CN1239103A - Production method of recombinant human serum albumin - Google Patents
Production method of recombinant human serum albumin Download PDFInfo
- Publication number
- CN1239103A CN1239103A CN 98102506 CN98102506A CN1239103A CN 1239103 A CN1239103 A CN 1239103A CN 98102506 CN98102506 CN 98102506 CN 98102506 A CN98102506 A CN 98102506A CN 1239103 A CN1239103 A CN 1239103A
- Authority
- CN
- China
- Prior art keywords
- hsa
- gene
- serum albumin
- human serum
- sequence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 108091006905 Human Serum Albumin Proteins 0.000 title claims abstract description 155
- 102000008100 Human Serum Albumin Human genes 0.000 title claims abstract description 152
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 19
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 90
- 240000004808 Saccharomyces cerevisiae Species 0.000 claims abstract description 75
- 238000000034 method Methods 0.000 claims abstract description 57
- 239000013604 expression vector Substances 0.000 claims abstract description 33
- 238000005516 engineering process Methods 0.000 claims abstract description 16
- 238000003259 recombinant expression Methods 0.000 claims abstract description 16
- 230000004048 modification Effects 0.000 claims abstract description 14
- 238000012986 modification Methods 0.000 claims abstract description 14
- 108020004705 Codon Proteins 0.000 claims abstract description 13
- 108020004511 Recombinant DNA Proteins 0.000 claims abstract description 9
- 239000012634 fragment Substances 0.000 claims description 88
- 230000014509 gene expression Effects 0.000 claims description 83
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 claims description 70
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 66
- 210000004027 cell Anatomy 0.000 claims description 65
- 239000002773 nucleotide Substances 0.000 claims description 47
- 125000003729 nucleotide group Chemical group 0.000 claims description 47
- 241000235058 Komagataella pastoris Species 0.000 claims description 34
- 230000035897 transcription Effects 0.000 claims description 26
- 238000013518 transcription Methods 0.000 claims description 26
- 108091026890 Coding region Proteins 0.000 claims description 24
- 102000004169 proteins and genes Human genes 0.000 claims description 24
- 238000010367 cloning Methods 0.000 claims description 18
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 17
- SBKVPJHMSUXZTA-MEJXFZFPSA-N (2S)-2-[[(2S)-2-[[(2S)-1-[(2S)-5-amino-2-[[2-[[(2S)-1-[(2S)-6-amino-2-[[(2S)-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-amino-3-(1H-indol-3-yl)propanoyl]amino]-3-(1H-imidazol-4-yl)propanoyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]-4-methylpentanoyl]amino]-5-oxopentanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]pyrrolidine-2-carbonyl]amino]acetyl]amino]-5-oxopentanoyl]pyrrolidine-2-carbonyl]amino]-4-methylsulfanylbutanoyl]amino]-3-(4-hydroxyphenyl)propanoic acid Chemical compound C([C@@H](C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(O)=O)NC(=O)[C@@H](N)CC=1C2=CC=CC=C2NC=1)C1=CNC=N1 SBKVPJHMSUXZTA-MEJXFZFPSA-N 0.000 claims description 16
- 108010038049 Mating Factor Proteins 0.000 claims description 15
- 230000015572 biosynthetic process Effects 0.000 claims description 14
- 238000003786 synthesis reaction Methods 0.000 claims description 13
- 230000005030 transcription termination Effects 0.000 claims description 13
- 210000005253 yeast cell Anatomy 0.000 claims description 13
- 239000003550 marker Substances 0.000 claims description 8
- 108091081062 Repeated sequence (DNA) Proteins 0.000 claims description 6
- 108700039691 Genetic Promoter Regions Proteins 0.000 claims description 5
- 230000001580 bacterial effect Effects 0.000 claims description 5
- 108091092195 Intron Proteins 0.000 claims description 4
- 230000010076 replication Effects 0.000 claims description 3
- 238000003752 polymerase chain reaction Methods 0.000 claims description 2
- 239000013598 vector Substances 0.000 abstract description 15
- 230000008569 process Effects 0.000 abstract description 9
- 230000003248 secreting effect Effects 0.000 abstract description 6
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 abstract 1
- 235000015097 nutrients Nutrition 0.000 abstract 1
- 108020004414 DNA Proteins 0.000 description 58
- 101150026546 hsa gene Proteins 0.000 description 57
- 239000013612 plasmid Substances 0.000 description 54
- 239000000047 product Substances 0.000 description 33
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 24
- 239000002609 medium Substances 0.000 description 20
- 101710194180 Alcohol oxidase 1 Proteins 0.000 description 18
- 150000001413 amino acids Chemical group 0.000 description 18
- 238000006243 chemical reaction Methods 0.000 description 15
- 108091034117 Oligonucleotide Proteins 0.000 description 13
- 239000000243 solution Substances 0.000 description 13
- 230000014616 translation Effects 0.000 description 13
- 238000010276 construction Methods 0.000 description 12
- 230000001105 regulatory effect Effects 0.000 description 12
- 238000013519 translation Methods 0.000 description 12
- 230000028327 secretion Effects 0.000 description 11
- 241000588724 Escherichia coli Species 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 108700010070 Codon Usage Proteins 0.000 description 9
- 230000010354 integration Effects 0.000 description 9
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- 239000012228 culture supernatant Substances 0.000 description 8
- 230000009466 transformation Effects 0.000 description 8
- 102000004190 Enzymes Human genes 0.000 description 7
- 108090000790 Enzymes Proteins 0.000 description 7
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 7
- 229960000723 ampicillin Drugs 0.000 description 7
- 210000004369 blood Anatomy 0.000 description 7
- 239000008280 blood Substances 0.000 description 7
- 229940088598 enzyme Drugs 0.000 description 7
- 238000000746 purification Methods 0.000 description 7
- 101150061183 AOX1 gene Proteins 0.000 description 6
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 6
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 6
- 108010076504 Protein Sorting Signals Proteins 0.000 description 6
- 238000005119 centrifugation Methods 0.000 description 6
- 238000000855 fermentation Methods 0.000 description 6
- 230000004151 fermentation Effects 0.000 description 6
- 239000012528 membrane Substances 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 241000620209 Escherichia coli DH5[alpha] Species 0.000 description 5
- 238000012300 Sequence Analysis Methods 0.000 description 5
- IXKSXJFAGXLQOQ-XISFHERQSA-N WHWLQLKPGQPMY Chemical compound C([C@@H](C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(O)=O)NC(=O)[C@@H](N)CC=1C2=CC=CC=C2NC=1)C1=CNC=N1 IXKSXJFAGXLQOQ-XISFHERQSA-N 0.000 description 5
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 239000000872 buffer Substances 0.000 description 5
- 239000013599 cloning vector Substances 0.000 description 5
- 108020004999 messenger RNA Proteins 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 238000000108 ultra-filtration Methods 0.000 description 5
- 101150006240 AOX2 gene Proteins 0.000 description 4
- 108010025188 Alcohol oxidase Proteins 0.000 description 4
- 241000894006 Bacteria Species 0.000 description 4
- 102100031780 Endonuclease Human genes 0.000 description 4
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 4
- 229960002685 biotin Drugs 0.000 description 4
- 235000020958 biotin Nutrition 0.000 description 4
- 239000011616 biotin Substances 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 239000006285 cell suspension Substances 0.000 description 4
- 210000000349 chromosome Anatomy 0.000 description 4
- 230000000295 complement effect Effects 0.000 description 4
- 238000012258 culturing Methods 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 4
- 238000012217 deletion Methods 0.000 description 4
- 230000037430 deletion Effects 0.000 description 4
- 230000029087 digestion Effects 0.000 description 4
- 238000004520 electroporation Methods 0.000 description 4
- 239000002158 endotoxin Substances 0.000 description 4
- 230000002209 hydrophobic effect Effects 0.000 description 4
- 244000005700 microbiome Species 0.000 description 4
- 239000008188 pellet Substances 0.000 description 4
- 239000008223 sterile water Substances 0.000 description 4
- 238000006467 substitution reaction Methods 0.000 description 4
- 230000001131 transforming effect Effects 0.000 description 4
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 108010042407 Endonucleases Proteins 0.000 description 3
- SJJHXJDSNQJMMW-SRVKXCTJSA-N Glu-Lys-Arg Chemical compound OC(=O)CC[C@H](N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCN=C(N)N)C(O)=O SJJHXJDSNQJMMW-SRVKXCTJSA-N 0.000 description 3
- 101150069554 HIS4 gene Proteins 0.000 description 3
- 241001506991 Komagataella phaffii GS115 Species 0.000 description 3
- 238000000636 Northern blotting Methods 0.000 description 3
- 241000235648 Pichia Species 0.000 description 3
- 238000002105 Southern blotting Methods 0.000 description 3
- 238000000246 agarose gel electrophoresis Methods 0.000 description 3
- 230000004075 alteration Effects 0.000 description 3
- 230000003698 anagen phase Effects 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 3
- 238000004587 chromatography analysis Methods 0.000 description 3
- 238000003776 cleavage reaction Methods 0.000 description 3
- 230000009089 cytolysis Effects 0.000 description 3
- 235000014113 dietary fatty acids Nutrition 0.000 description 3
- 238000001962 electrophoresis Methods 0.000 description 3
- 229930195729 fatty acid Natural products 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 150000004665 fatty acids Chemical class 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000002068 genetic effect Effects 0.000 description 3
- 239000008103 glucose Substances 0.000 description 3
- 230000012010 growth Effects 0.000 description 3
- 239000001963 growth medium Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000010369 molecular cloning Methods 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 108090000765 processed proteins & peptides Proteins 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 230000007017 scission Effects 0.000 description 3
- 238000012163 sequencing technique Methods 0.000 description 3
- 238000001262 western blot Methods 0.000 description 3
- OMMDTNGURYRDAC-NRPADANISA-N Ala-Glu-Val Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C(C)C)C(O)=O OMMDTNGURYRDAC-NRPADANISA-N 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 2
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 2
- 102000053602 DNA Human genes 0.000 description 2
- 102000012410 DNA Ligases Human genes 0.000 description 2
- 108010061982 DNA Ligases Proteins 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- 108700007698 Genetic Terminator Regions Proteins 0.000 description 2
- MXPBQDFWIMBACQ-ACZMJKKPSA-N Glu-Cys-Cys Chemical compound OC(=O)CC[C@H](N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CS)C(O)=O MXPBQDFWIMBACQ-ACZMJKKPSA-N 0.000 description 2
- VHPVBPCCWVDGJL-IRIUXVKKSA-N Glu-Thr-Tyr Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O VHPVBPCCWVDGJL-IRIUXVKKSA-N 0.000 description 2
