2009-05-01 2020-01-28 Toyota Motor Co Ltd "spark ignition type internal combustion engine"
US8573166B2 (en) 2010-01-28 2013-11-05 Toyota Jidosha Kabushiki Kaisha Spark ignition type internal combustion engine
WO2011092868A1 (en) * 2010-01-28 2011-08-04 トヨタ自動車株式会社 Spark-ignition internal-combustion engine
JP5333268B2 (en) * 2010-01-29 2013-11-06 トヨタ自動車株式会社 Spark ignition internal combustion engine
BR112012029394A2 (en) * 2010-05-24 2017-02-21 Toyota Motor Co Ltd spark ignition type internal combustion engine
JP2012102666A (en) * 2010-11-10 2012-05-31 Toyota Motor Corp Internal combustion engine with variable compression ratio mechanism
JP5088448B1 (en) * 2011-06-10 2012-12-05 トヨタ自動車株式会社 Spark ignition internal combustion engine
US8789632B2 (en) 2011-09-20 2014-07-29 Dane Technologies, Inc. Powered wheelchair with articulating drive wheels
US9695762B2 (en) * 2012-10-09 2017-07-04 Toyota Jidosha Kabushiki Kaisha Internal combustion engine provided with variable compression ratio mechanism
CA2912396A1 (en) 2013-05-17 2014-11-20 Dane Technologies, Inc. Devices relating to multifunctional aircraft aisle wheelchair
JP2017020449A (en) * 2015-07-14 2017-01-26 日産自動車株式会社 Control device for internal combustion engine
JP6992675B2 (en) * 2018-05-22 2022-01-13 マツダ株式会社 How to design the control logic of a compression ignition engine
JP6835129B2 (en) * 2019-04-15 2021-02-24 日産自動車株式会社 Internal combustion engine control device
JP2024136743A (en) * 2023-03-24 2024-10-04 トヨタ自動車株式会社 vehicle

Also Published As

Publication number Publication date
JP2004218522A (en) 2004-08-05

Similar Documents

Publication Publication Date Title
JP4345307B2 (en) Control device for internal combustion engine with variable compression ratio mechanism
JP3885524B2 (en) Compression self-ignition internal combustion engine
KR100879486B1 (en) engine
US20040118390A1 (en) Control system and method and engine control unit for compression ignition internal combustion engine
JP2001263110A (en) Control device for variable valve engine
JP3992016B2 (en) Control device for premixed compression self-ignition internal combustion engine
JP4089408B2 (en) High compression ratio cycle engine
JP4803151B2 (en) Control unit for gasoline engine
JP2000073803A (en) In-cylinder injection gasoline engine
JP2009041540A (en) Control device of gasoline engine
CN108884804B (en) Control device for internal combustion engine
JP4831040B2 (en) Control unit for gasoline engine
JP4038979B2 (en) Engine control device
JP4419800B2 (en) Engine starter
JP6848412B2 (en) Internal combustion engine control device
JP4518251B2 (en) Control device for internal combustion engine
JP3903832B2 (en) Control method for internal combustion engine
JP2004346854A (en) Control device for compression ignition operation of internal combustion engine
JP2004183512A (en) High expansion ratio cycle engine
JP4166135B2 (en) Operating region control device for internal combustion engine
JP2004239065A (en) Reciprocating engine and control method thereof
JP4667718B2 (en) Control device for internal combustion engine provided with variable compression ratio mechanism
JP4093003B2 (en) Switching control of combustion method in variable combustion method engine
JP3620381B2 (en) Control device for variable valve engine
JP6870350B2 (en) Internal combustion engine control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080605

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090205

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090706

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees