JP2008020828A - Large-sized display device - Google Patents
Large-sized display device Download PDFInfo
- Publication number
- JP2008020828A JP2008020828A JP2006194476A JP2006194476A JP2008020828A JP 2008020828 A JP2008020828 A JP 2008020828A JP 2006194476 A JP2006194476 A JP 2006194476A JP 2006194476 A JP2006194476 A JP 2006194476A JP 2008020828 A JP2008020828 A JP 2008020828A
- Authority
- JP
- Japan
- Prior art keywords
- display device
- electrode
- panel
- cell
- fine particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010419 fine particle Substances 0.000 claims abstract description 56
- 239000006185 dispersion Substances 0.000 claims abstract description 21
- 230000005684 electric field Effects 0.000 claims abstract description 16
- 230000005540 biological transmission Effects 0.000 claims abstract description 8
- 239000002245 particle Substances 0.000 claims description 72
- 239000000758 substrate Substances 0.000 claims description 68
- 239000002775 capsule Substances 0.000 claims description 28
- 238000002834 transmittance Methods 0.000 claims description 16
- 239000011159 matrix material Substances 0.000 claims description 13
- 238000005192 partition Methods 0.000 claims description 13
- 239000007788 liquid Substances 0.000 claims description 12
- 239000002612 dispersion medium Substances 0.000 claims description 5
- 239000002609 medium Substances 0.000 claims description 2
- 230000003287 optical effect Effects 0.000 abstract description 5
- 230000008859 change Effects 0.000 abstract description 4
- 239000010408 film Substances 0.000 description 23
- 239000010410 layer Substances 0.000 description 18
- 229920005989 resin Polymers 0.000 description 16
- 239000011347 resin Substances 0.000 description 16
- 238000000034 method Methods 0.000 description 15
- 239000000463 material Substances 0.000 description 13
- 230000033001 locomotion Effects 0.000 description 9
- 239000007789 gas Substances 0.000 description 6
- 239000003094 microcapsule Substances 0.000 description 6
- 238000009825 accumulation Methods 0.000 description 5
- 239000011859 microparticle Substances 0.000 description 5
- -1 polyethylene Polymers 0.000 description 5
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000000049 pigment Substances 0.000 description 4
- 238000007639 printing Methods 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910052715 tantalum Inorganic materials 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 229920000877 Melamine resin Polymers 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 239000012790 adhesive layer Substances 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000004080 punching Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- OSNILPMOSNGHLC-UHFFFAOYSA-N 1-[4-methoxy-3-(piperidin-1-ylmethyl)phenyl]ethanone Chemical compound COC1=CC=C(C(C)=O)C=C1CN1CCCCC1 OSNILPMOSNGHLC-UHFFFAOYSA-N 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 230000005653 Brownian motion process Effects 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- 238000012695 Interfacial polymerization Methods 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920002396 Polyurea Polymers 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- 241000978776 Senegalia senegal Species 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000205 acacia gum Substances 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 239000010407 anodic oxide Substances 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 125000000751 azo group Chemical group [*]N=N[*] 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000005537 brownian motion Methods 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- CJOBVZJTOIVNNF-UHFFFAOYSA-N cadmium sulfide Chemical compound [Cd]=S CJOBVZJTOIVNNF-UHFFFAOYSA-N 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 235000011089 carbon dioxide Nutrition 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005354 coacervation Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 210000001520 comb Anatomy 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- XCJYREBRNVKWGJ-UHFFFAOYSA-N copper(II) phthalocyanine Chemical compound [Cu+2].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 XCJYREBRNVKWGJ-UHFFFAOYSA-N 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 125000000664 diazo group Chemical group [N-]=[N+]=[*] 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000007580 dry-mixing Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 229920006351 engineering plastic Polymers 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000001023 inorganic pigment Substances 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000010297 mechanical methods and process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 125000000018 nitroso group Chemical group N(=O)* 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000012860 organic pigment Substances 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- SLIUAWYAILUBJU-UHFFFAOYSA-N pentacene Chemical compound C1=CC=CC2=CC3=CC4=CC5=CC=CC=C5C=C4C=C3C=C21 SLIUAWYAILUBJU-UHFFFAOYSA-N 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000001259 photo etching Methods 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 238000011197 physicochemical method Methods 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 229920001643 poly(ether ketone) Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920002098 polyfluorene Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 229940051201 quinoline yellow Drugs 0.000 description 1
- 239000004172 quinoline yellow Substances 0.000 description 1
- IZMJMCDDWKSTTK-UHFFFAOYSA-N quinoline yellow Chemical compound C1=CC=CC2=NC(C3C(C4=CC=CC=C4C3=O)=O)=CC=C21 IZMJMCDDWKSTTK-UHFFFAOYSA-N 0.000 description 1
- 235000012752 quinoline yellow Nutrition 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 229940043267 rhodamine b Drugs 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- XOSXWYQMOYSSKB-LDKJGXKFSA-L water blue Chemical compound CC1=CC(/C(\C(C=C2)=CC=C2NC(C=C2)=CC=C2S([O-])(=O)=O)=C(\C=C2)/C=C/C\2=N\C(C=C2)=CC=C2S([O-])(=O)=O)=CC(S(O)(=O)=O)=C1N.[Na+].[Na+] XOSXWYQMOYSSKB-LDKJGXKFSA-L 0.000 description 1
Landscapes
- Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
Abstract
Description
本発明は、液体またはガス体に分散された微粒子の横電界による移動によって光透過性を変調する素子を多数配列し白色拡散板の背後に光源を設けることにより反射型としても透過型としても使用できることを特徴とした大型表示装置に関するものである。 The present invention can be used as a reflective type or a transmissive type by arranging a number of elements that modulate light transmission by movement of fine particles dispersed in a liquid or gas body by a lateral electric field and providing a light source behind a white diffusion plate. The present invention relates to a large display device characterized in that it can be used.
ビルの壁面の広告表示、スポーツ施設でのメッセージ、スコア、競技状況など屋内外で大型表示装置が活躍している。しかしこれらは発光型ないしは反射型のいずれかであり昼間の明るい時には反射型で用い、夜間の暗いときには発光型で用いることができる昼夜共用の大型表示装置は未開発であった。従来の屋外大型表示装置は強い太陽光下の昼間でも表示が見えるように5000cd/m2を超える高輝度のLEDや放電管、白熱電球などが用いられているが、消費電力も数KWという膨大な電力を要し、表示装置の厚み、重量が増すと共にシステム価格の上昇を招いていた。一方反射型では主に磁気反転表示が用いられているが、動画表示が不可能であること、高精細表示が困難、夜間等ではフロント照明が必要などの制約があった。昼夜共用の大型表示装置は、天気の良い日中は反射型で用いた方が明るくて見易い上に電力を節約できるという重大なメリットがある。暗い時には発光型で用いることができ表示装置の利用効率が向上するというメリットがあり、発光型と反射型が切替できる昼夜共用の大型表示装置が切望されていた。 Large display devices are active indoors and outdoors, such as advertisements on wall surfaces of buildings, messages at sports facilities, scores, and competition conditions. However, these are either a light emitting type or a reflective type, and a large-sized display device for day and night that can be used as a reflective type when it is bright in the daytime and used as a light emitting type when it is dark at night has not been developed. Conventional large outdoor display devices use high-brightness LEDs, discharge tubes, incandescent bulbs, etc. exceeding 5000 cd / m 2 so that the display can be seen even in the daytime under strong sunlight. Electric power was required, and the thickness and weight of the display device increased, resulting in an increase in system price. On the other hand, the reflection type mainly uses magnetic reversal display, but there are limitations such as that it is impossible to display moving images, high-definition display is difficult, and that front lighting is necessary at night. A large-sized display device that can be used both day and night has a significant advantage in that it is brighter and easier to see and can save electric power when it is used in a reflective type during the day when the weather is nice. There is a merit that it can be used in a light emitting type when it is dark and the use efficiency of the display device is improved. Therefore, a large-sized display device that can be switched between a light emitting type and a reflective type is desired.
透明液体に分散された微粒子を表示面に対して水平方向に移動集積させることによって光線透過性を変化させる横電界方式粒子移動表示法が提案されている(特許文献1〜8)。その構成は図1に示す通り、透明カウンター電極30を設けた透明基板1と、コレクト電極31を設けた透明基板2との間に微粒子分散系が挟まれており、電極30と電極31間に電圧を印加してカウンター電極30上に堆積させるか、面積の小さいコレクト電極31上に集積させるかによってセルを透過する光透過率を変えることを特徴としている。すなわち微粒子が黒色光吸収性の場合(A)では暗状態、(B)では明状態になる。 There has been proposed a lateral electric field type particle movement display method in which light transmittance is changed by moving and accumulating fine particles dispersed in a transparent liquid in a horizontal direction with respect to a display surface (Patent Documents 1 to 8). As shown in FIG. 1, a fine particle dispersion system is sandwiched between the transparent substrate 1 provided with the transparent counter electrode 30 and the transparent substrate 2 provided with the collect electrode 31. It is characterized in that the light transmittance transmitted through the cell is changed depending on whether a voltage is applied to be deposited on the counter electrode 30 or accumulated on the collect electrode 31 having a small area. That is, when the fine particles are black light-absorbing, the dark state is obtained in (A) and the bright state is obtained in (B).