- 244000299507 Gossypium hirsutum Species 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- XZNJZXJZBMBGGS-NHCYSSNCSA-N Leu-Val-Asn Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(N)=O)C(O)=O XZNJZXJZBMBGGS-NHCYSSNCSA-N 0.000 description 2
- CFVQPNSCQMKDPB-CIUDSAMLSA-N Lys-Cys-Cys Chemical compound C(CCN)C[C@@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CS)C(=O)O)N CFVQPNSCQMKDPB-CIUDSAMLSA-N 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- 238000012408 PCR amplification Methods 0.000 description 2
- 108091005804 Peptidases Proteins 0.000 description 2
- 102000035195 Peptidases Human genes 0.000 description 2
- 239000004365 Protease Substances 0.000 description 2
- 108020005091 Replication Origin Proteins 0.000 description 2
- HSWXBJCBYSWBPT-GUBZILKMSA-N Ser-Val-Val Chemical compound CC(C)[C@H](NC(=O)[C@@H](NC(=O)[C@@H](N)CO)C(C)C)C(O)=O HSWXBJCBYSWBPT-GUBZILKMSA-N 0.000 description 2
- 102000007562 Serum Albumin Human genes 0.000 description 2
- 108010071390 Serum Albumin Proteins 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 108700005078 Synthetic Genes Proteins 0.000 description 2
- 108010006785 Taq Polymerase Proteins 0.000 description 2
- 239000007984 Tris EDTA buffer Substances 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 239000011543 agarose gel Substances 0.000 description 2
- KOSRFJWDECSPRO-UHFFFAOYSA-N alpha-L-glutamyl-L-glutamic acid Natural products OC(=O)CCC(N)C(=O)NC(CCC(O)=O)C(O)=O KOSRFJWDECSPRO-UHFFFAOYSA-N 0.000 description 2
- -1 amine compounds Chemical class 0.000 description 2
- 238000005571 anion exchange chromatography Methods 0.000 description 2
- 108010038633 aspartylglutamate Proteins 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 238000006664 bond formation reaction Methods 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 239000013611 chromosomal DNA Substances 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 108010055341 glutamyl-glutamic acid Proteins 0.000 description 2
- 108010050848 glycylleucine Proteins 0.000 description 2
- 108010085325 histidylproline Proteins 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- PHTQWCKDNZKARW-UHFFFAOYSA-N isoamylol Chemical compound CC(C)CCO PHTQWCKDNZKARW-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000013011 mating Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 239000013642 negative control Substances 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- 150000007523 nucleic acids Chemical class 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 230000008488 polyadenylation Effects 0.000 description 2
- 229910000160 potassium phosphate Inorganic materials 0.000 description 2
- 235000011009 potassium phosphates Nutrition 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical compound CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 230000002797 proteolythic effect Effects 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 108091008146 restriction endonucleases Proteins 0.000 description 2
- 238000005185 salting out Methods 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 235000020183 skimmed milk Nutrition 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 239000000600 sorbitol Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 125000003396 thiol group Chemical group [H]S* 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 239000007222 ypd medium Substances 0.000 description 2
- XVZCXCTYGHPNEM-IHRRRGAJSA-N (2s)-1-[(2s)-2-[[(2s)-2-amino-4-methylpentanoyl]amino]-4-methylpentanoyl]pyrrolidine-2-carboxylic acid Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N1CCC[C@H]1C(O)=O XVZCXCTYGHPNEM-IHRRRGAJSA-N 0.000 description 1
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- GEYOCULIXLDCMW-UHFFFAOYSA-N 1,2-phenylenediamine Chemical compound NC1=CC=CC=C1N GEYOCULIXLDCMW-UHFFFAOYSA-N 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- UWQJHXKARZWDIJ-ZLUOBGJFSA-N Ala-Ala-Cys Chemical compound C[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@@H](CS)C(O)=O UWQJHXKARZWDIJ-ZLUOBGJFSA-N 0.000 description 1
- PIPTUBPKYFRLCP-NHCYSSNCSA-N Ala-Ala-Phe Chemical compound C[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 PIPTUBPKYFRLCP-NHCYSSNCSA-N 0.000 description 1
- ZIWWTZWAKYBUOB-CIUDSAMLSA-N Ala-Asp-Leu Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(O)=O ZIWWTZWAKYBUOB-CIUDSAMLSA-N 0.000 description 1
- LSLIRHLIUDVNBN-CIUDSAMLSA-N Ala-Asp-Lys Chemical compound C[C@H](N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@H](C(O)=O)CCCCN LSLIRHLIUDVNBN-CIUDSAMLSA-N 0.000 description 1
- YSMPVONNIWLJML-FXQIFTODSA-N Ala-Asp-Pro Chemical compound C[C@H](N)C(=O)N[C@@H](CC(O)=O)C(=O)N1CCC[C@H]1C(O)=O YSMPVONNIWLJML-FXQIFTODSA-N 0.000 description 1
- FUSPCLTUKXQREV-ACZMJKKPSA-N Ala-Glu-Ala Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(O)=O FUSPCLTUKXQREV-ACZMJKKPSA-N 0.000 description 1
- NJPMYXWVWQWCSR-ACZMJKKPSA-N Ala-Glu-Asn Chemical compound C[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(N)=O)C(O)=O NJPMYXWVWQWCSR-ACZMJKKPSA-N 0.000 description 1
- WKOBSJOZRJJVRZ-FXQIFTODSA-N Ala-Glu-Glu Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(O)=O WKOBSJOZRJJVRZ-FXQIFTODSA-N 0.000 description 1
- FBHOPGDGELNWRH-DRZSPHRISA-N Ala-Glu-Phe Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O FBHOPGDGELNWRH-DRZSPHRISA-N 0.000 description 1
- XYTNPQNAZREREP-XQXXSGGOSA-N Ala-Glu-Thr Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O XYTNPQNAZREREP-XQXXSGGOSA-N 0.000 description 1
- ZPXCNXMJEZKRLU-LSJOCFKGSA-N Ala-His-Arg Chemical compound NC(N)=NCCC[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)C)CC1=CN=CN1 ZPXCNXMJEZKRLU-LSJOCFKGSA-N 0.000 description 1
- SHKGHIFSEAGTNL-DLOVCJGASA-N Ala-His-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)C)CC1=CN=CN1 SHKGHIFSEAGTNL-DLOVCJGASA-N 0.000 description 1
- CCDFBRZVTDDJNM-GUBZILKMSA-N Ala-Leu-Glu Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(O)=O CCDFBRZVTDDJNM-GUBZILKMSA-N 0.000 description 1
- LDLSENBXQNDTPB-DCAQKATOSA-N Ala-Lys-Arg Chemical compound NCCCC[C@H](NC(=O)[C@@H](N)C)C(=O)N[C@H](C(O)=O)CCCN=C(N)N LDLSENBXQNDTPB-DCAQKATOSA-N 0.000 description 1
- KQESEZXHYOUIIM-CQDKDKBSSA-N Ala-Lys-Tyr Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O KQESEZXHYOUIIM-CQDKDKBSSA-N 0.000 description 1
- MDNAVFBZPROEHO-UHFFFAOYSA-N Ala-Lys-Val Natural products CC(C)C(C(O)=O)NC(=O)C(NC(=O)C(C)N)CCCCN MDNAVFBZPROEHO-UHFFFAOYSA-N 0.000 description 1
- HYIDEIQUCBKIPL-CQDKDKBSSA-N Ala-Phe-His Chemical compound C[C@@H](C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CC2=CN=CN2)C(=O)O)N HYIDEIQUCBKIPL-CQDKDKBSSA-N 0.000 description 1
- CYBJZLQSUJEMAS-LFSVMHDDSA-N Ala-Phe-Thr Chemical compound C[C@H]([C@@H](C(=O)O)NC(=O)[C@H](CC1=CC=CC=C1)NC(=O)[C@H](C)N)O CYBJZLQSUJEMAS-LFSVMHDDSA-N 0.000 description 1
- XKHLBBQNPSOGPI-GUBZILKMSA-N Ala-Val-Met Chemical compound CSCC[C@@H](C(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@H](C)N XKHLBBQNPSOGPI-GUBZILKMSA-N 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- JGDGLDNAQJJGJI-AVGNSLFASA-N Arg-Arg-His Chemical compound C1=C(NC=N1)C[C@@H](C(=O)O)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CCCN=C(N)N)N JGDGLDNAQJJGJI-AVGNSLFASA-N 0.000 description 1
- OVVUNXXROOFSIM-SDDRHHMPSA-N Arg-Arg-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CCCN=C(N)N)N)C(=O)O OVVUNXXROOFSIM-SDDRHHMPSA-N 0.000 description 1
- JCAISGGAOQXEHJ-ZPFDUUQYSA-N Arg-Gln-Ile Chemical compound CC[C@H](C)[C@@H](C(=O)O)NC(=O)[C@H](CCC(=O)N)NC(=O)[C@H](CCCN=C(N)N)N JCAISGGAOQXEHJ-ZPFDUUQYSA-N 0.000 description 1
- UZGFHWIJWPUPOH-IHRRRGAJSA-N Arg-Leu-Lys Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CCCCN)C(=O)O)NC(=O)[C@H](CCCN=C(N)N)N UZGFHWIJWPUPOH-IHRRRGAJSA-N 0.000 description 1
- XYOVHPDDWCEUDY-CIUDSAMLSA-N Asn-Ala-Leu Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(O)=O XYOVHPDDWCEUDY-CIUDSAMLSA-N 0.000 description 1
- MECFLTFREHAZLH-ACZMJKKPSA-N Asn-Glu-Cys Chemical compound C(CC(=O)O)[C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CC(=O)N)N MECFLTFREHAZLH-ACZMJKKPSA-N 0.000 description 1
- ZELQAFZSJOBEQS-ACZMJKKPSA-N Asp-Asn-Glu Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(O)=O ZELQAFZSJOBEQS-ACZMJKKPSA-N 0.000 description 1
- QOVWVLLHMMCFFY-ZLUOBGJFSA-N Asp-Asp-Asn Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(N)=O)C(O)=O QOVWVLLHMMCFFY-ZLUOBGJFSA-N 0.000 description 1
- DGKCOYGQLNWNCJ-ACZMJKKPSA-N Asp-Glu-Ser Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(O)=O DGKCOYGQLNWNCJ-ACZMJKKPSA-N 0.000 description 1
- LBFYTUPYYZENIR-GHCJXIJMSA-N Asp-Ile-Cys Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CC(=O)O)N LBFYTUPYYZENIR-GHCJXIJMSA-N 0.000 description 1
- UJGRZQYSNYTCAX-SRVKXCTJSA-N Asp-Leu-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CC(O)=O UJGRZQYSNYTCAX-SRVKXCTJSA-N 0.000 description 1
- VSMYBNPOHYAXSD-GUBZILKMSA-N Asp-Lys-Glu Chemical compound OC(=O)C[C@H](N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(O)=O VSMYBNPOHYAXSD-GUBZILKMSA-N 0.000 description 1
- GPPIDDWYKJPRES-YDHLFZDLSA-N Asp-Phe-Val Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](C(C)C)C(O)=O GPPIDDWYKJPRES-YDHLFZDLSA-N 0.000 description 1
- OQMGSMNZVHYDTQ-ZKWXMUAHSA-N Asp-Val-Cys Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CC(=O)O)N OQMGSMNZVHYDTQ-ZKWXMUAHSA-N 0.000 description 1
- GXIUDSXIUSTSLO-QXEWZRGKSA-N Asp-Val-Met Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CCSC)C(=O)O)NC(=O)[C@H](CC(=O)O)N GXIUDSXIUSTSLO-QXEWZRGKSA-N 0.000 description 1
- 244000063299 Bacillus subtilis Species 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- 241000193388 Bacillus thuringiensis Species 0.000 description 1
- 102000004506 Blood Proteins Human genes 0.000 description 1
- 108010017384 Blood Proteins Proteins 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- PRXCTTWKGJAPMT-ZLUOBGJFSA-N Cys-Ala-Ser Chemical compound [H]N[C@@H](CS)C(=O)N[C@@H](C)C(=O)N[C@@H](CO)C(O)=O PRXCTTWKGJAPMT-ZLUOBGJFSA-N 0.000 description 1
- YMBAVNPKBWHDAW-CIUDSAMLSA-N Cys-Asp-Lys Chemical compound C(CCN)C[C@@H](C(=O)O)NC(=O)[C@H](CC(=O)O)NC(=O)[C@H](CS)N YMBAVNPKBWHDAW-CIUDSAMLSA-N 0.000 description 1
- HYKFOHGZGLOCAY-ZLUOBGJFSA-N Cys-Cys-Ala Chemical compound [H]N[C@@H](CS)C(=O)N[C@@H](CS)C(=O)N[C@@H](C)C(O)=O HYKFOHGZGLOCAY-ZLUOBGJFSA-N 0.000 description 1
- LWTTURISBKEVAC-CIUDSAMLSA-N Cys-Cys-Lys Chemical compound C(CCN)C[C@@H](C(=O)O)NC(=O)[C@H](CS)NC(=O)[C@H](CS)N LWTTURISBKEVAC-CIUDSAMLSA-N 0.000 description 1
- RWGDABDXVXRLLH-ACZMJKKPSA-N Cys-Glu-Asn Chemical compound C(CC(=O)O)[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)O)NC(=O)[C@H](CS)N RWGDABDXVXRLLH-ACZMJKKPSA-N 0.000 description 1
- SBDVXRYCOIEYNV-YUMQZZPRSA-N Cys-His-Gly Chemical compound C1=C(NC=N1)C[C@@H](C(=O)NCC(=O)O)NC(=O)[C@H](CS)N SBDVXRYCOIEYNV-YUMQZZPRSA-N 0.000 description 1
- CHRCKSPMGYDLIA-SRVKXCTJSA-N Cys-Phe-Ser Chemical compound [H]N[C@@H](CS)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CO)C(O)=O CHRCKSPMGYDLIA-SRVKXCTJSA-N 0.000 description 1
- FCXJJTRGVAZDER-FXQIFTODSA-N Cys-Val-Ala Chemical compound [H]N[C@@H](CS)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C)C(O)=O FCXJJTRGVAZDER-FXQIFTODSA-N 0.000 description 1
- KZZYVYWSXMFYEC-DCAQKATOSA-N Cys-Val-Leu Chemical compound [H]N[C@@H](CS)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O KZZYVYWSXMFYEC-DCAQKATOSA-N 0.000 description 1
- 102220487212 Cytochrome b-245 chaperone 1_D188H_mutation Human genes 0.000 description 1
- 102000004594 DNA Polymerase I Human genes 0.000 description 1
- 108010017826 DNA Polymerase I Proteins 0.000 description 1
- 230000004543 DNA replication Effects 0.000 description 1
- 230000006820 DNA synthesis Effects 0.000 description 1
- 101100364969 Dictyostelium discoideum scai gene Proteins 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 102220633621 EH domain-containing protein 3_K324D_mutation Human genes 0.000 description 1
- 102220589894 ETS translocation variant 4_E443A_mutation Human genes 0.000 description 1
- 102400001368 Epidermal growth factor Human genes 0.000 description 1
- 101800003838 Epidermal growth factor Proteins 0.000 description 1
- 241001524679 Escherichia virus M13 Species 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 208000034454 F12-related hereditary angioedema with normal C1Inh Diseases 0.000 description 1
- 101150094690 GAL1 gene Proteins 0.000 description 1
- 108010093031 Galactosidases Proteins 0.000 description 1
- 102000002464 Galactosidases Human genes 0.000 description 1
- 102100028501 Galanin peptides Human genes 0.000 description 1
- AAOBFSKXAVIORT-GUBZILKMSA-N Gln-Asn-Leu Chemical compound [H]N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(O)=O AAOBFSKXAVIORT-GUBZILKMSA-N 0.000 description 1
- WLODHVXYKYHLJD-ACZMJKKPSA-N Gln-Asp-Ser Chemical compound C(CC(=O)N)[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)N[C@@H](CO)C(=O)O)N WLODHVXYKYHLJD-ACZMJKKPSA-N 0.000 description 1
- NNXIQPMZGZUFJJ-AVGNSLFASA-N Gln-His-Lys Chemical compound C1=C(NC=N1)C[C@@H](C(=O)N[C@@H](CCCCN)C(=O)O)NC(=O)[C@H](CCC(=O)N)N NNXIQPMZGZUFJJ-AVGNSLFASA-N 0.000 description 1
- YKLNMGJYMNPBCP-ACZMJKKPSA-N Glu-Asn-Asp Chemical compound C(CC(=O)O)[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)N[C@@H](CC(=O)O)C(=O)O)N YKLNMGJYMNPBCP-ACZMJKKPSA-N 0.000 description 1
- CYHBMLHCQXXCCT-AVGNSLFASA-N Glu-Asp-Tyr Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O CYHBMLHCQXXCCT-AVGNSLFASA-N 0.000 description 1
- SAEBUDRWKUXLOM-ACZMJKKPSA-N Glu-Cys-Ala Chemical compound OC(=O)[C@H](C)NC(=O)[C@H](CS)NC(=O)[C@@H](N)CCC(O)=O SAEBUDRWKUXLOM-ACZMJKKPSA-N 0.000 description 1
- PVBBEKPHARMPHX-DCAQKATOSA-N Glu-Gln-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](N)CCC(O)=O PVBBEKPHARMPHX-DCAQKATOSA-N 0.000 description 1
- KUTPGXNAAOQSPD-LPEHRKFASA-N Glu-Glu-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CCC(=O)O)NC(=O)[C@H](CCC(=O)O)N)C(=O)O KUTPGXNAAOQSPD-LPEHRKFASA-N 0.000 description 1
- VSRCAOIHMGCIJK-SRVKXCTJSA-N Glu-Leu-Arg Chemical compound OC(=O)CC[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCN=C(N)N)C(O)=O VSRCAOIHMGCIJK-SRVKXCTJSA-N 0.000 description 1
- WNRZUESNGGDCJX-JYJNAYRXSA-N Glu-Leu-Phe Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O WNRZUESNGGDCJX-JYJNAYRXSA-N 0.000 description 1
- BCYGDJXHAGZNPQ-DCAQKATOSA-N Glu-Lys-Glu Chemical compound OC(=O)CC[C@H](N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(O)=O BCYGDJXHAGZNPQ-DCAQKATOSA-N 0.000 description 1
- FMBWLLMUPXTXFC-SDDRHHMPSA-N Glu-Lys-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CCCCN)NC(=O)[C@H](CCC(=O)O)N)C(=O)O FMBWLLMUPXTXFC-SDDRHHMPSA-N 0.000 description 1
- UMHRCVCZUPBBQW-GARJFASQSA-N Glu-Met-Pro Chemical compound CSCC[C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)[C@H](CCC(=O)O)N UMHRCVCZUPBBQW-GARJFASQSA-N 0.000 description 1
- PMSMKNYRZCKVMC-DRZSPHRISA-N Glu-Phe-Ala Chemical compound C[C@@H](C(=O)O)NC(=O)[C@H](CC1=CC=CC=C1)NC(=O)[C@H](CCC(=O)O)N PMSMKNYRZCKVMC-DRZSPHRISA-N 0.000 description 1
- UERORLSAFUHDGU-AVGNSLFASA-N Glu-Phe-Asn Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)O)NC(=O)[C@H](CCC(=O)O)N UERORLSAFUHDGU-AVGNSLFASA-N 0.000 description 1
- ZIYGTCDTJJCDDP-JYJNAYRXSA-N Glu-Phe-Lys Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)N[C@@H](CCCCN)C(=O)O)NC(=O)[C@H](CCC(=O)O)N ZIYGTCDTJJCDDP-JYJNAYRXSA-N 0.000 description 1
- QOXDAWODGSIDDI-GUBZILKMSA-N Glu-Ser-Lys Chemical compound C(CCN)C[C@@H](C(=O)O)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(=O)O)N QOXDAWODGSIDDI-GUBZILKMSA-N 0.000 description 1
- CQGBSALYGOXQPE-HTUGSXCWSA-N Glu-Thr-Phe Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)O)NC(=O)[C@H](CCC(=O)O)N)O CQGBSALYGOXQPE-HTUGSXCWSA-N 0.000 description 1
- CUYLIWAAAYJKJH-RYUDHWBXSA-N Gly-Glu-Tyr Chemical compound NCC(=O)N[C@@H](CCC(O)=O)C(=O)N[C@H](C(O)=O)CC1=CC=C(O)C=C1 CUYLIWAAAYJKJH-RYUDHWBXSA-N 0.000 description 1
- VBOBNHSVQKKTOT-YUMQZZPRSA-N Gly-Lys-Ala Chemical compound [H]NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(O)=O VBOBNHSVQKKTOT-YUMQZZPRSA-N 0.000 description 1
- VEPBEGNDJYANCF-QWRGUYRKSA-N Gly-Lys-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)CN)CCCCN VEPBEGNDJYANCF-QWRGUYRKSA-N 0.000 description 1
- QGDOOCIPHSSADO-STQMWFEESA-N Gly-Met-Phe Chemical compound [H]NCC(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O QGDOOCIPHSSADO-STQMWFEESA-N 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- YTKOTXRIWQHSAZ-GUBZILKMSA-N His-Glu-Cys Chemical compound C1=C(NC=N1)C[C@@H](C(=O)N[C@@H](CCC(=O)O)C(=O)N[C@@H](CS)C(=O)O)N YTKOTXRIWQHSAZ-GUBZILKMSA-N 0.000 description 1
- JCOSMKPAOYDKRO-AVGNSLFASA-N His-Glu-Lys Chemical compound C1=C(NC=N1)C[C@@H](C(=O)N[C@@H](CCC(=O)O)C(=O)N[C@@H](CCCCN)C(=O)O)N JCOSMKPAOYDKRO-AVGNSLFASA-N 0.000 description 1
- TTYKEFZRLKQTHH-MELADBBJSA-N His-Lys-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CCCCN)NC(=O)[C@H](CC2=CN=CN2)N)C(=O)O TTYKEFZRLKQTHH-MELADBBJSA-N 0.000 description 1
- PUFNQIPSRXVLQJ-IHRRRGAJSA-N His-Val-Lys Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CCCCN)C(=O)O)NC(=O)[C@H](CC1=CN=CN1)N PUFNQIPSRXVLQJ-IHRRRGAJSA-N 0.000 description 1
- 101100121078 Homo sapiens GAL gene Proteins 0.000 description 1
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 1
- 241000725303 Human immunodeficiency virus Species 0.000 description 1
- 102220475891 Hydroxycarboxylic acid receptor 1_E120V_mutation Human genes 0.000 description 1
- PNTWNAXGBOZMBO-MNXVOIDGSA-N Ile-Lys-Gln Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(=O)N)C(=O)O)N PNTWNAXGBOZMBO-MNXVOIDGSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 108010065920 Insulin Lispro Proteins 0.000 description 1
- KWTVLKBOQATPHJ-SRVKXCTJSA-N Leu-Ala-Lys Chemical compound C[C@@H](C(=O)N[C@@H](CCCCN)C(=O)O)NC(=O)[C@H](CC(C)C)N KWTVLKBOQATPHJ-SRVKXCTJSA-N 0.000 description 1
- KAFOIVJDVSZUMD-UHFFFAOYSA-N Leu-Gln-Gln Natural products CC(C)CC(N)C(=O)NC(CCC(N)=O)C(=O)NC(CCC(N)=O)C(O)=O KAFOIVJDVSZUMD-UHFFFAOYSA-N 0.000 description 1
- KGCLIYGPQXUNLO-IUCAKERBSA-N Leu-Gly-Glu Chemical compound CC(C)C[C@H](N)C(=O)NCC(=O)N[C@H](C(O)=O)CCC(O)=O KGCLIYGPQXUNLO-IUCAKERBSA-N 0.000 description 1
- APFJUBGRZGMQFF-QWRGUYRKSA-N Leu-Gly-Lys Chemical compound CC(C)C[C@H](N)C(=O)NCC(=O)N[C@H](C(O)=O)CCCCN APFJUBGRZGMQFF-QWRGUYRKSA-N 0.000 description 1
- DSFYPIUSAMSERP-IHRRRGAJSA-N Leu-Leu-Arg Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C(O)=O)CCCN=C(N)N DSFYPIUSAMSERP-IHRRRGAJSA-N 0.000 description 1
- QNBVTHNJGCOVFA-AVGNSLFASA-N Leu-Leu-Glu Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C(O)=O)CCC(O)=O QNBVTHNJGCOVFA-AVGNSLFASA-N 0.000 description 1
- XVZCXCTYGHPNEM-UHFFFAOYSA-N Leu-Leu-Pro Natural products CC(C)CC(N)C(=O)NC(CC(C)C)C(=O)N1CCCC1C(O)=O XVZCXCTYGHPNEM-UHFFFAOYSA-N 0.000 description 1
- JLWZLIQRYCTYBD-IHRRRGAJSA-N Leu-Lys-Arg Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O JLWZLIQRYCTYBD-IHRRRGAJSA-N 0.000 description 1
- MJWVXZABPOKJJF-ACRUOGEOSA-N Leu-Phe-Phe Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O MJWVXZABPOKJJF-ACRUOGEOSA-N 0.000 description 1
- VJGQRELPQWNURN-JYJNAYRXSA-N Leu-Tyr-Glu Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CCC(O)=O)C(O)=O VJGQRELPQWNURN-JYJNAYRXSA-N 0.000 description 1
- FBNPMTNBFFAMMH-UHFFFAOYSA-N Leu-Val-Arg Natural products CC(C)CC(N)C(=O)NC(C(C)C)C(=O)NC(C(O)=O)CCCN=C(N)N FBNPMTNBFFAMMH-UHFFFAOYSA-N 0.000 description 1
- AIMGJYMCTAABEN-GVXVVHGQSA-N Leu-Val-Glu Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(O)=O)C(O)=O AIMGJYMCTAABEN-GVXVVHGQSA-N 0.000 description 1
- YQFZRHYZLARWDY-IHRRRGAJSA-N Leu-Val-Lys Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](C(C)C)C(=O)N[C@H](C(O)=O)CCCCN YQFZRHYZLARWDY-IHRRRGAJSA-N 0.000 description 1
- KNKHAVVBVXKOGX-JXUBOQSCSA-N Lys-Ala-Thr Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H]([C@@H](C)O)C(O)=O KNKHAVVBVXKOGX-JXUBOQSCSA-N 0.000 description 1
- CKSXSQUVEYCDIW-AVGNSLFASA-N Lys-Arg-Met Chemical compound CSCC[C@@H](C(=O)O)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CCCCN)N CKSXSQUVEYCDIW-AVGNSLFASA-N 0.000 description 1
- PXHCFKXNSBJSTQ-KKUMJFAQSA-N Lys-Asn-Tyr Chemical compound C1=CC(=CC=C1C[C@@H](C(=O)O)NC(=O)[C@H](CC(=O)N)NC(=O)[C@H](CCCCN)N)O PXHCFKXNSBJSTQ-KKUMJFAQSA-N 0.000 description 1
- HWMZUBUEOYAQSC-DCAQKATOSA-N Lys-Gln-Glu Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(O)=O HWMZUBUEOYAQSC-DCAQKATOSA-N 0.000 description 1
- GNLJXWBNLAIPEP-MELADBBJSA-N Lys-His-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CC2=CN=CN2)NC(=O)[C@H](CCCCN)N)C(=O)O GNLJXWBNLAIPEP-MELADBBJSA-N 0.000 description 1
- MUXNCRWTWBMNHX-SRVKXCTJSA-N Lys-Leu-Asp Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(O)=O)C(O)=O MUXNCRWTWBMNHX-SRVKXCTJSA-N 0.000 description 1
- PINHPJWGVBKQII-SRVKXCTJSA-N Lys-Leu-Cys Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CCCCN)N PINHPJWGVBKQII-SRVKXCTJSA-N 0.000 description 1
- RBEATVHTWHTHTJ-KKUMJFAQSA-N Lys-Leu-Lys Chemical compound NCCCC[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(O)=O RBEATVHTWHTHTJ-KKUMJFAQSA-N 0.000 description 1
- PYFNONMJYNJENN-AVGNSLFASA-N Lys-Lys-Gln Chemical compound C(CCN)C[C@@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(=O)N)C(=O)O)N PYFNONMJYNJENN-AVGNSLFASA-N 0.000 description 1
- QQPSCXKFDSORFT-IHRRRGAJSA-N Lys-Lys-Val Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](N)CCCCN QQPSCXKFDSORFT-IHRRRGAJSA-N 0.000 description 1
- PIXVFCBYEGPZPA-JYJNAYRXSA-N Lys-Phe-Gln Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)N[C@@H](CCC(=O)N)C(=O)O)NC(=O)[C@H](CCCCN)N PIXVFCBYEGPZPA-JYJNAYRXSA-N 0.000 description 1
- LKDXINHHSWFFJC-SRVKXCTJSA-N Lys-Ser-His Chemical compound C1=C(NC=N1)C[C@@H](C(=O)O)NC(=O)[C@H](CO)NC(=O)[C@H](CCCCN)N LKDXINHHSWFFJC-SRVKXCTJSA-N 0.000 description 1
- BWECSLVQIWEMSC-IHRRRGAJSA-N Lys-Val-His Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CC1=CN=CN1)C(=O)O)NC(=O)[C@H](CCCCN)N BWECSLVQIWEMSC-IHRRRGAJSA-N 0.000 description 1
- VHGIWFGJIHTASW-FXQIFTODSA-N Met-Ala-Asp Chemical compound CSCC[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@H](C(O)=O)CC(O)=O VHGIWFGJIHTASW-FXQIFTODSA-N 0.000 description 1
- 108010014251 Muramidase Proteins 0.000 description 1
- 102000016943 Muramidase Human genes 0.000 description 1
- 101100364971 Mus musculus Scai gene Proteins 0.000 description 1
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 1
- YBAFDPFAUTYYRW-UHFFFAOYSA-N N-L-alpha-glutamyl-L-leucine Natural products CC(C)CC(C(O)=O)NC(=O)C(N)CCC(O)=O YBAFDPFAUTYYRW-UHFFFAOYSA-N 0.000 description 1
- SITLTJHOQZFJGG-UHFFFAOYSA-N N-L-alpha-glutamyl-L-valine Natural products CC(C)C(C(O)=O)NC(=O)C(N)CCC(O)=O SITLTJHOQZFJGG-UHFFFAOYSA-N 0.000 description 1