他の構成は図2に示されている。ここでは一対の電極は同一基板上にあり、図1と同様面積の大きい透明カウンター電極に粒子を堆積させた時明状態、コレクト電極に堆積させた時暗状態となる。 Another configuration is shown in FIG. Here, the pair of electrodes are on the same substrate, and in the same way as in FIG. 1, a bright state is obtained when particles are deposited on a transparent counter electrode having a large area and a dark state is obtained when particles are deposited on a collect electrode.
図1も図2も画素内に小面積と大面積の電極を設け、大面積の電極に微粒子を堆積させた時、光線を遮蔽し、小面積の電極に堆積させた時光線を透過させるものである。主として反射で利用することが想定されており、パネル構成としては表示面に対して平行な表示電極面を有するもので、画素内に電極を設けているゆえに開口率の低下(光線ロス)が避けられなかった。また表示領域内に大小電極があるため十分なコントラストを実現することが困難であること、また大面積の透明電極を必要とする故に表示層を多層に積層してカラー化した場合透明電極での光線ロスが避けられず透過率を減じる難点があった。これら提案の表示装置は電子ペーパのような反射型表示装置を想定しており、画素がはるかに大きいメートルサイズの昼夜共用の大型表示装置への適用は全く考慮されていなかった。 Both FIG. 1 and FIG. 2 are provided with electrodes having small and large areas in a pixel, shielding light when depositing fine particles on a large area electrode, and transmitting light when deposited on a small area electrode. It is. It is assumed that it is mainly used for reflection, and the panel configuration has a display electrode surface parallel to the display surface, and since an electrode is provided in the pixel, a decrease in aperture ratio (light loss) is avoided. I couldn't. In addition, since there are large and small electrodes in the display area, it is difficult to achieve sufficient contrast, and since a transparent electrode with a large area is required, when the display layer is laminated and colored, the transparent electrode There was a difficulty in reducing the transmittance due to the inevitable loss of light. These proposed display devices are assumed to be reflective display devices such as electronic paper, and their application to a large-sized display device having a much larger pixel size and day / night use has not been considered at all.
一方従来のセル構成では同一種類の粒子で異極性のものが混在していると大小いずれの電極にも粒子が付着してしまいコントラストを低下させるため使用する分散系は単一極性のみの分散系になるよう厳格な調整と管理を必要とした。 On the other hand, in the conventional cell configuration, if particles of the same type with different polarity are mixed, the particles are attached to both large and small electrodes, and the dispersion system used is a dispersion system with only a single polarity to reduce the contrast. It required strict coordination and management to become.
ビルの壁面の広告表示、屋内外のスポーツ施設でのメッセージ/スコア/競技状況/クローズアップ表示、ターミナルでのメッセージ/広告表示、イベント会場やバス、宣伝広告車の壁面表示、ホテル、デパート、公会堂等での大型広告/TV表示など屋内外で用いる大型表示装置の用途は多方面に渡る。またそのサイズも数メートル角のものから数10メートル角のものまで現実に稼動しており、設備費用や電力がリーズナブルであれば更に大型の表示が求められている。また発光型と反射型が共用できるものはこれまで存在せずまさに市場が待望しているものでその利用価値は甚だ高い。
本発明は従来提案されていた横電界方式粒子移動表示法を見直し、新しい電極構成と表示モードに基づい光ロスの少ないモノクロ、マルチカラー、フルカラー表示を実現したものであり、従って反射・透過兼用の大型表示装置への適用が可能となったものである。
Advertising display on building walls, messages / scores / competition status / close-up display at indoor / outdoor sports facilities, messages / advertising display at terminals, event venues and buses, advertising vehicle wall displays, hotels, department stores, public halls Applications of large display devices used indoors and outdoors, such as large advertisements / TV displays, etc., are widespread. Also, the size is actually in operation from several meters square to several tens of meters square, and if the facility cost and power are reasonable, a larger display is required. In addition, there is nothing that can be shared between the light emitting type and the reflective type so far, and it is exactly what the market is waiting for, and its utility value is very high.
The present invention is a review of the previously proposed transverse electric field type particle movement display method, and realizes monochrome, multi-color, and full-color display with little optical loss based on a new electrode configuration and display mode. It can be applied to a large display device.
上記課題を解決するために、本発明では従来同様横電界を用いるものであるが、粒子を2つの電極のいずれかに強制的に堆積させるのではなく、セル中に分散している粒子の量をコントロールして透過性を変調するという発想に立つ、新たな表示モードを提案するもので、セルの大部分を占める透明面状電極を不要とした。粒子の分散状態を最大の不透明状態とし、粒子を局所に集積させて分散量を減ずることによって明状態を実現するものであり、電極の形状に関しては一対の線状電極を用いるのみで反射表示に於て特に重要な開口率を顕著に向上させ、これによって反射、透過両用の表示装置が可能となった。 In order to solve the above problems, the present invention uses a transverse electric field as in the prior art, but the amount of particles dispersed in the cell is not forcibly deposited on one of the two electrodes. We propose a new display mode based on the idea of modulating the transmittance and controlling the transparency, eliminating the need for a transparent planar electrode that occupies most of the cell. The bright state is achieved by making the dispersed state of the particles the maximum opaque state and collecting the particles locally to reduce the amount of dispersion. The electrode shape can be reflected only by using a pair of linear electrodes. In particular, a particularly important aperture ratio has been remarkably improved, and this has enabled a display device for both reflection and transmission.
本発明の基本セルは図3(A)に示す通り、ガラス、プラスチックなど透明な2枚の基板1,2間に設けられた隔壁3によりセル4が構成され、該セル内に微粒子5が分散された分散系7が充填されており、隔壁3の下部に設けられた電極6−1と6−2間に電圧を印加出来る構成になっている。図3(A)のようにセル4中にカーボンブラックなどのような黒色光吸収性の微粒子5が分散された状態では基板2から入射した光は、微粒子5の隠ぺい力が十分ならば黒色となる。 In the basic cell of the present invention, as shown in FIG. 3A, a cell 4 is constituted by a partition wall 3 provided between two transparent substrates 1 and 2 such as glass and plastic, and fine particles 5 are dispersed in the cell. The dispersion system 7 is filled, and a voltage can be applied between the electrodes 6-1 and 6-2 provided at the lower part of the partition wall 3. As shown in FIG. 3A, in the state where the black light absorbing fine particles 5 such as carbon black are dispersed in the cell 4, the light incident from the substrate 2 is black if the concealing force of the fine particles 5 is sufficient. Become.
図3(B)のように電極6−1と6−2間にDC電圧を印加すれば、微粒子5が正に帯電している場合クーロン力により負極の電極6−1上に集積する。この場合セル4中の粒子集積部以外は光を遮るものがなく透明となる。ここで6−1、6−2間に逆極性のDC電圧パルスないしAC電圧を印加すれば6−1上の微粒子は電極を離れてセル4中に拡散分布し、セル4は再び不透明となる。このようにセル4内の分散状態の粒子量(したがって6−1ないし6−2電極上へ集積させる粒子量)を変えることによってセルの透過率を変化でき集積状態の粒子も、分散状態の粒子も電圧を切って後もその状態を維持するため表示はメモリ性を有する。分散系7はガス又は透明な液体中に微粒子が分散されたものから成り、液体の場合は粒子の移動は電気泳動と呼ばれる。線状電極6−1、6−2の一方あるいは両方が隔壁の上部に設けられていても勿論かまわない。電極はアルミ、クロム、金などの金属を蒸着やスパッタで設けてフォト処理でパタン化した薄膜や、導電性塗料を印刷、インクジェット描画などで設けた導電性厚膜などで構成できる。 When a DC voltage is applied between the electrodes 6-1 and 6-2 as shown in FIG. 3B, when the fine particles 5 are positively charged, they are accumulated on the negative electrode 6-1 by Coulomb force. In this case, except for the particle accumulation part in the cell 4, there is nothing to block light and it is transparent. Here, if a DC voltage pulse or AC voltage of opposite polarity is applied between 6-1 and 6-2, the fine particles on 6-1 will diffuse and distribute in the cell 4 leaving the electrode, and the cell 4 will become opaque again. . Thus, the transmittance of the cell can be changed by changing the amount of dispersed particles in the cell 4 (and hence the amount of particles accumulated on the 6-1 to 6-2 electrodes), and the accumulated particles are also dispersed particles. In addition, the display has a memory property in order to maintain the state after the voltage is turned off. The dispersion system 7 consists of a gas or a transparent liquid in which fine particles are dispersed. In the case of a liquid, the movement of the particles is called electrophoresis. Of course, one or both of the linear electrodes 6-1 and 6-2 may be provided on the upper part of the partition wall. The electrode can be composed of a thin film obtained by depositing a metal such as aluminum, chromium, or gold by vapor deposition or sputtering and patterned by photolithography, or a conductive thick film provided by printing a conductive paint or ink jet drawing.