- DZTHIGRZJZPRDV-LBPRGKRZSA-N N-acetyl-L-tryptophan Chemical compound C1=CC=C2C(C[C@H](NC(=O)C)C(O)=O)=CNC2=C1 DZTHIGRZJZPRDV-LBPRGKRZSA-N 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 108020002230 Pancreatic Ribonuclease Proteins 0.000 description 1
- 102000005891 Pancreatic ribonuclease Human genes 0.000 description 1
- 239000001888 Peptone Substances 0.000 description 1
- 108010080698 Peptones Proteins 0.000 description 1
- MPFGIYLYWUCSJG-AVGNSLFASA-N Phe-Glu-Asp Chemical compound OC(=O)C[C@@H](C(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](N)CC1=CC=CC=C1 MPFGIYLYWUCSJG-AVGNSLFASA-N 0.000 description 1
- JEBWZLWTRPZQRX-QWRGUYRKSA-N Phe-Gly-Asp Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(O)=O JEBWZLWTRPZQRX-QWRGUYRKSA-N 0.000 description 1
- ZLGQEBCCANLYRA-RYUDHWBXSA-N Phe-Gly-Glu Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(O)=O ZLGQEBCCANLYRA-RYUDHWBXSA-N 0.000 description 1
- OQTDZEJJWWAGJT-KKUMJFAQSA-N Phe-Lys-Asp Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(O)=O)C(O)=O OQTDZEJJWWAGJT-KKUMJFAQSA-N 0.000 description 1
- ZVRJWDUPIDMHDN-ULQDDVLXSA-N Phe-Pro-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@@H]1CCCN1C(=O)[C@@H](N)CC1=CC=CC=C1 ZVRJWDUPIDMHDN-ULQDDVLXSA-N 0.000 description 1
- BPIMVBKDLSBKIJ-FCLVOEFKSA-N Phe-Thr-Phe Chemical compound C([C@H](N)C(=O)N[C@@H]([C@H](O)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(O)=O)C1=CC=CC=C1 BPIMVBKDLSBKIJ-FCLVOEFKSA-N 0.000 description 1
- 102220479620 Phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase and dual-specificity protein phosphatase PTEN_Q171E_mutation Human genes 0.000 description 1
- VCYJKOLZYPYGJV-AVGNSLFASA-N Pro-Arg-Leu Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(O)=O VCYJKOLZYPYGJV-AVGNSLFASA-N 0.000 description 1
- AMBLXEMWFARNNQ-DCAQKATOSA-N Pro-Asn-Leu Chemical compound CC(C)C[C@@H](C(=O)O)NC(=O)[C@H](CC(=O)N)NC(=O)[C@@H]1CCCN1 AMBLXEMWFARNNQ-DCAQKATOSA-N 0.000 description 1
- FKKHDBFNOLCYQM-FXQIFTODSA-N Pro-Cys-Ala Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CS)C(=O)N[C@@H](C)C(O)=O FKKHDBFNOLCYQM-FXQIFTODSA-N 0.000 description 1
- UAYHMOIGIQZLFR-NHCYSSNCSA-N Pro-Gln-Val Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](C(C)C)C(O)=O UAYHMOIGIQZLFR-NHCYSSNCSA-N 0.000 description 1
- PULPZRAHVFBVTO-DCAQKATOSA-N Pro-Glu-Arg Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O PULPZRAHVFBVTO-DCAQKATOSA-N 0.000 description 1
- SUENWIFTSTWUKD-AVGNSLFASA-N Pro-Leu-Val Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(O)=O SUENWIFTSTWUKD-AVGNSLFASA-N 0.000 description 1
- LNICFEXCAHIJOR-DCAQKATOSA-N Pro-Ser-Leu Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(O)=O LNICFEXCAHIJOR-DCAQKATOSA-N 0.000 description 1
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 1
- 241000223252 Rhodotorula Species 0.000 description 1
- 229920002684 Sepharose Polymers 0.000 description 1
- FCRMLGJMPXCAHD-FXQIFTODSA-N Ser-Arg-Asn Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(N)=O)C(O)=O FCRMLGJMPXCAHD-FXQIFTODSA-N 0.000 description 1
- CNIIKZQXBBQHCX-FXQIFTODSA-N Ser-Asp-Arg Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O CNIIKZQXBBQHCX-FXQIFTODSA-N 0.000 description 1
- OHKFXGKHSJKKAL-NRPADANISA-N Ser-Glu-Val Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C(C)C)C(O)=O OHKFXGKHSJKKAL-NRPADANISA-N 0.000 description 1
- IUXGJEIKJBYKOO-SRVKXCTJSA-N Ser-Leu-His Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CC1=CN=CN1)C(=O)O)NC(=O)[C@H](CO)N IUXGJEIKJBYKOO-SRVKXCTJSA-N 0.000 description 1
- XUDRHBPSPAPDJP-SRVKXCTJSA-N Ser-Lys-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](N)CO XUDRHBPSPAPDJP-SRVKXCTJSA-N 0.000 description 1
- HHJFMHQYEAAOBM-ZLUOBGJFSA-N Ser-Ser-Ala Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H](C)C(O)=O HHJFMHQYEAAOBM-ZLUOBGJFSA-N 0.000 description 1
- ZSDXEKUKQAKZFE-XAVMHZPKSA-N Ser-Thr-Pro Chemical compound C[C@H]([C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)[C@H](CO)N)O ZSDXEKUKQAKZFE-XAVMHZPKSA-N 0.000 description 1
- 108700026226 TATA Box Proteins 0.000 description 1
- LOHBIDZYHQQTDM-IXOXFDKPSA-N Thr-Cys-Phe Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CS)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O LOHBIDZYHQQTDM-IXOXFDKPSA-N 0.000 description 1
- VOHWDZNIESHTFW-XKBZYTNZSA-N Thr-Glu-Cys Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CCC(=O)O)C(=O)N[C@@H](CS)C(=O)O)N)O VOHWDZNIESHTFW-XKBZYTNZSA-N 0.000 description 1
- ONNSECRQFSTMCC-XKBZYTNZSA-N Thr-Glu-Ser Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(O)=O ONNSECRQFSTMCC-XKBZYTNZSA-N 0.000 description 1
- AMXMBCAXAZUCFA-RHYQMDGZSA-N Thr-Leu-Arg Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O AMXMBCAXAZUCFA-RHYQMDGZSA-N 0.000 description 1
- YOOAQCZYZHGUAZ-KATARQTJSA-N Thr-Leu-Ser Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(O)=O YOOAQCZYZHGUAZ-KATARQTJSA-N 0.000 description 1
- KZSYAEWQMJEGRZ-RHYQMDGZSA-N Thr-Leu-Val Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(O)=O KZSYAEWQMJEGRZ-RHYQMDGZSA-N 0.000 description 1
- YGCDFAJJCRVQKU-RCWTZXSCSA-N Thr-Pro-Val Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)[C@@H]1CCCN1C(=O)[C@@H](N)[C@@H](C)O YGCDFAJJCRVQKU-RCWTZXSCSA-N 0.000 description 1
- REJRKTOJTCPDPO-IRIUXVKKSA-N Thr-Tyr-Glu Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CCC(O)=O)C(O)=O REJRKTOJTCPDPO-IRIUXVKKSA-N 0.000 description 1
- OGOYMQWIWHGTGH-KZVJFYERSA-N Thr-Val-Ala Chemical compound C[C@@H](O)[C@H](N)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C)C(O)=O OGOYMQWIWHGTGH-KZVJFYERSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 102220474815 Tryptophan-tRNA ligase, cytoplasmic_H511N_mutation Human genes 0.000 description 1
- 102220510420 Tubulin alpha chain-like 3_G86E_mutation Human genes 0.000 description 1
- ZWZOCUWOXSDYFZ-CQDKDKBSSA-N Tyr-Ala-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC1=CC=C(O)C=C1 ZWZOCUWOXSDYFZ-CQDKDKBSSA-N 0.000 description 1
- NKUGCYDFQKFVOJ-JYJNAYRXSA-N Tyr-Leu-Gln Chemical compound NC(=O)CC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CC1=CC=C(O)C=C1 NKUGCYDFQKFVOJ-JYJNAYRXSA-N 0.000 description 1
- JAGGEZACYAAMIL-CQDKDKBSSA-N Tyr-Lys-Ala Chemical compound C[C@@H](C(=O)O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC1=CC=C(C=C1)O)N JAGGEZACYAAMIL-CQDKDKBSSA-N 0.000 description 1
- PHKQVWWHRYUCJL-HJOGWXRNSA-N Tyr-Phe-Tyr Chemical compound [H]N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O PHKQVWWHRYUCJL-HJOGWXRNSA-N 0.000 description 1
- IZFVRRYRMQFVGX-NRPADANISA-N Val-Ala-Gln Chemical compound C[C@@H](C(=O)N[C@@H](CCC(=O)N)C(=O)O)NC(=O)[C@H](C(C)C)N IZFVRRYRMQFVGX-NRPADANISA-N 0.000 description 1
- CVUDMNSZAIZFAE-TUAOUCFPSA-N Val-Arg-Pro Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CCCN=C(N)N)C(=O)N1CCC[C@@H]1C(=O)O)N CVUDMNSZAIZFAE-TUAOUCFPSA-N 0.000 description 1
- ZXAGTABZUOMUDO-GVXVVHGQSA-N Val-Glu-Lys Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CCC(=O)O)C(=O)N[C@@H](CCCCN)C(=O)O)N ZXAGTABZUOMUDO-GVXVVHGQSA-N 0.000 description 1
- LAYSXAOGWHKNED-XPUUQOCRSA-N Val-Gly-Ser Chemical compound CC(C)[C@H](N)C(=O)NCC(=O)N[C@@H](CO)C(O)=O LAYSXAOGWHKNED-XPUUQOCRSA-N 0.000 description 1
- HJSLDXZAZGFPDK-ULQDDVLXSA-N Val-Phe-Leu Chemical compound CC(C)C[C@@H](C(=O)O)NC(=O)[C@H](CC1=CC=CC=C1)NC(=O)[C@H](C(C)C)N HJSLDXZAZGFPDK-ULQDDVLXSA-N 0.000 description 1
- BGXVHVMJZCSOCA-AVGNSLFASA-N Val-Pro-Lys Chemical compound CC(C)[C@@H](C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCCCN)C(=O)O)N BGXVHVMJZCSOCA-AVGNSLFASA-N 0.000 description 1
- GVNLOVJNNDZUHS-RHYQMDGZSA-N Val-Thr-Lys Chemical compound [H]N[C@@H](C(C)C)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCCN)C(O)=O GVNLOVJNNDZUHS-RHYQMDGZSA-N 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 108010011164 acein 1 Proteins 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 108010008685 alanyl-glutamyl-aspartic acid Proteins 0.000 description 1
- 108010087924 alanylproline Proteins 0.000 description 1
- 108010034445 albutensin A Proteins 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 101150031623 aox gene Proteins 0.000 description 1
- 108010013835 arginine glutamate Proteins 0.000 description 1
- 108010027371 asparaginyl-leucyl-prolyl-arginine Proteins 0.000 description 1
- 108010077245 asparaginyl-proline Proteins 0.000 description 1
- 108010040443 aspartyl-aspartic acid Proteins 0.000 description 1
- 108010092854 aspartyllysine Proteins 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229940097012 bacillus thuringiensis Drugs 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 108010051210 beta-Fructofuranosidase Proteins 0.000 description 1
- 230000001851 biosynthetic effect Effects 0.000 description 1
- 239000007469 bmm - medium Substances 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 229940041514 candida albicans extract Drugs 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 238000005277 cation exchange chromatography Methods 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 229920001429 chelating resin Polymers 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 1
- 238000005660 chlorination reaction Methods 0.000 description 1
- 208000017580 chronic wasting disease Diseases 0.000 description 1
- 230000002016 colloidosmotic effect Effects 0.000 description 1
- 239000006103 coloring component Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000001447 compensatory effect Effects 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000012136 culture method Methods 0.000 description 1
- 108010004073 cysteinylcysteine Proteins 0.000 description 1
- 108010069495 cysteinyltyrosine Proteins 0.000 description 1
- 210000000172 cytosol Anatomy 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 210000001840 diploid cell Anatomy 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000012149 elution buffer Substances 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 238000001976 enzyme digestion Methods 0.000 description 1
- 229940116977 epidermal growth factor Drugs 0.000 description 1
- 238000012262 fermentative production Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 238000005227 gel permeation chromatography Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 108010040856 glutamyl-cysteinyl-alanine Proteins 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 102000035122 glycosylated proteins Human genes 0.000 description 1
- 108091005608 glycosylated proteins Proteins 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 238000003505 heat denaturation Methods 0.000 description 1
- 208000006454 hepatitis Diseases 0.000 description 1
- 231100000283 hepatitis Toxicity 0.000 description 1
- 208000002672 hepatitis B Diseases 0.000 description 1
- 210000003494 hepatocyte Anatomy 0.000 description 1
- 208000016861 hereditary angioedema type 3 Diseases 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 230000006801 homologous recombination Effects 0.000 description 1
- 238000002744 homologous recombination Methods 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 239000012051 hydrophobic carrier Substances 0.000 description 1
- 239000005457 ice water Substances 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 238000003119 immunoblot Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000001573 invertase Substances 0.000 description 1
- 235000011073 invertase Nutrition 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 108010057821 leucylproline Proteins 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000004325 lysozyme Substances 0.000 description 1
- 229960000274 lysozyme Drugs 0.000 description 1
- 235000010335 lysozyme Nutrition 0.000 description 1
- 108010003700 lysyl aspartic acid Proteins 0.000 description 1
- 108010009298 lysylglutamic acid Proteins 0.000 description 1
- 108010017391 lysylvaline Proteins 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 229940057059 monascus purpureus Drugs 0.000 description 1
- 230000017095 negative regulation of cell growth Effects 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 235000003170 nutritional factors Nutrition 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 235000019319 peptone Nutrition 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 108010074082 phenylalanyl-alanyl-lysine Proteins 0.000 description 1
- 108010012581 phenylalanylglutamate Proteins 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 108010079892 phosphoglycerol kinase Proteins 0.000 description 1
- 108010085336 phosphoribosyl-AMP cyclohydrolase Proteins 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 210000005059 placental tissue Anatomy 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 108091033319 polynucleotide Proteins 0.000 description 1
- 102000040430 polynucleotide Human genes 0.000 description 1
- 239000002157 polynucleotide Substances 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 230000009465 prokaryotic expression Effects 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 210000001938 protoplast Anatomy 0.000 description 1
- 239000011535 reaction buffer Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 102220220764 rs117646559 Human genes 0.000 description 1
- 102200108945 rs199473109 Human genes 0.000 description 1
- 102220089633 rs531254130 Human genes 0.000 description 1
- 102220044906 rs587781669 Human genes 0.000 description 1
- 102200061619 rs63750009 Human genes 0.000 description 1
- 102220072410 rs779777625 Human genes 0.000 description 1
- 102220095440 rs876658647 Human genes 0.000 description 1
- 238000012106 screening analysis Methods 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 108010069117 seryl-lysyl-aspartic acid Proteins 0.000 description 1
- 108010048397 seryl-lysyl-leucine Proteins 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000007974 sodium acetate buffer Substances 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000009182 swimming Effects 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 108010051110 tyrosyl-lysine Proteins 0.000 description 1
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 230000029663 wound healing Effects 0.000 description 1
- 239000012138 yeast extract Substances 0.000 description 1
Images
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
本发明涉及以重组DNA技术生产人血清白蛋白的方法,特别是涉及合成的由酵母偏性密码子组成的并经过适当修饰的人血清白蛋白基因,携带所说的基因的重组表达载体和用所说的载体转化的酵母宿主细胞,以及由所说的酵母宿主,特别是甲基营养型酵母宿主以可分泌形式生产人血清白蛋白的方法。The present invention relates to the method for producing human serum albumin by recombinant DNA technology, particularly relate to the synthetic human serum albumin gene that is composed of yeast partial codons and through appropriate modification, the recombinant expression vector that carries said gene and use A yeast host cell transformed with said vector, and a method for producing human serum albumin in a secretable form by said yeast host, especially a methylotrophic yeast host.
人血清白蛋白(HSA)是人血浆的主要组成性蛋白质,其含量约占血浆总蛋白质的50%以上。在人的正常生理条件下,人血浆白蛋白具有维持血浆胶体渗透压、营养和促进伤口愈合的作用,而且其作为载体物质,参与诸多疏水性生物分子如激素、生物学活性物质及药物等在血液中的运输。基于人血清白蛋白的这些重要生理学功能,该蛋白质在临床上具有十分重要的治疗应用价值,可用于治疗各种以血浆白蛋白丢失或白蛋白合成减少为基本特征之一的疾病,例如治疗各种创伤、烧伤、外科手术过程中或手术后失血,以及许多慢性消耗性疾病。Human serum albumin (HSA) is the main constituent protein of human plasma, and its content accounts for more than 50% of the total plasma protein. Under normal human physiological conditions, human plasma albumin has the functions of maintaining plasma colloid osmotic pressure, nourishing and promoting wound healing, and as a carrier substance, it participates in many hydrophobic biomolecules such as hormones, biologically active substances and drugs. transport in the blood. Based on these important physiological functions of human serum albumin, the protein has very important therapeutic application value in clinic, and can be used to treat various diseases whose basic characteristics are the loss of plasma albumin or the reduction of albumin synthesis, such as the treatment of various trauma, burns, blood loss during or after surgery, and many chronic wasting diseases.
迄今为止,临床上使用的HSA和相关制剂主要是以供血者的血液或胎盘组织为来源,经提取和分离制备得到的。使用天然提取的HSA的主要缺点在于,一方面受到血液有限供应的限制,即有限的血液来源难以满足大量生产HSA和其相关制品的需要;另一方面,由于对供血者选择不当,常常可能造成血源污染,例如,肝炎病毒,甚至爱滋病毒的污染。因此,人们一直在试图建立商品化生产HSA可替代方法。随着重组DNA技术的进展,目前已有可能用这一技术大批量生产HSA。So far, clinically used HSA and related preparations are mainly obtained from blood donors or placental tissue through extraction and separation. The main disadvantage of using naturally extracted HSA is that, on the one hand, it is limited by the limited supply of blood, that is, limited blood sources are difficult to meet the needs of mass production of HSA and its related products; on the other hand, due to improper selection of blood donors, it may often cause Blood contamination, for example, hepatitis virus, or even AIDS virus contamination. Therefore, people have been trying to establish alternative methods for the commercial production of HSA. With the development of recombinant DNA technology, it is now possible to use this technology to produce HSA in large quantities.
Lawn等人(Nucleic Acids Research9:6105,(1981))和Dugaiczyk等人(Proc.Natl.Acad.Sci.USA79:71,(1982))分别分离了编码人血清白蛋白的基因并测定了其核苷酸序列。根据所测得的核苷酸序列推断的HSA氨基酸序列,成熟的HSA是由585个氨基酸组成的,分子量约66000道尔顿,等电点为Ip4.7的单链非糖基化蛋白质。该蛋白质最初产生时的是以前原蛋白质的形式存在的,在由细胞分泌和加工过程中分别除去信号肽和前原序列,得到成熟的HSA分子。成熟的HSA分子呈椭圆形三维空间结构,且含有多个二硫键。在分离得到HSA的DNA编码序列后,许多研究人员试图利用各种不同的表达系统中以重组DNA技术大批量生产有相对较高纯度的HSA。例如,Barns描述了从正常人肝细胞中分离HSA的mRNA,并使用该mRNA作为模板,借助反转录酶、Klenow片段及SI核酸酶合成编码前HSA的全长cDNA(参见欧洲专利申请0206733),并描述了携带该cCDA的质粒及其在大肠杆菌中的表达。然而,由于人血清白蛋白的分子量较大,构型复杂,所以使用原核生物大肠杆菌(Latta,M.etal.,Bio/Technology,5:1309-1314,(1987))和枯草芽抱杆菌(Saunders,C.W.et al,J.Bacteriol.169:2917-2925,(1987))等原核表达系统很难得到正确折迭的表达产物。另外,由于在分泌表达产物往往存在难以去除的菌体内毒素及其他蛋白质污染物,所以也很难以得到适于以大剂量临床应用的HSA产物。Lawn et al. (Nucleic Acids Research9: 6105, (1981)) and Dugaiczyk et al. (Proc. Natl. Acad. Sci. USA79: 71, (1982)) isolated the gene encoding human serum albumin and determined its nuclear nucleotide sequence. According to the HSA amino acid sequence deduced from the measured nucleotide sequence, the mature HSA is composed of 585 amino acids, a single-chain non-glycosylated protein with a molecular weight of about 66,000 Daltons and an isoelectric point of Ip4.7. When the protein is first produced, it exists in the form of preproprotein, and the signal peptide and preprosequence are respectively removed during secretion and processing by cells to obtain a mature HSA molecule. The mature HSA molecule has an elliptical three-dimensional structure and contains multiple disulfide bonds. After the DNA coding sequence of HSA was isolated, many researchers attempted to mass-produce HSA with relatively high purity by recombinant DNA technology in various expression systems. For example, Barns described the isolation of HSA mRNA from normal human hepatocytes and the synthesis of full-length cDNA encoding pre-HSA using this mRNA as a template with the aid of reverse transcriptase, Klenow fragment and SI nuclease (see European Patent Application 0206733) , and described the plasmid carrying the cCDA and its expression in E. coli. However, since the molecular weight of human serum albumin is relatively large and the configuration is complex, prokaryote Escherichia coli (Latta, M.etal., Bio/Technology, 5:1309-1314, (1987)) and Bacillus subtilis ( Prokaryotic expression systems such as Saunders, C.W.et al, J.Bacteriol.169:2917-2925, (1987)) are difficult to obtain correctly folded expression products. In addition, it is also difficult to obtain HSA products suitable for clinical application in large doses due to the presence of bacterial endotoxins and other protein contaminants that are difficult to remove in the secreted expression products.
使用哺乳动物细胞如CHO细胞,COS细胞及昆虫细胞表达系统,虽然能产生有正确空间构型的蛋白质产物,但培养这些细胞的营养条件要求较高,其传代时间远比微生物长,以致须经过长时间培养才能达到足够高的细胞浓度,而且一般情况下也难以对这些细胞进行必要的改良。因此,从经济角度考虑,使用这些真核生物体生产HSA是不适宜的。Mammalian cells such as CHO cells, COS cells, and insect cell expression systems can produce protein products with correct spatial configurations, but the nutritional conditions for cultivating these cells are relatively high, and their passage time is much longer than that of microorganisms, so that they must undergo It takes a long time to culture to reach a sufficiently high cell concentration, and it is generally difficult to make the necessary modifications to these cells. Therefore, the use of these eukaryotic organisms for the production of HSA is not economical.
因为所有真核生物体都具有表达遗传信息的机制,所以可望在真核宿主中能够比在原核生物体(例如大肠杆菌)中更为有效地表达真核基因。近年来,一些实验室使用低等真核生物体,特别是酵母表达人血清白蛋白已取得了突破性进展。例如欧洲专利申请0344459描述了构建含有转录单元的质粒,将此携带处于AOXI启动子控制下之HSA基因的质粒导入适当宿主,特别是毕赤属酵母菌株(GTS115)的AOX1基因区以得到转化体细胞,然后在含有适当浓度(0.1-5%)甲酵的培养基中培养该转化体细胞,得到以甲醇为唯一碳源的突变体菌株并在培养基分泌产生HSA。有人对毕赤酵母表达产生的重组HSA的理化性质、空间结构及药理学特性与天然HSA进行了一系列比较实验,结果表明两者几乎完全相同(参见KazuoIKegayc,Anal,Chem,69:1986-1991,(1997))。另外,欧洲专利申请0339455、0123544、0248637和0251744也分别公开了利用酵母宿主表达人血清白蛋白的方法及相应的产物纯化方法。因此,这些研究成果使得人们利用重组DNA技术以高产量生产高纯度HSA成为可能。Since all eukaryotic organisms have mechanisms for expressing genetic information, it is expected that eukaryotic genes can be expressed more efficiently in eukaryotic hosts than in prokaryotic organisms such as E. coli. In recent years, some laboratories have made breakthroughs using lower eukaryotic organisms, especially yeast, to express human serum albumin. For example, European patent application 0344459 describes the construction of a plasmid containing the transcription unit, which carries the HSA gene under the control of the AOXI promoter and is introduced into a suitable host, in particular the AOX1 gene region of a Pichia strain (GTS115) to obtain a transformant cells, and then culture the transformant cells in a medium containing an appropriate concentration (0.1-5%) of methanol to obtain a mutant strain using methanol as the sole carbon source and secrete and produce HSA in the medium. Someone has carried out a series of comparative experiments on the physicochemical properties, spatial structure and pharmacological properties of the recombinant HSA produced by the expression of Pichia pastoris and natural HSA, and the results show that the two are almost identical (see KazuoI Kegayc, Anal, Chem, 69:1986-1991 , (1997)). In addition, European Patent Applications Nos. 0339455, 0123544, 0248637 and 0251744 also disclosed methods for expressing human serum albumin using yeast hosts and corresponding purification methods for the products. Therefore, these research results make it possible to produce high-purity HSA with high yield by using recombinant DNA technology.