微粒子を電極に集積した時基板表面に固着して残存することはセルの明状態の光透過性を阻害するゆえに好ましくない。従ってセル部の基板内面には微粒子の固着を妨げるようフッ素化合物などのコーティングがなされていることが望ましくまた分散媒が液体の場合は微粒子と液体の比重は出来るだけ近接していることが望ましい。 When the fine particles are accumulated on the electrode, it is not preferable that the fine particles remain fixed on the substrate surface because the light transmittance in the bright state of the cell is inhibited. Accordingly, it is desirable that the inner surface of the substrate of the cell portion is coated with a fluorine compound or the like so as to prevent the fine particles from sticking. When the dispersion medium is a liquid, the specific gravity of the fine particles and the liquid is preferably as close as possible.
本発明で分散状態とはブラウン運動により比重差に拘わらず液体中に安定に微粒子が均一分散したコロイド状態は勿論、基板1,2内面のいずれかないし両面に一部ないし殆どの粒子がゆるく付着した状態をも含むものである。また微粒子は1種類である必要はなく、光学的特性を最適化するため各種のものが混在していてもよく、帯電極性も同一である必要はない。微粒子5は通常光吸収性のものが使用されるが、二酸化チタンのように白色反射性のものを用いることも可能であり、この場合セル4の微粒子分散状態では入射光が微粒子で散乱反射されその程度に応じて透過光は減衰する。 In the present invention, the dispersed state is not only a colloidal state in which fine particles are stably and uniformly dispersed in the liquid regardless of the specific gravity due to Brownian motion, but also some or most of the particles are loosely attached to either the inner surface of the substrate 1 or 2. It includes the state that has been. Further, the fine particles do not need to be one kind, and various kinds of fine particles may be mixed in order to optimize the optical characteristics, and the charging polarities need not be the same. The fine particles 5 are usually light-absorbing, but it is also possible to use a white-reflective material such as titanium dioxide. In this case, the incident light is scattered and reflected by the fine particles when the fine particles are dispersed in the cell 4. The transmitted light attenuates depending on the degree.
微粒子の移動速度が表示の応答速度を決めるが、粒子移動速度は分散媒の粘度、粒子の電荷量、電界強度などに依存し、粘度が低く、電荷量と電界強度が大きい時、高速応答が可能となる。大型表示では画素サイズも当然大きくなり、図3(A)のような電極構成で画素を大きくした場合、高電圧を印加する必要があり駆動回路の負担が大きくなってしまう。低電圧でも十分な電界強度を確保するため図4(A)のような櫛型電極か図4(B)に示すような渦型電極を用いることが望ましい。この場合セルの明状態すなわち電極への粒子集積状態では線状の不透明部が生じるが電極間の幅に較べて粒子集積部の幅が十分狭ければセルの光透過性をさほど低下させることなく十分な明るさとコントラストを得ることが可能となる。
櫛型や渦型電極セルの場合は分散系には単一極性粒子系を用いるべきである。本発明では便宜上粒子を集積する電極を駆動電極、他方の電極を共通電極と呼ぶことにする。図4(A)、図4(B)で6−1が粒子を集積させる駆動電極、6−2は粒子を集積させない共通電極となる。駆動電極は透明、不透明どちらでもよいが共通電極はITO(インジウム錫酸化物)のような透明電極を用いた方が明状態での透過率を向上できるからより望ましい。粒子移動には通常0.2〜2V/μ程度の電界強度がふさわしい。駆動電極と共通電極の電極間距離が50μの場合、10〜100Vの電圧に相当する。電極間距離を狭めた方が駆動電圧は下がるが表示の明るさ、コントラストの点では不利になる。用途にもよるが電極間距離は20μ〜100μ程度で用いるのが適切である。駆動電極が不透明の場合電極幅は集積粒子層の幅以下にすべきである。製造の容易さ、機械的強度などの点で2〜10μ程度が望ましい。透明共通電極は多少広くてもかまわない。図4には図示していないが、絶縁性隔壁4は、開口率を悪化させないよう櫛型ないし渦型電極の外周部に設け、駆動電圧の上昇を生じるのを防ぐために、櫛ないし渦に相当するセル内側の電極部を覆わないようにする必要がある。
The moving speed of the fine particles determines the response speed of the display, but the moving speed of the particles depends on the viscosity of the dispersion medium, the charge amount of the particles, the electric field strength, etc., and when the viscosity is low and the charge amount and the electric field strength are large, the fast response is It becomes possible. In a large display, the pixel size naturally increases, and when a pixel is enlarged with an electrode configuration as shown in FIG. 3A, it is necessary to apply a high voltage, which increases the burden on the driver circuit. In order to secure a sufficient electric field strength even at a low voltage, it is desirable to use a comb electrode as shown in FIG. 4A or a vortex electrode as shown in FIG. In this case, in the bright state of the cell, that is, in the state of particle accumulation on the electrode, a linear opaque portion is generated. However, if the width of the particle accumulation portion is sufficiently narrow compared with the width between the electrodes, the light transmittance of the cell is not significantly reduced. Sufficient brightness and contrast can be obtained.
In the case of a comb-type or vortex-type electrode cell, a monopolar particle system should be used for the dispersion system. In the present invention, for convenience, an electrode for collecting particles is called a drive electrode, and the other electrode is called a common electrode. In FIGS. 4A and 4B, reference numeral 6-1 denotes a drive electrode that accumulates particles, and 6-2 denotes a common electrode that does not accumulate particles. The drive electrode may be either transparent or opaque, but the common electrode is more preferably a transparent electrode such as ITO (indium tin oxide) because the transmittance in the bright state can be improved. An electric field strength of about 0.2 to 2 V / μ is usually suitable for particle movement. When the distance between the drive electrode and the common electrode is 50 μm, it corresponds to a voltage of 10 to 100V. If the distance between the electrodes is reduced, the driving voltage is lowered, but it is disadvantageous in terms of display brightness and contrast. Although it depends on the application, it is appropriate that the distance between the electrodes is about 20 to 100 μm. If the drive electrode is opaque, the electrode width should be less than the width of the integrated particle layer. About 2 to 10 μm is desirable in terms of ease of manufacture and mechanical strength. The transparent common electrode may be somewhat wide. Although not shown in FIG. 4, the insulating partition 4 is provided on the outer periphery of the comb or vortex electrode so as not to deteriorate the aperture ratio, and corresponds to a comb or vortex in order to prevent an increase in drive voltage. It is necessary not to cover the electrode part inside the cell.
図5はフルカラー表示を可能とするために図3の如きセルを3層積み重ねたカラー用基本セルである。ただし3層の微粒子5は各々C(シアン),M(マゼンタ),Y(イエロー)色のものが用いられる。Y,M粒子が適度に分散状態にあり、C粒子が電極集積状態にあれば、その部分はR(赤)、C,M粒子が適度に分散状態でY粒子が電極集積状態では同じく減法混色によりB(青)となる。C,M,Yパネルに加えて、より完全に光を遮断するために白-黒に変調できる第4のセルが追加され4層構成をとる場合もある。またセルの積層順序は任意に選択可能である。 FIG. 5 shows a basic cell for color in which three cells as shown in FIG. 3 are stacked in order to enable full color display. However, the three layers of fine particles 5 are C (cyan), M (magenta), and Y (yellow). If Y and M particles are in a moderately dispersed state and C particles are in an electrode-integrated state, that portion is R (red), and if C and M particles are in a moderately dispersed state and Y particles are in an electrode-integrated state, the same subtractive color mixture To B (blue). In addition to the C, M, and Y panels, a fourth cell that can be modulated into white-black in order to block light more completely may be added to form a four-layer configuration. Further, the cell stacking order can be arbitrarily selected.
セルを多数積層する表示装置において注意すべきは、界面反射である。屈折率が異なる界面では必ず界面反射が生じる。図5の3層積層型表示セルでは、モノクロ素子1層辺り多数の層(2枚の基板、分散媒、接着層)から成るから各層は出来るだけ透明性が高いのは勿論、屈折率のできるだけ等しい材料で構成し、不要な界面反射を軽減することが重要である。 In a display device in which a large number of cells are stacked, attention should be paid to interface reflection. Interface reflection always occurs at interfaces having different refractive indexes. In the three-layer stacked display cell of FIG. 5, each layer is composed of many layers (two substrates, a dispersion medium, and an adhesive layer), so that each layer is as transparent as possible, and the refractive index is as high as possible. It is important to construct with equal materials to reduce unwanted interface reflections.