为了进一步提高HSA在酵母细胞中的表达产率,一些实验室还对HSA的信号肽、启动子序列,以及HSA基因的考贝数等进行了一系列深入研究。例如,欧洲专利申请0329127和0319641分别公开了合成的HSA信号肽核苷酸编码序列。将这些信号肽核苷酸编码序列连接到启动子(例如AOX1、AOX2、或GAL1,10)序列与编码前原HSA的DNA序列之间,以提高酵母宿主表达和分泌HSA的能力。欧洲专利申请0506040公开了在天然AOX2启动子碱基序列中造成部分缺失或取代,或在其中加入新的碱基序列所得到的突变体AOX2启动子。In order to further improve the expression yield of HSA in yeast cells, some laboratories have also conducted a series of in-depth studies on the signal peptide, promoter sequence of HSA, and the Cowpe number of the HSA gene. For example, European Patent Applications 0329127 and 0319641 disclose synthetic HSA signal peptide nucleotide coding sequences, respectively. These signal peptide nucleotide coding sequences are linked between the promoter (such as AOX1, AOX2, or GAL1, 10) sequence and the DNA sequence encoding preproHSA to improve the ability of the yeast host to express and secrete HSA. European patent application 0506040 discloses a mutant AOX2 promoter obtained by causing partial deletion or substitution in the nucleotide sequence of the natural AOX2 promoter, or adding a new nucleotide sequence therein.
另一方面,在努力提高酵母细胞或其他宿主系统表达效力的同时,还着重就重组产生的HSA的纯化方法进行了深入地研究。例如,在培养HSA生产菌方面,还公开了向培养基中添加脂肪酸(欧洲专利申请0504823)、葡萄糖(日本专利公开JP-A219561/1989)、组氨酸(美国专利5612197)以提高生产菌的生长速率并改善HSA产率的方法;在乙酰色氨酸(1-100mM)或其他羧酸盐存在下,加热(50-70℃)处理含HSA的培养物上清以纯化HSA的方法(美国专利5132404);联合使用超滤、加热处理、酸处理和超滤,然后再用阳离子交换剂、疏水层析载体和阴离子交换剂处理,并经盐析得到纯的HSA的方法(美国专利5440018)。另外,还公开了在胺类化合物的存在下培养表达HSA的重组体宿主细胞,以抑制重组HSA(rHSA)产物的颜色生成的方法(美国专利5369020);以及用还原剂(如巯基化合物),或用阳离子交换剂除去游离多糖,然后再经热处理以使rHSA脱色的方法(欧洲专利申请0658569)。On the other hand, while trying to improve the expression efficiency of yeast cells or other host systems, in-depth research has also been carried out on the purification method of recombinantly produced HSA. For example, in terms of cultivating HSA producing bacteria, it is also disclosed to add fatty acid (European patent application 0504823), glucose (Japanese patent publication JP-A219561/1989), histidine (U.S. Patent 5612197) in the culture medium to improve the production of bacteria Growth rate and method for improving HSA yield; In the presence of acetyl tryptophan (1-100mM) or other carboxylates, heat (50-70°C) process HSA-containing culture supernatant to purify HSA method (USA Patent 5132404); Combined use of ultrafiltration, heat treatment, acid treatment and ultrafiltration, and then use cation exchanger, hydrophobic chromatography carrier and anion exchanger to process, and obtain the method of pure HSA through salting out (US patent 5440018) . In addition, it also discloses a method for cultivating recombinant host cells expressing HSA in the presence of amine compounds to suppress the color generation of recombinant HSA (rHSA) products (US Patent 5369020); and using reducing agents (such as sulfhydryl compounds), Or use a cation exchanger to remove free polysaccharides, and then heat-treat rHSA to decolorize the method (European patent application 0658569).
如前所述,酵母细胞表达系统,特别是甲基营养型酵母表达系统是用于大批量发酵生产HSA的优选表达系统。尽管现有技术中针对重组载体的构建、用于基因表达的调控元件的修饰及重组体细胞的培养条件等作了多方面的改良,但迄今尚未见到的有关对HSA编码序列进行必要的修饰,通过改变HSA基因结构以进一步提高其在甲基营养型酵母中表达效率和水平的报导。As mentioned above, yeast cell expression system, especially methylotrophic yeast expression system is the preferred expression system for large-scale fermentative production of HSA. Although many improvements have been made in the prior art for the construction of recombinant vectors, the modification of regulatory elements for gene expression, and the culture conditions of recombinant cells, there are no necessary modifications to the HSA coding sequence that have been seen so far. , by changing the structure of HSA gene to further improve its expression efficiency and level in methylotrophic yeast.
因此,本发明的一个目的是提供基本上由酵母偏性密码子组成并经过适当修饰的合成的编码人血清白蛋白的核苷酸序列及其功能等同物。Therefore, an object of the present invention is to provide a synthetic human serum albumin-encoding nucleotide sequence substantially consisting of yeast-biased codons and suitably modified, and functional equivalents thereof.
根据本发明这一目的的一个优选实施方案,其中对所说的修饰包括对HSA编码序列的内含子剪接位点、非转录终止区的转录终止序列、长的重复序列、内部启动子序列及核糖体结合位点的修饰。According to a preferred embodiment of this object of the present invention, wherein said modification includes the intron splice site of the HSA coding sequence, the transcription termination sequence of the non-transcription termination region, the long repeat sequence, the internal promoter sequence and Modification of the ribosome binding site.
根据本发明这一目的的一个优选方案,其中说的HSA编码序列是经分别合成三组各8个核苷酸链,然后以基于聚合酶链反应的合成技术拼接成三个核苷酸片段,再经克隆和纠正个别碱基错误后彼此串联连接而得到的。According to a preferred scheme of this purpose of the present invention, wherein said HSA coding sequence is through respectively synthesizing three groups of 8 nucleotide chains respectively, and then splicing into three nucleotide fragments with the synthetic technology based on polymerase chain reaction, After cloning and correcting individual base errors, they are obtained by serial connection with each other.
根据本发明这一目的的一个优选方案,其中所说的HSA编码序列具有如图1A(SEQ ID NO1)所示的核苷酸序列。According to a preferred version of this object of the present invention, wherein said HSA coding sequence has the nucleotide sequence shown in Figure 1A (SEQ ID NO1).
本发明的另一个目的是提供包含上述HSA编码序列的重组表达载体。Another object of the present invention is to provide a recombinant expression vector comprising the above-mentioned HSA coding sequence.
根据本发明这一目的的一个优选方案,其中所说的重组表达载体包括一个或多个由(1)甲基营养酵母之甲醇反应性基因的启动子区域,(2)编码啤酒酵母α交配因子(AMF)前原序列和编码HSA的核苷酸序列,(3)在甲基营养型酵母中有功能活性的转录终止子的,以及(4)至少一个可选择标志基因和细菌复制原点组成的表达盒。According to a preferred scheme of this purpose of the present invention, wherein said recombinant expression vector comprises one or more by (1) the promoter region of the methanol response gene of methylotrophic yeast, (2) coding cerevisiae cerevisiae α mating factor (AMF) prepro sequence and nucleotide sequence encoding HSA, (3) expression of a transcription terminator functionally active in methylotrophic yeast, and (4) at least one selectable marker gene and bacterial origin of replication box.
本发明的再一目的是提供用上述携带HSA编码序列的重组表达载体转化的甲基营养型酵母细胞。Another object of the present invention is to provide methylotrophic yeast cells transformed with the above-mentioned recombinant expression vector carrying the HSA coding sequence.
根据本发明这一目的的一个优选实施方案,其中所说的甲基营养型酵母是巴斯德毕赤酵母细胞。According to a preferred embodiment of this object of the invention, said methylotrophic yeast is a Pichia pastoris cell.
根据本发明这一目的的一个优选方案,其中所说的酵母细胞可以是具有Mut+或Mut-表型的。According to a preferred embodiment of this object of the present invention, said yeast cells may have a Mut + or Mut - phenotype.
本发明的再一个目的是提供以重组DNA技术生产人血清白蛋白的方法,该方法包括在适于表达所需的蛋白质的条件下培养按上述方法制备的包含编码人血清白蛋白之核苷酸序列的酵母宿主细胞,然后从培养物中回收并纯化所需的人血清白蛋白。Another object of the present invention is to provide a method for producing human serum albumin by recombinant DNA technology, the method comprising culturing the nucleotides comprising encoding human serum albumin prepared by the above method under conditions suitable for expressing the desired protein Sequence the yeast host cells, then recover and purify the desired human serum albumin from the culture.
本发明的再一个目的是提供按上述方法生产的,基本上具有SEQ IDNo:2所示氨基酸序列的人血清白蛋白。Another object of the present invention is to provide the human serum albumin produced by the above method, substantially having the amino acid sequence shown in SEQ ID No:2.
图1A显示合成的编码全长度人血清白蛋白的核苷酸序列及由之推断Figure 1A shows the synthetic nucleotide sequence encoding full-length human serum albumin and its deduction
的人血清白蛋白的氨基酸序列;The amino acid sequence of human serum albumin of ;
图1B显示图1A中所示全长度人血清白蛋白核苷酸编码序列中的单一Figure 1B shows a single sequence in the full-length human serum albumin nucleotide coding sequence shown in Figure 1A
核酸内切酶酶切位点: Endonuclease cutting site:
图2显示编码人血清白蛋白的核苷酸序列的合成策略;Figure 2 shows the synthesis strategy of the nucleotide sequence encoding human serum albumin;
图3显示HSA-Ⅰ片段的核苷序列(上行)及由之推断的氨基酸序列(下Figure 3 shows the nucleotide sequence (upper line) and the deduced amino acid sequence (lower line) of the HSA-I fragment
行); OK);
图4显示重组质粒pBKS/HSA-Ⅰ的构建;Figure 4 shows the construction of the recombinant plasmid pBKS/HSA-I;
图5显示HSA-Ⅱ片段的核苷酸序列(上行)及由此推断的氨基酸序列Figure 5 shows the nucleotide sequence (upper column) and the deduced amino acid sequence of the HSA-II fragment
(下行);(downstream);
图6显示重组质粒pBKS/HSA-Ⅱ的构建;Figure 6 shows the construction of the recombinant plasmid pBKS/HSA-II;
图7显示HSA-Ⅲ片段的核苷酸序列(上行)及由之推断的氨基酸序Figure 7 shows the nucleotide sequence (upper line) of the HSA-Ⅲ fragment and the amino acid sequence deduced therefrom
列(下行);column(lower row);
图8显示重组质粒pBKS/HSA-Ⅲ的构建;Figure 8 shows the construction of the recombinant plasmid pBKS/HSA-Ⅲ;
图9显示重组表达载体pBKS/HSA的构建;Figure 9 shows the construction of the recombinant expression vector pBKS/HSA;
图10显示重组表达载体pPIC9/HSA的构建;Figure 10 shows the construction of the recombinant expression vector pPIC9/HSA;
图11显示HSA核苷酸编码序列与表达载体pPIC9连接的连接区序列;Figure 11 shows the sequence of the junction region where the HSA nucleotide coding sequence is connected to the expression vector pPIC9;
图12显示HSA-Ⅰ、HSA-Ⅱ、HSA-Ⅲ片段及全长度HSA DNA片段的Figure 12 shows HSA-Ⅰ, HSA-Ⅱ, HSA-Ⅲ fragments and full-length HSA DNA fragments
1%琼脂糖凝胶电泳图谱;1% agarose gel electrophoresis pattern;
图13显示合成的HSA基因在巴斯德毕赤酵母菌株GS115中表达的时Figure 13 shows the time when the synthetic HSA gene is expressed in Pichia pastoris strain GS115
间过程,其中泳道1-8分别显示在培养毕赤酵母转化体细胞的The interim process, in which the lanes 1-8 respectively show the transformation of Pichia pastoris cells
培养基中加入甲醇诱导HSA表达后0、24、24、48、72、96、 After adding methanol to the medium to induce HSA expression, 0, 24, 24, 48, 72, 96,
120和148小时收集培养物上清并在10%聚丙烯酰胺凝胶上进行120 and 148 hours culture supernatants were collected and run on 10% polyacrylamide gel
分析的结果; Results of the analysis;
图14显示对HSA表达产物所作的免疫印迹分析的结果,其中各泳道Figure 14 shows the result of immunoblotting analysis done to HSA expression product, wherein each swimming lane
加样材料分别为A:天然HSA;B:不携带重组质粒的GS115The sample materials are A: natural HSA; B: GS115 without recombinant plasmid
酵母细胞的培养物上清;C:用pPIC9/HSA转化的GS115酵母Culture supernatant of yeast cells; C: GS115 yeast transformed with pPIC9/HSA
细胞的培养物上清。The culture supernatant of the cells.
就以DNA重组技术生产异源蛋白质,特别是对纯度要求极高且分子中富含巯基的人血清白蛋白来说,酵母的最突出的优点之一是其能够向培养基中分泌异源蛋白质产物。因此,使用酵母表达系统能够以较高的起始纯度得到被分泌的产物,从而可简化纯化步骤。特别是对于富含巯基的HSA来说,建立能够向培养基中分泌表达产物的酵母表达系统的另一个具有说服力的理由在于HSA产物更易于通过二硫键形成来维持其准确的四维结构。细胞和细胞外介质的分泌途径是能够支持二硫键形成的氧化环境(Smith,et al.,Science229:1219(1985))。相反,胞浆则是一个不能形成二硫键的还原环境。细胞破碎后,如果二硫键形成过快,可导致随机二硫键的生成。因此,最好是通过分泌途径生产富含二硫键的蛋白质,如HSA。One of the most prominent advantages of yeast is that it can secrete heterologous proteins into the medium for the production of heterologous proteins by recombinant DNA technology, especially for human serum albumin, which requires extremely high purity and is rich in sulfhydryl groups in the molecule. product. Therefore, the use of yeast expression system can obtain the secreted product with higher initial purity, thereby simplifying the purification steps. Especially for sulfhydryl-rich HSA, another convincing reason for establishing a yeast expression system capable of secreting expression products into the medium is that HSA products are more likely to maintain their accurate four-dimensional structure through disulfide bond formation. Secretory pathways of cells and extracellular media are capable of supporting an oxidative environment for disulfide bond formation (Smith, et al., Science 229:1219 (1985)). In contrast, the cytosol is a reducing environment that cannot form disulfide bonds. After cell disruption, if disulfide bonds are formed too quickly, random disulfide bonds can be generated. Therefore, it is best to produce disulfide-rich proteins such as HSA via the secretory pathway.
为了克服某些与啤酒酵母有关的问题,例如质粒选择标志的丢失以及在高密度发酵条件下的质粒分配、拷贝数和稳定性等问题,进而建立了基于甲基营养酵母,如巴斯德毕赤酵母的酵母表达系统。这一系统的一个关键性特征是其利用衍生于巴斯德毕赤酵母的甲醇调节的醇氧化酶-1(AOX1)基因作为启动子,驱动外源基因的表达(参见欧洲专利申请183071)。该表达系统的另一个特征是可将表达盒稳定的整合到细胞染色体中,从而显著地降低载体丢失的机会。In order to overcome some of the problems associated with S. cerevisiae, such as the loss of plasmid selectable markers and issues of plasmid distribution, copy number, and stability under high-density fermentation conditions, methylotrophic yeasts such as Pasteurbi Yeast expression system for red yeast. A key feature of this system is that it utilizes the methanol-regulated alcohol oxidase-1 (AOX1 ) gene derived from Pichia pastoris as a promoter to drive the expression of exogenous genes (see European Patent Application 183071). Another feature of this expression system is that the expression cassette can be stably integrated into the cell chromosome, thereby significantly reducing the chance of vector loss.
在本发明之前,不仅已使用巴斯德毕赤酵母成功的生产了例如乙型肝炎表面抗原(Cregg et al.,Bio/Technology5:479(1987))、溶菌酶和转化酶(Digan et al.Developmetsin Industrial Microbiology29:59(1988);Tschopp etal.,Bio/Technology5:1305(1987)),以及表皮生长因子(国际专利WO90/10697),而且也已在甲基营养酵母,特别是巴斯德毕赤酵母中成功地表达了人血清白蛋白(欧洲专利申请0344459)。现有技术中所使用的HSA基因序列基本上是基于Lawn等人和Dugaiczyk等人前已分离并测序的HSA基因序列。然而,本发明人的早期研究发现,虽然HSA基因更适于在真核生物体包括在酵母中表达,但考虑到人细胞与低等真核生物体如酵母细胞在结构和蛋白质的生物合成机制例如密码子使用频率、基因转录的启动与转录效率、RNA的剪切与翻译效率以及翻译产物的分泌等方面存在很大差异,因而有必要对天然HSA基因进行某些修饰,使之更适于在酵母系统,特别是毕赤酵母细胞中稳定地存在,并更为有效地转录和转译。Prior to the present invention, not only Pichia pastoris had been used to successfully produce, for example, hepatitis B surface antigen (Cregg et al., Bio/Technology 5:479 (1987)), lysozyme and invertase (Digan et al. Developmetsin Industrial Microbiology29:59(1988); Tschopp et al., Bio/Technology5:1305(1987)), and epidermal growth factor (International Patent WO90/10697), and have also been used in methylotrophic yeast, especially Pasteurbi Human serum albumin was successfully expressed in Rhodotorula (European Patent Application 0344459). The HSA gene sequence used in the prior art is basically based on the previously isolated and sequenced HSA gene sequence by Lawn et al. and Dugaiczyk et al. However, the inventor's early research found that although the HSA gene is more suitable for expression in eukaryotic organisms including yeast, considering human cells and lower eukaryotic organisms such as yeast cells in structure and protein biosynthesis mechanism For example, there are great differences in codon usage frequency, initiation and transcription efficiency of gene transcription, RNA splicing and translation efficiency, and secretion of translation products, so it is necessary to modify the natural HSA gene to make it more suitable for It is stably present in yeast systems, especially Pichia cells, and is more efficiently transcribed and translated.
另外,一些研究表明,不同生物体在密码子使用频率上存在很大差异,从而直接影响转译效率和表达水平。如果对异源基因进行适当的改造,使待表达基因的密码子更适合于所选择的表达系统的密码子使用频率,必将有利于提高外源基因的总体表达效率。Kerlak等人(Bio/Technology8:939-42,(1990))按照双子叶植物的密码子使用频率修饰苏云金芽孢杆菌(B.t)β内毒素基因,并将该基因转化到双子叶植物如棉花细胞中表达,结果导致该修饰的B.t内毒素基因在棉花中的表达水平比天然B.t内毒素基因的表达水平提高50-100倍。相反,Hoekeman等人将磷酸甘油激酶基因克隆到酵母表达载体中,并将其5’端的部分酵母偏性密码子用稀有密码子取代,结果使之在酵母细胞内的表达效率降低了大约10倍。In addition, some studies have shown that different organisms have large differences in codon usage frequency, which directly affects translation efficiency and expression level. If the heterologous gene is properly modified to make the codons of the gene to be expressed more suitable for the codon usage frequency of the selected expression system, it will definitely help to improve the overall expression efficiency of the foreign gene. Kerlak et al. (Bio/Technology 8:939-42, (1990)) modified the Bacillus thuringiensis (B.t) beta endotoxin gene according to the codon usage frequency of dicotyledonous plants and transformed the gene into dicotyledonous plants such as cotton cells As a result, the expression level of the modified B.t endotoxin gene in cotton is 50-100 times higher than that of the natural B.t endotoxin gene. On the contrary, Hoekeman et al. cloned the phosphoglycerol kinase gene into a yeast expression vector, and replaced some of the yeast-biased codons at its 5' end with rare codons, which resulted in a reduction of its expression efficiency in yeast cells by about 10 times .
本发明人充分考虑了密码子使用频率对基因表达的影响和天然HSA编码序列的可能存在的不利因素,全面修饰并重新合成了HSA基因。为此,首先按照在密码子使用频率上基本上与毕赤酵母相同的啤酒酵母的密码子使用频率,重新设计并合成了全长度人血清白蛋白核苷酸编码序列。与天然HSA基因序列相比较,本发明合成的基因序列中有155个碱基被其它碱基所取代,并因此而导致141个密码子的改变。本发明合成的HSA基因的密码子使用频率如下列表1所示。The inventor fully considered the impact of codon usage frequency on gene expression and the possible unfavorable factors of the natural HSA coding sequence, and comprehensively modified and re-synthesized the HSA gene. To this end, firstly, the full-length human serum albumin nucleotide coding sequence was redesigned and synthesized according to the codon usage frequency of Saccharomyces cerevisiae whose codon usage frequency is substantially the same as that of Pichia pastoris. Compared with the natural HSA gene sequence, 155 bases in the synthesized gene sequence of the present invention are replaced by other bases, and thus 141 codons are changed. The codon usage frequency of the HSA gene synthesized by the present invention is shown in Table 1 below.
表1:合成的HSA基因的密码子使用频率
为了便于将本发明的合成的HSA基因连接到各不同的克隆载体或表达载体上,我们在其5’和3’端分别加入两个单一酶切位点,即5’端加入BamHⅠ和XhoⅠ酶切位点,3’端加入EcoRⅠ和ClaⅠ酶切位点,其中BamHⅠ和ClaⅠ切点用于连接克隆载体,而XhoⅠ和EcoRⅠ则用于连接表达载体。另外,为了确保酶切位点的有效利用,我们分别在合成的基因序列的5’端和3’端加入3个保护性碱基(分别是GGC和AGG)。再者,为了便于将合成的HSA基因连接到信号肽的C末端上,还在该基因的N末端附加了氨基酸序列作为信号肽识别和切割位点。作为HSA基因的必要调控元件,其C末端带有一个重复的终止密码子序列,借以确保mRNA转译过程的正确终止。上述这些修饰导致本发明合成的HSA基因序列总长度约为1797bp。In order to facilitate the connection of the synthetic HSA gene of the present invention to various cloning vectors or expression vectors, we added two single restriction sites at the 5' and 3' ends respectively, that is, BamHI and XhoI enzymes were added at the 5' end EcoRI and ClaI restriction sites were added to the 3' end, among which BamHI and ClaI cutting sites were used to connect the cloning vector, while XhoI and EcoRI were used to connect the expression vector. In addition, in order to ensure the effective utilization of restriction sites, we added three protective bases (GGC and AGG, respectively) at the 5' end and 3' end of the synthetic gene sequence. Furthermore, in order to facilitate the connection of the synthetic HSA gene to the C-terminus of the signal peptide, an amino acid sequence was added to the N-terminus of the gene as a signal peptide recognition and cleavage site. As an essential regulatory element of the HSA gene, its C-terminus has a repeated stop codon sequence to ensure the correct termination of the mRNA translation process. The above modifications lead to the total length of the synthesized HSA gene sequence of the present invention being about 1797bp.
另一方面,为了进一步提高本发明合成的HSA基因在甲基营养型酵母,特别是巴斯德毕赤酵母中的表达效率,还对基因之核苷酸序列的下述几个可能对基因转录和/或转译效率带来不利影响的序列或其他部分进行了必要的修饰,改动,置换或删除。On the other hand, in order to further improve the expression efficiency of the HSA gene synthesized by the present invention in methylotrophic yeast, especially Pichia pastoris, the following several possible gene transcriptions of the nucleotide sequence of the gene Necessary modifications, alterations, substitutions or deletions have been made to sequences or other parts that adversely affect translation efficiency and/or translation efficiency.
1、内含子剪接序列:真核生物具有对基因转录产物进行剪接加工以形成不带内含子的mRNA的能力。现已知道,内含子的剪接是由特殊序列介导的,如果DNA序列中存在相应的剪接位点,则这样的序列即可在基因转录过程中被作为内含子从序列中切掉,以致产生不完全的转录产物。因此,在基因的设计和合成中,有必要检查并排除这样的碱基序列。1. Intron splicing sequence: Eukaryotes have the ability to splice and process gene transcription products to form mRNA without introns. It is now known that the splicing of introns is mediated by special sequences. If there are corresponding splicing sites in the DNA sequence, such sequences can be cut out from the sequence as introns during gene transcription. resulting in incomplete transcripts. Therefore, in the design and synthesis of genes, it is necessary to check and exclude such base sequences.
2、转录终止序列:如果在全长度基因序列内部非转录终止部位存在额外的转录终止序列,便有可能导致转录的提前或错误终止,以致产生不完整的mRNA。在酵母表达系统中,已知与转录终止相关的序列包括:(1)ATTATTTTAT;(2)TTTTTATA;(3)TAG…(富含T)…TA(T)GT…(富含AT)…TTT。因此,在设计并合成HSA基因时,必须排除这些序列,特别富含AT的序列。2. Transcription termination sequence: If there is an additional transcription termination sequence at the non-transcription termination site within the full-length gene sequence, it may lead to premature or wrong termination of transcription, resulting in incomplete mRNA. In the yeast expression system, sequences known to be associated with transcription termination include: (1) ATTATTTTAT; (2) TTTTTATA; (3) TAG...(T-rich)...TA(T)GT...(AT-rich)...TTT . Therefore, when designing and synthesizing the HSA gene, these sequences, especially AT-rich sequences, must be excluded.
3、长的重复序列:重复序列,特别是长的重复序列(包括正向和反向重复序列)有可能形成强的二级结构,从而不利于基因转录和转译的顺利进行,而且有可能给全长基因的拼接造成困难。因此,当序列中出现七个以上碱基的重复序列时,需在不改变其所编码的氨基酸的前提下通过改变所牵连的密码子而排除之。3. Long repeat sequences: Repeat sequences, especially long repeat sequences (including forward and reverse repeat sequences) may form a strong secondary structure, which is not conducive to the smooth progress of gene transcription and translation, and may give Splicing of the full-length gene poses difficulties. Therefore, when a repeated sequence of more than seven bases appears in the sequence, it needs to be excluded by changing the involved codons without changing the encoded amino acid.
4、内部启动子序列和核糖体结合位点:基因序列的内部可能含有不期望存在的驱动基因内部转录过程的启动子序列,这些序列有可能干扰全长度基因的正常转录,因此必须予以除去。另外,如果基因内部存在多余的核糖体结合位点,也有可能启动基因内部的转译过程,以致产生不完整的蛋白质表达产物。因此,在本发明的合成HSA基因序列中排除了TATA框启动子序列和GGAGG核糖体结合位点。4. Internal promoter sequences and ribosome binding sites: The gene sequence may contain undesired promoter sequences that drive the internal transcription process of the gene. These sequences may interfere with the normal transcription of the full-length gene, so they must be removed. In addition, if there are redundant ribosome binding sites inside the gene, it is also possible to initiate the translation process inside the gene, resulting in incomplete protein expression products. Therefore, the TATA box promoter sequence and the GGAGG ribosome binding site were excluded in the synthetic HSA gene sequence of the present invention.