また図5の3層積層型表示装置では画素サイズにくらべて間に入る基板の厚さが厚い場合、反射で見た時視角が制約される。図5において基板垂線からの角度θを越えた方向から見ると反射光線は3層すべてを通過していないから正しい色を見ることが出来ない。画素サイズをWとすれば1色分のセル厚h(上基板、分散系、下基板、接着層の合計)はh=W/(3×tanθ)となる。θ=60度(tan(θ)=1.73)ではh=W/5.19より、画素サイズが1mmの場合h≒0.19mm、θ=80度(tan(θ)=5.65)の時h≒0.059mmとなる。すなわち3層型反射表示装置は間に入る基板を極力薄くしないと視野角に優れた反射表示を実現することが困難になる。この点透明基板としてフィルムは薄さゆえに視角特性に於て有利になる。 Further, in the three-layer stacked display device of FIG. 5, when the thickness of the intervening substrate is thicker than the pixel size, the viewing angle is limited when viewed by reflection. In FIG. 5, when viewed from the direction beyond the angle θ from the substrate normal, the reflected light does not pass through all three layers, so that the correct color cannot be seen. If the pixel size is W, the cell thickness h for one color (the total of the upper substrate, the dispersion system, the lower substrate, and the adhesive layer) is h = W / (3 × tan θ). At θ = 60 degrees (tan (θ) = 1.73), h = W / 5.19, and when the pixel size is 1 mm, h≈0.19 mm, θ = 80 degrees (tan (θ) = 5.65) In this case, h≈0.059 mm. That is, in the three-layer type reflective display device, it is difficult to realize a reflective display with an excellent viewing angle unless the intervening substrate is made as thin as possible. This point transparent substrate is advantageous in view angle characteristics because of its thinness.
図6は図5のセルの電極取り出し構成を示すもので、C,M、Y用の3つの駆動電極端子とそれぞれに対応した共通電極、LEDのような光源点灯電極と共通電極を有し、共通電極を1つに結合すると合計5端子となる。図6の例ではC,M,Yセルの電極は各上基板の内面に設けられており、電極取り出し部はシールよりわずかにはみ出している。配線を設けた電極基板15は上記はみ出し部に於てくり抜きを有し、対応する電極基板の端子とは導電性樹脂16などを用いて電気的接続が図られている。基板に20〜100μ程度のフィルムを用いればバックライトユニットを含めても数mmの厚みに構成することは容易である。 FIG. 6 shows an electrode extraction configuration of the cell of FIG. 5, which has three drive electrode terminals for C, M, and Y and corresponding common electrodes, a light source lighting electrode such as an LED, and a common electrode, When the common electrodes are combined into one, there are a total of five terminals. In the example of FIG. 6, the electrodes of the C, M, and Y cells are provided on the inner surface of each upper substrate, and the electrode takeout portion slightly protrudes from the seal. The electrode substrate 15 provided with wiring is hollowed out at the protruding portion, and is electrically connected to the corresponding electrode substrate terminal using a conductive resin 16 or the like. If a film having a thickness of about 20 to 100 μm is used for the substrate, it is easy to form a thickness of several mm even if the backlight unit is included.
図7に図6のセルの5つの端子にピンを設けたピン付きフルカラー素子を示す。
このようなセルをX−Yマトリクス状に多数並べることによって光源非点時は反射型、点灯時は発光型となる反射、発光両用のフルカラー超大型表示システムが構成できる。
図5では1画素セルで示したが勿論多画素のパネルを用いた、多素子ピン付きパネルが可能であることは言うまでもない。
FIG. 7 shows a full-color element with pins in which pins are provided at five terminals of the cell of FIG.
By arranging a large number of such cells in an XY matrix, it is possible to construct a full-color super-large display system for both reflection and light emission that is reflective when the light source is not lit and light-emitting when illuminated.
Although FIG. 5 shows one pixel cell, it is needless to say that a panel with multi-element pins using a multi-pixel panel is possible.
大型表示装置とは画面サイズが100インチ程度のものから特に上限はないが仮に1000インチとし、表示容量がVGA(640×480画素)程度からフルHD(1920×1440画素)程度を想定すると、画素ピッチはVGAで3mm強〜32mm、フルHDで1mm強〜11mm程度となる。 A large display device has a screen size of about 100 inches and is not particularly limited, but is assumed to be 1000 inches and a display capacity of about VGA (640 × 480 pixels) to full HD (1920 × 1440 pixels). The pitch is about 3 mm to 32 mm for VGA and about 1 mm to 11 mm for full HD.
図8は多数の画素を有する基本パネル26を縦横に多数配列して大型表示装置を構成する例を示す。本発明では縦方向を列、横方向を行と呼ぶ。従ってこの例では列5画素、行10画素のパネルを縦横に多数配列する場合を示し、電極構成を図9(A)に3列、2行画素分示されている。図9(B)〜(D)はこのパネルに用いる電極基板15の正面図を示す。共通電極は行方向に共通であるが、駆動電極は各画素毎に細線でたとえば左端まで引き伸ばされている。従って図8のパネル1枚から駆動電極10×5=50本、共通電極5本が左端に並ぶことになる。これら50画素からなる各パネルを駆動するには次の4つの方法がある。(1)単純マトリクス、(2)スタティック(3)2端子アクティブマトリクス、(4)3端子アクティブマトリクス 、(1)の単純マトリクスの場合は分散系に閾値特性が必要であり、各列の駆動電極Ciをパネル内またはパネル外で接続し、10列×5行のマトリクスとして駆動される(図示は省略)。パネル端の電極端子とこれと垂直に設けられた電極基板15上の対応する端子間はワイアボンド、異方導電フィルム、導電樹脂などで接続される。図9(B)はスタティック駆動する例を示しすべての画素の駆動電極はLSIドライバ20の出力に接続され、5本の共通電極はLSI20の共通端子に接続される。図9(C)、図9(D)にはそれぞれ側面電極基板15上にそれぞれ2端子非直線素子ないし3端子TFT素子でアクティブマトリクスが構成されている例を示している。以上にはパネル駆動回路が側面電極基板15の上に構成された例を示したが、電極基板15は単にパネルの電極延長として使用し、パネルやバックライトの裏側に設けた駆動回路に接続して駆動することも可能である。パネル間の電源や信号の接続はパネル背面の駆動回路基板27に設けたコネクタ(図示省略)などによってなされる。
フルカラーパネルでは駆動電極数が3倍に増えるため電極処理は複雑化するが基本的には図9で述べたと同様の構成を適用できる。
FIG. 8 shows an example in which a large display device is configured by arranging a large number of basic panels 26 having a large number of pixels vertically and horizontally. In the present invention, the vertical direction is called a column and the horizontal direction is called a row. Therefore, in this example, a case where a plurality of panels each having 5 columns and 10 pixels are arranged vertically and horizontally is shown, and the electrode configuration is shown by 3 columns and 2 rows in FIG. 9A. 9B to 9D are front views of the electrode substrate 15 used in this panel. Although the common electrode is common in the row direction, the drive electrode is extended to the left end, for example, by a thin line for each pixel. Accordingly, 10 drive electrodes 10 × 5 = 50 and 5 common electrodes are arranged at the left end from one panel of FIG. There are the following four methods for driving each panel composed of these 50 pixels. In the case of (1) simple matrix, (2) static (3) two-terminal active matrix, (4) three-terminal active matrix, and (1) simple matrix, a threshold value characteristic is required for the distributed system, and the drive electrode of each column Ci is connected inside or outside the panel and driven as a matrix of 10 columns × 5 rows (not shown). The electrode terminal at the panel end and the corresponding terminal on the electrode substrate 15 provided perpendicular thereto are connected by a wire bond, an anisotropic conductive film, a conductive resin or the like. FIG. 9B shows an example in which static driving is performed. The driving electrodes of all the pixels are connected to the output of the LSI driver 20, and the five common electrodes are connected to the common terminal of the LSI 20. FIGS. 9C and 9D show examples in which an active matrix is formed on the side electrode substrate 15 with 2-terminal non-linear elements or 3-terminal TFT elements, respectively. Although the example in which the panel drive circuit is configured on the side electrode substrate 15 has been described above, the electrode substrate 15 is simply used as an electrode extension of the panel and connected to the drive circuit provided on the back side of the panel or the backlight. It is also possible to drive. Connection of power and signals between the panels is made by a connector (not shown) provided on the drive circuit board 27 on the back of the panel.
In a full-color panel, the number of drive electrodes increases three times, so that electrode processing becomes complicated, but basically the same configuration as described in FIG. 9 can be applied.
モノクロ表示、カラー表示いずれにおいても、特に反射型で用いる場合白色度を出来るだけ高くするための工夫が必要である。大型表示装置の1部を図10に示すが画素間の隙間をs,画素ピッチをWとする時、表示の均一性の点からsは至るところで同一であることが望ましく、(W-s)/Wで示される開口率は優れた明るさ、コントラストを得るため出来るだけ高い(≧0.8)ことが望まれる。画素ピッチが3mmの場合はs≦0.6mmに相当するから各パネルの4辺はs/2≦0.3mmで処理する必要がある。図8のパネルの場合1行の画素の駆動電極10本と共通電極1本を幅s内に形成する必要があるが、画素が3mmピッチの場合、ラインアンドスペースを30μ弱にすることによって実現できる。図7のような単画素素子でW=10mmの場合ではシール及び電極基板を含めて0.5mm以下に構成することは容易であるから開口率≧90%は容易である。画素間のs部分の光学特性は重要である。発光型で用いる時は黒色不透明が望ましいが反射で用いる時は白色度を減じる。一方白色不透明にすると、反射表示の場合、黒部分が悪化し、色純度も低下するが白表示の領域では白色度が優れる。開口率、表示内容、反射と透過で使用する頻度に応じて決めるべきである。 In both monochrome display and color display, it is necessary to devise in order to increase the whiteness as much as possible particularly in the case of using the reflection type. FIG. 10 shows a part of a large display device. When the gap between pixels is s and the pixel pitch is W, it is desirable that s is the same from the viewpoint of display uniformity, and (W−s) The aperture ratio indicated by / W is desired to be as high as possible (≧ 0.8) in order to obtain excellent brightness and contrast. When the pixel pitch is 3 mm, it corresponds to s ≦ 0.6 mm, so it is necessary to process the four sides of each panel with s / 2 ≦ 0.3 mm. In the case of the panel of FIG. 8, it is necessary to form 10 drive electrodes and 1 common electrode of pixels in one row within the width s. However, when the pixels have a pitch of 3 mm, the line and space is made less than 30 μm. it can. In the case of a single pixel element as shown in FIG. 7 where W = 10 mm, it is easy to configure it to 0.5 mm or less including the seal and the electrode substrate, so that the aperture ratio ≧ 90% is easy. The optical characteristics of the s portion between pixels are important. When used in the light emitting type, black opaque is desirable, but when used in reflection, the whiteness is reduced. On the other hand, if white opaque is used, in the case of reflective display, the black portion is deteriorated and the color purity is lowered, but the whiteness is excellent in the white display region. It should be determined according to the aperture ratio, display contents, and the frequency used for reflection and transmission.
図8のようなパネルでも各画素は隔壁で囲まれてセルを構成している。粒子をセル内部に閉じ込めるのは微粒子が隣のセルに移動するのを妨げ表示パネル面内での粒子濃度均一性を維持するためである。隔壁で微粒子を閉じ込める代りに、微粒子をカプセル内に閉じ込めてもよい。微粒子をカプセルに閉じ込めることによる利点は、液状ないし流動性粉体としての微粒子分散系を固体化でき表示素子面への塗布、上下基板の貼り合わせ等における取り扱いの容易さである。 In the panel as shown in FIG. 8, each pixel is surrounded by a partition wall to constitute a cell. The reason why the particles are confined in the cell is to prevent the fine particles from moving to the adjacent cell and maintain the particle concentration uniformity in the display panel surface. Instead of confining the fine particles with the partition walls, the fine particles may be confined in the capsule. An advantage of confining the fine particles in the capsule is that the fine particle dispersion system as a liquid or fluid powder can be solidified and easy to handle in application to the display element surface, bonding of the upper and lower substrates, and the like.
図11(A)は1画素を3×3のカプセル粒子で構成した例を示し、図11(B)はたとえば図4(A)の櫛型電極のピッチに合わせてカプセル粒子を配列した例を示す。 FIG. 11A shows an example in which one pixel is composed of 3 × 3 capsule particles, and FIG. 11B shows an example in which capsule particles are arranged in accordance with the pitch of the comb-shaped electrodes in FIG. 4A, for example. Show.
図12はC,M,Yのカプセル粒子を積層したカラーパネルの断面図を示す。積層型セルないしパネルを構成する場合、電極を設けた基板にカプセルを敷き詰めたものを各色順次積層すればよいから基板枚数を減らし易く、視角特性の点で有利なセルが構成できる。 FIG. 12 shows a cross-sectional view of a color panel in which C, M, and Y capsule particles are laminated. In the case of forming a stacked cell or panel, it is sufficient to sequentially stack each color of a substrate provided with electrodes on which a capsule is laid, so that the number of substrates can be easily reduced, and a cell advantageous in view angle characteristics can be configured.
カプセル粒子10の壁は透明な無機あるいは有機薄膜からなり、カプセル粒子内の分散系はガス体または透明液体に光吸収性ないし反射性微粒子が分散されたものである。カプセル粒子間あるいわ基板との隙間は透明なバインダー樹脂、接着剤、ゲルなどで埋められている。カプセル粒子形状は球体に限られるものではない。また球体カプセル粒子であっても図11(B)に示すように基板間に挟みこんで変型させて使用した方が光変調効果を増大できる。
本発明でセルとは隔壁で囲まれた領域、あるいは1個のカプセル粒子を指す。画素は1個のセルから成る場合もあれば多数のセルから構成される場合もある。
The walls of the capsule particles 10 are made of a transparent inorganic or organic thin film, and the dispersion system in the capsule particles is obtained by dispersing light absorbing or reflecting fine particles in a gas body or a transparent liquid. The gap between the capsule particles and the so-called substrate is filled with a transparent binder resin, adhesive, gel or the like. The capsule particle shape is not limited to a sphere. Further, even if spherical capsule particles are used, the light modulation effect can be increased by using them while being sandwiched between substrates as shown in FIG. 11B.
In the present invention, the cell refers to a region surrounded by partition walls or one capsule particle. A pixel may consist of one cell or a number of cells.
上記説明から明らかな通り、本発明の光変調素子では隔壁部分ないしカプセル粒子間の隙間は光線透過率は変化しないから、光線透過方向のこの部分の幅は出来るだけ狭いことが望ましい。逆にこの部分が透明性であると光り抜けを生じ光変調素子の光線遮断力を低下させ純黒が得られなくなるからこの部分を黒色光吸収性にするか光反射性にすることが望ましい。光り抜けを生じる基板1ないし2の領域および必要なら粒子集積部を覆うようにブラックマトリクスないし光反射膜を設ければよい。 As is clear from the above description, in the light modulation element of the present invention, the light transmittance does not change in the gaps between the partition walls or the capsule particles, so it is desirable that the width of this part in the light transmission direction is as narrow as possible. On the contrary, if this part is transparent, light is lost and the light blocking power of the light modulation element is reduced, so that pure black cannot be obtained. Therefore, it is desirable to make this part black light absorbing or light reflecting. A black matrix or a light reflecting film may be provided so as to cover the regions of the substrates 1 and 2 where light leakage occurs and, if necessary, the particle accumulation portion.
図13にアクティブマトリクス基本パネル用アレーの製造プロセスの例を示す。
透明基板上に蒸着、スパッタなどでアルミ、タンタルなどの金属膜を設けフォトエッチングなどで図13(A)に示すように列電極を形成する。ついでこの列電極を陽極酸化して表面に酸化膜を形成する。ついでアルミニウム、タンタル、クロム、金などの金属膜を形成し、フォト処理により図13(B)に示すように櫛型駆動電極6−1を形成する。こうして駆動電極と列電極交点にMIM2端子非直線素子が形成される。つぎに透明絶縁膜を形成し、少なくとも櫛型電極部は駆動電圧上昇を避けるために絶縁膜を取り除く。次に駆動電極と同様の材料で行電極線Rを形成して後、ITOなどの透明電極で櫛型共通電極6−2を形成することでアクティブマトリクスアレー基板が構成できる。櫛型共通電極の先端部を絶縁層を介して駆動電極の水平バーに重ねておけば、画素並列容量として機能する。つぎにほぼ基板サイズに一様にカプセル粒子を敷き詰めた別基板を上記アレーに重ね、カプセル粒子層をアレー基板に転写する。勿論直接アレー基板にカプセル粒子を敷き詰めてもかまわない。このあと基板端で行、列電極にたとえばバンプを形成し、バンプを覆わない様にシール樹脂及びスペーサを設け、透明基板1と同じサイズの下基板2にカプセル粒子を設けたアレー基板を接着剤を介して貼り付けて1色目のパネルが完成する。同様にして2色目,3色目の基板を重ねて図12の如き積層型パネル24が構成される。カプセル粒子の配置位置は図11(B)に示したように櫛型電極の櫛の間に入るよう位置合せされている。また2層目、3層目の電極端子位置は1層目と少しずつずらせて設計しておくと後にワイヤボンドする際各色パネルで位置が重ならないことから望ましい。
上記積層パネルをたとえば内部にLEDなどの光源13を設けたバックライトユニット17に貼り付け、あらかじめ行、列端子面側に設けられた電極基板15の対応する端子とワイヤボンディングなどで結線して行、列端子はバックライトユニットの背面に集められここで駆動回路基板27と異方導電樹脂などで接続される。電極基板15はたとえば薄く柔軟なフィルムに銅箔が設けられたものでパネルから垂直方向に、下基板2及びバックライトユニット17側面にしっかりと貼り付けられている。最終、ワイアボンド部は保護フィルムを貼り付けるか、樹脂でモールドしておくことが望ましい。行、列電極と電極基板の接続はワイヤボンドの替りに導電樹脂などで接続してもよい。2端子素子は陽極酸化膜のほか、たとえば酸化亜鉛などを樹脂に分散したペーストなどを印刷等で設けてもよい。
FIG. 13 shows an example of the manufacturing process of the active matrix basic panel array.
A metal film such as aluminum or tantalum is formed on the transparent substrate by vapor deposition or sputtering, and column electrodes are formed by photoetching or the like as shown in FIG. Next, this column electrode is anodized to form an oxide film on the surface. Next, a metal film made of aluminum, tantalum, chromium, gold, or the like is formed, and a comb-shaped drive electrode 6-1 is formed by photolithography as shown in FIG. 13B. In this way, the MIM 2 terminal non-linear element is formed at the intersection of the drive electrode and the column electrode. Next, a transparent insulating film is formed, and at least the comb-shaped electrode portion is removed to avoid an increase in driving voltage. Next, an active matrix array substrate can be configured by forming the row electrode line R with the same material as the drive electrode and then forming the comb-shaped common electrode 6-2 with a transparent electrode such as ITO. If the tip of the comb-shaped common electrode is overlapped with the horizontal bar of the drive electrode via an insulating layer, it functions as a pixel parallel capacitor. Next, another substrate on which the capsule particles are spread almost uniformly over the substrate size is overlaid on the array, and the capsule particle layer is transferred to the array substrate. Of course, the capsule particles may be spread directly on the array substrate. Thereafter, for example, bumps are formed on the row and column electrodes at the substrate edge, a sealing resin and a spacer are provided so as not to cover the bumps, and an array substrate in which capsule particles are provided on the lower substrate 2 having the same size as the transparent substrate 1 is adhesive. The first color panel is completed. Similarly, a laminated panel 24 as shown in FIG. 12 is formed by superimposing substrates of the second and third colors. The arrangement positions of the capsule particles are aligned so as to enter between the combs of the comb-shaped electrode as shown in FIG. In addition, it is desirable that the electrode terminal positions of the second layer and the third layer are slightly shifted from the first layer so that the positions do not overlap with each other when wire bonding is performed later.
For example, the laminated panel is attached to a backlight unit 17 provided with a light source 13 such as an LED, and connected to corresponding terminals of the electrode substrate 15 provided on the row and column terminal surfaces in advance by wire bonding or the like. The column terminals are collected on the back surface of the backlight unit, and are connected to the drive circuit board 27 by anisotropic conductive resin or the like. The electrode substrate 15 is, for example, a thin and flexible film provided with a copper foil, and is firmly attached to the side surfaces of the lower substrate 2 and the backlight unit 17 in the vertical direction from the panel. Finally, it is desirable that the wire bond part is pasted with a protective film or molded with resin. The row and column electrodes may be connected to the electrode substrate with a conductive resin or the like instead of the wire bond. In addition to the anodic oxide film, the two-terminal element may be provided with, for example, a paste in which zinc oxide or the like is dispersed in a resin.
図14には各画素にTFTを導入したアクティブマトリクスパネルの1画素部を示す。TFTを行電極(ゲート電極)Riの下部に構成し、ソース電極を列電極Ciに、駆動電極6−1をドレイン電極に接続すればよい。共通電極6−2は絶縁膜を介してたとえばドレイン電極ラインおよびCiの下に張り巡らせて構成し、周辺部より1端子として取り出せばよい。 FIG. 14 shows one pixel portion of an active matrix panel in which a TFT is introduced into each pixel. The TFT may be configured below the row electrode (gate electrode) Ri, the source electrode may be connected to the column electrode Ci, and the drive electrode 6-1 may be connected to the drain electrode. For example, the common electrode 6-2 is configured to extend under the drain electrode line and Ci through an insulating film, and may be taken out as one terminal from the peripheral portion.
図15(A)に完成した基本パネルの側面図、図15(B)に斜視図を示す。画素ピッチが3mm、行、列各100画素とすれば基本パネルサイズは約30cm角となり、列(駆動)電極数300本、行(共通)電極は各色共通化できるから100本となる。回路基板27にコネクタ28を設けておき周辺パネルと電気的に接続できるようにしてある。このような基本パネルを図8に示すように横12枚、縦9枚集積すれば3.6m×2.7m(対角約177インチ)の公共施設などで利用するにふさわしいサイズの反射透過共用フルカラー表示システムとなる。 FIG. 15A shows a side view of the completed basic panel, and FIG. 15B shows a perspective view. If the pixel pitch is 3 mm, and each row and column is 100 pixels, the basic panel size is about 30 cm square, the number of column (drive) electrodes is 300, and the number of row (common) electrodes can be shared by 100 colors. A connector 28 is provided on the circuit board 27 so that it can be electrically connected to the peripheral panel. As shown in Fig. 8, if 12 such horizontal panels are stacked and 9 vertical panels are stacked, the reflective and transmissive shared size is suitable for use in public facilities of 3.6m x 2.7m (diagonal approximately 177 inches). It becomes a full color display system.
図8のような大型パネルのバックライトとしては直下型あるいはエッジライト構成のLEDのほか蛍光管やEL面光源を利用することができる。
図8のような基本パネルをフィルムで製造すれば3層積層型カラー表示でも1mm以下で構成可能である。駆動回路をポリイミド、銅箔よりなるFPCなどで構成すれバックライトを内蔵しない反射型モノクロないしカラーパネルは勿論、バックライトを内蔵したカラーパネルでも5mm以下で構成することは不可能ではなく曲面化が容易であり、列車内に設置する凹面広告表示、車の外面に沿った曲面表示パネルなどに各種適用することができる。
As a backlight of a large panel as shown in FIG. 8, a fluorescent tube or an EL surface light source can be used in addition to an LED of a direct type or an edge light configuration.
If the basic panel as shown in FIG. 8 is manufactured with a film, even a three-layer stacked color display can be configured with 1 mm or less. The drive circuit is made of FPC made of polyimide, copper foil, etc., and it is not impossible to construct a color panel with a built-in backlight as well as a reflective monochrome or color panel with a built-in backlight. It is easy and can be applied in various ways to a concave advertisement display installed in a train, a curved display panel along the outer surface of a car, and the like.
パネル周辺のシール幅およびパネル内スペーサ幅を0.2mm以下に作り込めば、開口率:(W-s)/W≒87%、0.3mmで80%が達成可能である。分散系はマイクロカプセルで説明したが、勿論隔壁型でも可能である。マイクロカプセル粒子にほぼ50μ径のものを利用するとすれば、図13(B)に示す櫛型駆動電極ピッチPを約100μとし、図11(B)のようにカプセル粒子端が駆動電極、共通電極上に配置されることが望ましい。基板1、基板2はガラス、プラスチックいずれでもよい。下基板2は白色拡散板、白色LED、反射板などからなるバックライトユニット17そのもので代用してもよい。基本パネルを集積して大型パネルを構成する場合、基本パネルの寸法精度が決定的に重要になる。従ってパネルに使用する基板寸法、張り合わせ精度、シール幅等厳密に寸法管理される必要がある。4つの側面のわずかな突起も望ましくない。従って所定寸法になるようバックライトユニットを設けてから4つの側面を必要なら研磨し、また側面電極板を用いる代りにあらかじめバックライトユニット側面に印刷、蒸着、スパッタなどで薄く精度の高い電極膜を形成しておく(あらかじめ電極膜厚に相当した凹みを設けておく場合もあり)のも精度を上げる方法である。
図16は櫛型電極を用いたパネルを例に粒子集積部の透過率低減の影響を簡単なモデルで推測したものである。十分なコントラストが得られる濃度に分散した分散粒子をすべて上基板に集積したと想定し粒子層の厚みをd、画素の幅をWとする。駆動電極に分散粒子をすべて集積し、櫛型駆動電極1本に粒子が半円状に集積していると仮定してその幅をxとする。図15で述べたようなパネルすなわち画素サイズを3mmとし、駆動電極と共通電極間ピッチ50μと100μについて図16(ロ)に示す簡単な式で求めた結果を図16(ハ)に示した。ここでの開口率はシール部の影響は無視している。想定される通り、電極ピッチpが大なるほど透過率低下は小さく、いずれの場合も着色力の強い(dが小)粒子を用いることが有利であること、また隠ぺい力の強い粒子ではxは小さいから不透明駆動電極を用いるなら、電極幅で律足されないようできるだけ幅を狭くしておくことが望ましいことが分る。
If the seal width around the panel and the spacer width in the panel are made 0.2 mm or less, the aperture ratio: (W−s) / W≈87% and 80% at 0.3 mm can be achieved. Although the dispersion system has been described as a microcapsule, it can of course be a partition type. If microcapsule particles having a diameter of about 50 μm are used, the comb-shaped drive electrode pitch P shown in FIG. 13B is about 100 μm, and the capsule particle ends are the drive electrodes and common electrodes as shown in FIG. It is desirable to be placed on top. The substrate 1 and the substrate 2 may be either glass or plastic. The lower substrate 2 may be replaced by the backlight unit 17 itself made up of a white diffuser, white LED, reflector or the like. When constructing a large panel by integrating the basic panels, the dimensional accuracy of the basic panels is critical. Therefore, it is necessary to strictly manage the dimensions such as the substrate size used for the panel, the bonding accuracy, and the seal width. Slight protrusions on the four sides are also undesirable. Therefore, after installing the backlight unit to the specified dimensions, the four sides are polished if necessary, and instead of using the side electrode plate, a thin and highly accurate electrode film is printed on the side of the backlight unit in advance by printing, vapor deposition, sputtering, etc. It is also a method of improving the accuracy to form (in some cases, a dent corresponding to the electrode film thickness is provided in advance).
FIG. 16 shows a simple model in which the effect of reducing the transmittance of the particle accumulation portion is estimated using a panel using comb-shaped electrodes as an example. Assuming that all the dispersed particles dispersed at a concentration at which sufficient contrast can be obtained are accumulated on the upper substrate, the thickness of the particle layer is d and the width of the pixel is W. Assuming that all the dispersed particles are accumulated on the drive electrode and the particles are accumulated in a semicircular shape on one comb-shaped drive electrode, the width is x. FIG. 16 (C) shows the result obtained by the simple formula shown in FIG. 16 (B) for the panel as described in FIG. Here, the aperture ratio ignores the influence of the seal portion. As expected, the larger the electrode pitch p, the smaller the decrease in transmittance. In any case, it is advantageous to use particles with strong coloring power (d is small), and x is small for particles with high hiding power. It can be seen that if an opaque drive electrode is used, it is desirable to make the width as narrow as possible so that it is not limited by the electrode width.
本発明で使用する光変調素子の透明基板としてガラスやプラスチックフィルムが使用できるが特にフィルムは薄いから反射型で使用する積層パネルでは視角が広くとれる点で有利であるほかロールツーロールで連続量産できる特徴を有している。
図17はロールツーロールでフィルムセルないしパネルを製造する例を示す。あらかじめ電極パタンが形成されたロール状フィルムが上ロールから供給されカプセル粒子の形態などで分散系が塗布される。一方電極取り出しのためのパンチング孔が空けられ印刷またはインクジェット描画などでUVシール樹脂などシール剤が設けられた下フィルム基板との間に気泡が残らないように両基板が位置合わせして貼合、固着される。パンチングなどで切断して1色用個片セルないしパネルを一括複数枚連続生産することが可能である。
Glass or plastic film can be used as the transparent substrate of the light modulation element used in the present invention. Particularly, since the film is thin, it is advantageous in that the viewing angle can be widened in a laminated panel used in a reflection type, and it can be continuously mass-produced by roll-to-roll It has characteristics.
FIG. 17 shows an example of producing a film cell or panel by roll-to-roll. A roll film in which an electrode pattern has been formed in advance is supplied from the upper roll, and the dispersion system is applied in the form of capsule particles. On the other hand, the two substrates are aligned and bonded so that no air bubbles remain between the lower film substrate provided with a sealing agent such as UV seal resin for punching holes for electrode extraction and printing or inkjet drawing. It is fixed. It is possible to produce a plurality of individual cells or panels for one color by cutting them by punching or the like.
フィルム材料としてはビニル系のポリエチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリプロピレン、ポリスチレン、フッ素樹脂系など、またポリエステル系のポリカーボネート、ポリエチレンテレフタレートなど、ポリアミド系のナイロン、耐熱性エンジニアリングプラスチックとしてのポリイミド、ポリスルフォン、ポリエーテルスルフォン、ポリフェニレンサルファイド、ポリエーテルケトン、ポリエーテルイミドなど種々のものが利用できる。 Film materials include vinyl polyethylene, polyvinyl chloride, polyvinylidene chloride, polypropylene, polystyrene, fluororesin, polyamide polycarbonate, polyethylene terephthalate, polyamide nylon, heat-resistant engineering plastic, polyimide, poly Various materials such as sulfone, polyether sulfone, polyphenylene sulfide, polyether ketone, and polyetherimide can be used.
本発明の光変調素子で1000:1以上の透過率変調を達成するには隔壁部を含む微粒子分散状態でのセルの光透過率を0.1%未満に押さえ込む必要があるが、隔壁部やカプセルのすき間からの光り抜けを防止した上でセルないしカプセルに含有される微粒子の濃度を選定することによって容易に達成可能である。反射型専用パネルでは光はセル内を2度通過するから粒子濃度は1/2でよい。 In order to achieve a transmittance modulation of 1000: 1 or more with the light modulation element of the present invention, it is necessary to suppress the light transmittance of the cell in a fine particle dispersed state including the partition wall to less than 0.1%. This can be easily achieved by selecting the concentration of fine particles contained in the cells or capsules while preventing light from passing through the gaps in the capsules. In the reflection type exclusive panel, light passes through the cell twice, so the particle concentration may be ½.
本発明に使用する材料について述べる。
微粒子としては先に述べた通りできるだけ隠ぺい力の高いものが望ましい。白黒用にはカーボンブラック、ピグメントブラック、黒鉛などまたはこれらが樹脂に埋め込まれたいわゆるトナーが使用できる。C,M,Y微粒子としては印刷インキ、カラー複写機用トナー、インクジェット用インキなどに用いられているアゾ系、フタロシアニン系、ニトロ系、ニトロソ系など各種有機顔料や酸化鉄、カドミウムエロー、カドミウムレッドなどの無機顔料など多様なものを用いることが出来る。Y色微粒子としてはハンザイエロー、ベンジジンイエロー、キノリンイエローなど、M色微粒子としてはピグメントレッド、ローダミンB、ローズベンガル、ジメチルキナクリドンなど、C色微粒子としてはアニリンブルー、フタロシアニンブルー、ピグメントブルーKなど、黒色微粒子としてはC,M,Y微粒子を混合して用いてもよい。微粒子は単体ばかりではなく帯電性や色調を最適化するため染料、顔料およびいくつかの色材を樹脂や液体と共に内包したカプセル微粒子を使用してもよい。粒子の形状は球形はじめ針状、棒状、鱗片状など異方形状のものは本願のように線状電極を用いる場合適したものと言える。何故なら分散状態では粒子はあらゆる方向を向いており、光線吸収能、光散乱能が高く、電極に集積した状態では針状や棒状粒子は電極に平行に配列しやすく、鱗片状では互いに重なり易いから、共に吸収ないし散乱断面積が減じコントラストが高まり易いからである。微粒子のサイズは5nm〜5μ程度が望ましい。微粒子は原子や分子レベルでの表面コートで表面変性したり、分散剤、界面活性剤等を用いて荷電性付与および良分散性がはかられ、電界で集積させた粒子層も逆電界で速やかに再分散されるように調整されている必要がある。粒子の荷電性向上と強い光照射下に於ても荷電状態の安定性確保が重要である。
The material used for this invention is described.
As described above, it is desirable that the fine particles have as high a hiding power as possible. For black and white, carbon black, pigment black, graphite or the like, or a so-called toner in which these are embedded in a resin can be used. C, M, Y fine particles include various organic pigments such as azo, phthalocyanine, nitro, nitroso, etc. used in printing ink, color copier toner, ink jet ink, iron oxide, cadmium yellow, and cadmium red. Various things such as inorganic pigments can be used. Y color fine particles such as Hansa Yellow, Benzidine Yellow, and Quinoline Yellow, M Color Fine Particles such as Pigment Red, Rhodamine B, Rose Bengal, and Dimethylquinacridone, and C Color Fine Particles such as aniline blue, phthalocyanine blue, and Pigment Blue K are black. As the fine particles, C, M, and Y fine particles may be mixed and used. The fine particles are not limited to simple substances but may be capsule fine particles containing dyes, pigments and some color materials together with resins and liquids in order to optimize chargeability and color tone. Particles having an anisotropic shape such as a spherical shape, a needle shape, a rod shape, and a scale shape can be said to be suitable when a linear electrode is used as in the present application. This is because particles are oriented in all directions in a dispersed state, and have a high light absorption ability and light scattering ability. Needle-like and rod-like particles are likely to be arranged in parallel to the electrode when they are accumulated on the electrode, and easily overlap each other in the shape of a scale. This is because both the absorption or scattering cross section is reduced and the contrast is easily increased. The size of the fine particles is desirably about 5 nm to 5 μm. Fine particles can be surface-modified by surface coating at the atomic or molecular level, or can be charged and have good dispersibility using a dispersant, surfactant, etc. Must be adjusted to be redistributed. It is important to improve the chargeability of the particles and to ensure the stability of the charged state even under strong light irradiation.
本発明で使用するマイクロカプセルの製法は公知の種々の方法が適用できる。すなわち、
(1)化学的方法として代表的な界面重合法やin-site 重合法(界面反応法)
(2)物理
化学的方法として代表的な液中乾燥法、コアセルベーション法、融解分散冷却法 (3)機
械的方法として代表的な噴霧乾燥法、乾式混合、オリフィス法 などである。マイクロカプ
セルの膜材としてはゼラチン、アラビアゴム、メラミン樹脂、尿素樹脂、ホルマリン樹脂、
ウレタン樹脂、ポリウレア樹脂、アミノ酸樹脂、メラミンホルムアルデヒド樹脂など多様な
高分子材料が使用可能である。内部がガス体のマイクロカプセルは一般にマイクロバルーン
と称される。
Various known methods can be applied to the method for producing the microcapsules used in the present invention. That is,
(1) Typical interfacial polymerization methods and in-site polymerization methods (interface reaction methods) as chemical methods
(2) Typical submerged drying method, coacervation method, melt dispersion cooling method as physicochemical methods (3) Typical spray drying method, dry mixing, orifice method, etc. as mechanical methods. Microcapsule film materials include gelatin, gum arabic, melamine resin, urea resin, formalin resin,
Various polymer materials such as urethane resin, polyurea resin, amino acid resin, and melamine formaldehyde resin can be used. A microcapsule having a gas body is generally referred to as a microballoon.
微粒子を内蔵したマイクロバルーンの製法としては、(1)微粒子にたとえば紫外光照射で窒素ガス等を発生するジアゾ成分などを導入ないし表面に吸着させておき、微粒子群を高分子樹脂で覆って後、紫外光を照射して内部にガスを発生させて微粒子内蔵中空カプセルを形成する (2)粒子群を気泡と共にカプセル化する (3)ドライアイスなど常温近辺で気体状態の物質を低温で液体化あるいは微粉末固体化して微粒子と共に低温下でカプセル化する などの方法が利用できる。分散系7がガス体のものは微粒子移動に抵抗が少ないから高速応答の表示パネルが可能になる。
屋外用では強力な光に曝されることになるから、使用する材料(透明基板、接着剤、微粒子、分散媒、カプセル材料、バインダー樹脂、隔壁材料、電極、など)には特に耐光性、耐高温性に優れたものを用いる必要がある。パネル表面はアクリル板などで補強したり紫外線吸収剤を内蔵したものないしは表面にコートして用いるべきである。見易さ改善には反射防止膜も有用である。
Microballoons with built-in microparticles can be manufactured by: (1) introducing a diazo component that generates nitrogen gas or the like into the microparticles by irradiation with ultraviolet light or adsorbing the microparticles on the surface, and then covering the microparticles with a polymer resin. , Irradiate ultraviolet light to generate gas inside to form microcapsules with built-in microparticles (2) Encapsulate particles together with bubbles (3) Liquefaction of dry substances such as dry ice at low temperatures Alternatively, a method of solidifying fine powder and encapsulating with fine particles at low temperature can be used. When the dispersion system 7 is a gas body, since there is little resistance to the movement of fine particles, a display panel with high-speed response becomes possible.
Since it will be exposed to strong light for outdoor use, the materials used (transparent substrates, adhesives, fine particles, dispersion media, capsule materials, binder resins, partition materials, electrodes, etc.) are particularly light and resistant. It is necessary to use one that has excellent high temperature properties. The panel surface should be reinforced with an acrylic plate or with a built-in UV absorber or coated on the surface. An antireflection film is also useful for improving visibility.
媒体が液体の場合シリコン系、石油系やハロゲン化炭化水素など多種類の高絶縁性溶媒が利用できる。 When the medium is liquid, various types of highly insulating solvents such as silicon-based, petroleum-based and halogenated hydrocarbons can be used.
非直線素子材料としてはTa,Alなどの薄膜を陽極酸化して他方の金属で挟み込んだMIMや、カルコゲナイト系化合物、酸化亜鉛などの半導体が利用でき、TFT材料としてはa−Si、a-InGaZnO、ポリシリコンなどの無機半導体またペンタセン、ポリフルオレン、ポリフェキシルチオフェンなどの低分子や高分子の有機半導体が用いられる。 As the non-linear element material, a semiconductor such as MIM, a chalcogenite compound, zinc oxide, etc., in which a thin film such as Ta or Al is anodized and sandwiched between the other metals can be used, and as a TFT material, a-Si, a-InGaZnO Inorganic semiconductors such as polysilicon and low molecular and high molecular organic semiconductors such as pentacene, polyfluorene, and polyhexylthiophene are used.
本発明は次のような効果を奏する。
請求項1に記載されている発明は、透明な2枚の基板間に、微粒子が分散された分散系が挟まれてセルを構成しており、基板面と平行な横電界により該微粒子を移動させて、該セルの基板に垂直方向の光透過性を変化させる表示装置において、該横電界はセルに設けた一対の線状電極によって形成され、セル内の微粒子の分散量を変えることによって光透過性を変化させるように構成したセルを2次元状に多数集合させ、背後にバックライトを設けたことを特徴とした大型表示装置であり、薄型構成でフルカラー表示を反射、透過両用で使用できるこれまでにない特徴を有するほか、昼間に反射で使用できるから著しく電力消費を削減できる優位性が発揮できるものである。
The present invention has the following effects.
In the first aspect of the invention, a cell is formed by sandwiching a dispersion system in which fine particles are dispersed between two transparent substrates, and the fine particles are moved by a lateral electric field parallel to the substrate surface. In the display device in which the light transmittance in the direction perpendicular to the substrate of the cell is changed, the lateral electric field is formed by a pair of linear electrodes provided in the cell, and light is changed by changing the dispersion amount of the fine particles in the cell. This is a large display device that features a large number of two-dimensionally assembled cells configured to change the transparency and is provided with a backlight on the back. It can be used for both reflection and transmission in a thin configuration with full color display. In addition to having unprecedented features, it can be used for reflection in the daytime, so it can demonstrate the advantage of significantly reducing power consumption.
1 透明上基板
2 透明下基板
3 隔壁
4 セル
5 微粒子
6−1 駆動電極
6−2 共通電極
7 分散系
8 バインダー
9 スペーサ
10 カプセル粒子
11 接着剤
12 白色拡散板
13 光源
14 反射板
15 電極基板
16 導電樹脂
17 バックライトユニット
18 C1,C2,C3,……… 列電極端子
19 R1,R2,R3,……… 行電極端子
20 LSIドライバ
21 2端子素子
22 TFT素子
23 層間絶縁膜
24 積層セル
25 電極ピン
26 パネル
27 回路基板
28 コネクタ
29 ワイア
30 カウンタ電極
31 コレクト電極
DESCRIPTION OF SYMBOLS 1 Transparent upper substrate 2 Transparent lower substrate 3 Partition 4 Cell 5 Fine particle 6-1 Drive electrode 6-2 Common electrode 7 Dispersion system 8 Binder 9 Spacer
10 Capsule Particle 11 Adhesive 12 White Diffuser 13 Light Source 14 Reflector 15 Electrode Substrate 16 Conductive Resin 17 Backlight Unit 18 C1, C2, C3,... Column Electrode Terminal 19 R1, R2, R3,. Terminal 20 LSI driver 21 Two-terminal element 22 TFT element 23 Interlayer insulating film 24 Multilayer cell 25 Electrode pin 26 Panel 27 Circuit board 28 Connector 29 Wire 30 Counter electrode 31 Collect electrode
Claims (12)
12. The display device according to claim 1, wherein the display device is configured to have a curved surface shape.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2006194476A JP2008020828A (en) | 2006-07-14 | 2006-07-14 | Large-sized display device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2006194476A JP2008020828A (en) | 2006-07-14 | 2006-07-14 | Large-sized display device |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2008020828A true JP2008020828A (en) | 2008-01-31 |
Family
ID=39076773
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2006194476A Pending JP2008020828A (en) | 2006-07-14 | 2006-07-14 | Large-sized display device |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2008020828A (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2011514555A (en) * | 2008-02-26 | 2011-05-06 | ヒューレット−パッカード デベロップメント カンパニー エル.ピー. | Electrophoretic display device |
| US10987112B2 (en) | 2011-04-07 | 2021-04-27 | DePuy Synthes Products, Inc. | Surgical drill instrument with motor and locking mechanism to receive an attachment and a cutting burr |
-
2006
- 2006-07-14 JP JP2006194476A patent/JP2008020828A/en active Pending
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2011514555A (en) * | 2008-02-26 | 2011-05-06 | ヒューレット−パッカード デベロップメント カンパニー エル.ピー. | Electrophoretic display device |
| US10987112B2 (en) | 2011-04-07 | 2021-04-27 | DePuy Synthes Products, Inc. | Surgical drill instrument with motor and locking mechanism to receive an attachment and a cutting burr |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP5308719B2 (en) | Display device and manufacturing method thereof | |
| US8692969B2 (en) | Color filter and display device employing the same | |
| TWI251710B (en) | Electrophoretic dispersion, electrophoresis display device, method for manufacturing electrophoresis display device, and electronic appliance | |
| TWI435154B (en) | Display device and manufacturing method thereof | |
| US11616162B2 (en) | Energy harvesting electro-optic displays | |
| CN102890350A (en) | Transflective liquid crystal display | |
| JP5499923B2 (en) | Display sheet manufacturing method | |
| CN110476109A (en) | Lateral transfer in image display based on TIR is alleviated | |
| JP2011118417A (en) | Electrophoresis display device, method of manufacturing the same, and electronic apparatus | |
| US7554716B2 (en) | Information display panel | |
| US7352354B2 (en) | Particle moving type display device | |
| US8044926B2 (en) | Information display panel | |
| US11287718B2 (en) | Reusable display addressable with incident light | |
| JP2008020828A (en) | Large-sized display device | |
| US8059330B2 (en) | Particles for display medium and information display panel using same | |
| JP2007298894A (en) | Display device, manufacturing method thereof, and display system | |
| JP5572282B2 (en) | Display device and manufacturing method thereof | |
| JP2003121887A (en) | Electrophoretic display | |
| JP2009069366A (en) | Display device and method of manufacturing the same | |
| KR20120023138A (en) | Information display system and information display method | |
| JP2008015161A (en) | Display device | |
| US20070111627A1 (en) | Information display panel | |
| JP2001356375A (en) | Color display method, display sheet and display device | |
| US20080212163A1 (en) | Image Display Element, Image Display Sheet, Image Display and Image Displaying Method | |
| JP2007140366A (en) | Information display device |