此外,为了便于拼接预合成的多核苷酸片段,并便于将串联拼接的全长度基因序列在适当的酶切位点处与其他基因转录和/或转译调控元件拼接或方便的插入到选择的表达载体中,还有必要在基因序列中适当的核苷酸位置上加入若干个酶切位点或接头序列。因此,除上文提到的5’端的BamHⅠ和XhoⅠ酶切位点,以及3’端EcoRⅠ和ClaⅠ酶切位点外,还在核苷酸位置509和1109处分别加入了HindⅢ和PstⅠ位点(图1B)。In addition, in order to facilitate the splicing of pre-synthesized polynucleotide fragments, and facilitate the splicing of the tandem spliced full-length gene sequence with other gene transcription and/or translation regulatory elements at appropriate restriction sites or convenient insertion into the selected expression In the vector, it is also necessary to add several restriction sites or linker sequences at appropriate nucleotide positions in the gene sequence. Therefore, in addition to the BamHI and XhoI restriction sites at the 5' end and the EcoRI and ClaI restriction sites at the 3' end mentioned above, HindIII and PstI sites were added at nucleotide positions 509 and 1109, respectively. (Fig. 1B).
因此,本发明的第一个目的是提供按上述原则合成的编码人血清白蛋白的核苷酸序列。为了得到如图1A中所示的编码人血清白蛋白的全长度核苷酸序列,合成了3个核苷酸长度分别为612bp、562bp和705bp并分别定名为HSA-Ⅰ、HSA-Ⅱ和HSA-Ⅲ的片段。其中每个片段均由8条较短的寡核苷酸连接而成,并且各片段的两端均分别带有用于在适当的克隆载体中直接克连接并克隆的BamHⅠ和ClaⅠ酶切位点。Therefore, the first object of the present invention is to provide a nucleotide sequence encoding human serum albumin synthesized according to the above principles. In order to obtain the full-length nucleotide sequence encoding human serum albumin as shown in Figure 1A, three nucleotide sequences of 612bp, 562bp and 705bp were synthesized and named HSA-I, HSA-II and HSA respectively Fragment of -III. Each fragment is connected by 8 shorter oligonucleotides, and both ends of each fragment have BamHI and ClaI restriction sites for direct ligation and cloning in appropriate cloning vectors.
可以按照本领域技术人员已知的常规方法分别化学合成相对短的寡核苷酸序列的互补链,并经变性后退火得到相应的双链DNA分子。但从经济和方便的角度考虑,最好采用本发明人改进的基于PCR技术的DNA序列合成方法合成本发明的HSA基因序列(参见实施例1)。按照这种方法,两条互补链之间只保留≤20个碱基对的重叠互补区,即足可以一条模板链为基础,合成长达120个碱基的双股寡核苷酸序列。这样,经一次的拼接即可得到正确连接的长达大约900bp的DNA片段。Complementary strands of relatively short oligonucleotide sequences can be chemically synthesized according to conventional methods known to those skilled in the art, and denatured and then annealed to obtain corresponding double-stranded DNA molecules. However, from the viewpoint of economy and convenience, it is better to use the PCR-based DNA sequence synthesis method improved by the present inventors to synthesize the HSA gene sequence of the present invention (see Example 1). According to this method, only an overlapping complementary region of ≤20 base pairs is reserved between the two complementary strands, which is enough to synthesize a double-stranded oligonucleotide sequence up to 120 bases based on a template strand. In this way, correctly connected DNA fragments up to about 900 bp can be obtained after one splicing.
由于在利用Oligo4.0计算机软件设计各寡核苷酸链时,充分分析了相邻两条寡核苷酸链上的重叠区序列,从而有效的避免了所说的重叠区内发夹结构和强二级结构的形成,增加了重叠区序列的特异性的分子内部稳定性。一般说来,可通过改变重叠区内的个别碱基或造成总体重叠区的位移达到这一目的。Because when utilizing Oligo4.0 computer software to design each oligonucleotide chain, fully analyzed the overlapping region sequence on the adjacent two oligonucleotide chains, thereby effectively avoided the hairpin structure and in said overlapping region The formation of a strong secondary structure increases the molecular internal stability of the sequence specificity of the overlapping region. Generally, this can be achieved by altering individual bases within the overlapping region or by causing a shift in the overall overlapping region.
图2图解显示了本发明的HSA核苷酸编码序列的合成策略。简单的说,首先合成3个分别定名为HSA-Ⅰ、HSA-Ⅱ和HSA-Ⅲ的长度分别为612bp、362bp、和705bp的DNA片段(参见图3、5、和7)。这些片段各自均由8个寡核苷酸序列组成。然后将这三个片段分别克隆到携带M13噬菌体DNA复制原点、氨苄青霉素抗性基因及多克隆位点,并且在多克隆位点两侧分别含有T3及T7噬菌体启动子的pBKS质粒载体中,得到分别定名为pBKS/HSA-Ⅰ、pBKS/HSA-Ⅱ和pBKS/HSA-Ⅲ的3个重组质粒(参见图4、6、和8)。从这些质粒中提取DNA并分别测定核苷酸序列后,按上述原则以适当方法纠正个别碱基的错误。待确定各个片段的碱基序列后,利用各片段两端预先设定的HindⅢ和PstⅠ酶切位点将它们连接到利用BamHⅠ和ClaⅠ切割后线性化的质粒pPKS中,在T4DNA酶作用下重新环化后得到重组质粒pBKS/HSA(图9)。转化到大肠杆菌DH5α中进行多次传代后,从增殖的细菌细胞中提取DNA,并以双脱氧链终止法测定全长度HSA基因的核苷序列,结果表明本发明合成的HSA可稳定保留在继代培养的大肠杆菌细胞中并且没有发生任何序列突变和/或缺失。Figure 2 schematically shows the synthesis strategy of the HSA nucleotide coding sequence of the present invention. Briefly, three DNA fragments named HSA-I, HSA-II, and HSA-III were first synthesized with lengths of 612bp, 362bp, and 705bp (see Figures 3, 5, and 7). Each of these fragments consisted of 8 oligonucleotide sequences. Then these three fragments were respectively cloned into the pBKS plasmid vector carrying the M13 phage DNA replication origin, ampicillin resistance gene and multiple cloning site, and respectively containing T3 and T7 phage promoters on both sides of the multiple cloning site, to obtain Three recombinant plasmids were named pBKS/HSA-I, pBKS/HSA-II and pBKS/HSA-III respectively (see Figures 4, 6, and 8). After DNA was extracted from these plasmids and the nucleotide sequences were determined respectively, errors in individual bases were corrected in an appropriate way according to the above principles. After the base sequence of each fragment is determined, use the preset HindⅢ and PstI restriction sites at both ends of each fragment to connect them to the linearized plasmid pPKS after cutting with BamHI and ClaI. Under the action of T4 DNA enzyme The recombinant plasmid pBKS/HSA was obtained after re-circularization (Fig. 9). After being transformed into Escherichia coli DH5α for several passages, DNA was extracted from the proliferating bacterial cells, and the nucleotide sequence of the full-length HSA gene was determined by the dideoxy chain termination method. The results showed that the synthesized HSA of the present invention can be stably retained in the subsequent coli cells without any sequence mutations and/or deletions.
用于表达本发明合成的HSA基因的表达载体可以是携带适于在酵母中表达外源基因之表达调控元件,并可在酵母特别是甲基营养型酵母中以高拷贝数插入的任何载体,例如pPIC9(Invitrogen)、pPIC3(Invitrogen)、pHIL-D2(Invitrogen)、yYJ32(NRRL B-15891)、pJDB207(Amershan)、pJDB219(Amershan)、PG4.0(NRRL B-15868)、为本发明的目的,其中优选的是pPIC9。The expression vector used to express the HSA gene synthesized by the present invention can be any vector that carries expression control elements suitable for expressing foreign genes in yeast, and can be inserted with a high copy number in yeast, especially methylotrophic yeast, For example pPIC9 (Invitrogen), pPIC3 (Invitrogen), pHIL-D2 (Invitrogen), yYJ32 (NRRL B-15891), pJDB207 (Amershan), pJDB219 (Amershan), PG4.0 (NRRL B-15868), for the present invention purpose, among which pPIC9 is preferred.
例如可用EcoRⅠ和XhoⅠ双酶消化,将pPIC9质粒切成线性,并与用同样双酶切后从pBKS/HSA中得到的HSA基因片段连接,然后用所得连接混合物转化适当的大肠杆菌细胞。在LB培养基平板上37℃培养并筛选被转化的重组体细胞后,从中提取质粒DNA并根据片段大小鉴定重组质粒。For example, EcoRI and XhoI double enzyme digestion can be used to linearize the pPIC9 plasmid and ligate it with the HSA gene fragment obtained from pBKS/HSA after the same double digestion, and then use the resulting ligation mixture to transform appropriate Escherichia coli cells. After culturing on LB medium plate at 37°C and screening the transformed recombinant cells, the plasmid DNA was extracted and the recombinant plasmid was identified according to the fragment size.
因此,本发明进一步涉及至少含有一个表达盒的重组表达载体,其中所说表达盒在转录的读框方向上依次含有下列DNA序列:Therefore, the present invention further relates to a recombinant expression vector containing at least one expression cassette, wherein said expression cassette contains the following DNA sequences sequentially in the direction of the reading frame of transcription:
(ⅰ)甲基营养型酵母之甲醇反应性基因的启动子区域;(i) the promoter region of the methanol-responsive gene of methylotrophic yeast;
(ⅱ)编码啤酒酵母α交配因子(AMF)前原序列和编码HSA多肽序列的DNA序列,以及(ii) DNA sequences encoding the preprosequence of Saccharomyces cerevisiae alpha mating factor (AMF) and the sequence encoding the HSA polypeptide, and
(ⅲ)在甲基营养酵母中有功能活性的转录终止子。(iii) A transcription terminator functionally active in methylotrophic yeast.
可将此DNA片段作为侧翼接有与靶基因有足够同源性之DNA序列的线性片段,转化到甲基营养型酵母如巴斯德毕赤酵母中,以实现所说的DNA片段在酵母染色体中的整合。在这种情况下,整合是通过重组表达载体中的同源序列在酵母靶基因组的适当位点处与酵母靶基因组发生同源重组而实现的。或者所说的DNA片段可以是环形质粒的一部分,可将其切成线性以有利于整合,并且可以在宿主和质粒序列间的同源性位点处加入该片段进而实现其在宿主基因组中的整合。载体的线性化将有利于外源基因的整合,并且常常在线性化位点处插入宿主染色体内。This DNA fragment can be transformed into a methylotrophic yeast such as Pichia pastoris as a linear fragment flanked by a DNA sequence having sufficient homology to the target gene to achieve the expression of the DNA fragment on the yeast chromosome. integration in . In this case, integration is achieved by homologous recombination of homologous sequences in the recombinant expression vector with the yeast target genome at appropriate sites in the yeast target genome. Alternatively, the DNA fragment can be part of a circular plasmid that can be cut linearly to facilitate integration, and the fragment can be added at a site of homology between the host and plasmid sequences to achieve its integration in the host genome. integrate. Linearization of the vector will facilitate the integration of the exogenous gene and often inserts into the host chromosome at the linearization site.
用于转化甲基营养型酵母细胞的表达盒,除含有甲基营养型酵母甲醇反应性启动子和HSA编码DNA序列(HSA基因)外,还含有编码读码内啤酒酵母前原序列切割识别位点(即Glu-Lys-Arg编码序列),以及可在甲基营养型酵母中发挥功能的转录终止子序列。An expression cassette for transformation of methylotrophic yeast cells containing, in addition to a methylotrophic yeast methanol-responsive promoter and an HSA-encoding DNA sequence (HSA gene), a cleavage recognition site for the Saccharomyces cerevisiae preprosequence in coding reading frame (ie Glu-Lys-Arg coding sequence), and a transcription terminator sequence that can function in methylotrophic yeast.
用于驱动HSA基因表达的优选启动子区衍生于巴斯德毕赤酵母的甲醇诱导或调节的醇氧化酶(AOX)基因。已知巴斯德毕赤酵母含有醇氧化酶1(AOX1)和醇氧化酶Ⅱ(AOXⅡ)基因。两个AOX基因的编码部分在DNA和推断的氨基酸序列水平上有很大同源性,并具有共同的限制性酶切位点。由两基因启动表达的蛋白质有相似的酶学性质,但其中AOX1基因的启动子更为有效。因此,为表达HSA目的,优选的是使用AOX1(Ellis etal.,Mol.Cell.Biol.5:1111(1985))。A preferred promoter region for driving expression of the HSA gene is derived from the methanol-inducible or regulated alcohol oxidase (AOX) gene of Pichia pastoris. Pichia pastoris is known to contain alcohol oxidase 1 (AOX1) and alcohol oxidase II (AOXII) genes. The coding parts of the two AOX genes share great homology at the level of DNA and deduced amino acid sequences, and share common restriction enzyme sites. The proteins expressed by the two genes have similar enzymatic properties, but the promoter of the AOX1 gene is more effective. Therefore, for the purpose of expressing HSA, it is preferred to use AOX1 (Ellis et al., Mol. Cell. Biol. 5:1111 (1985)).
酵母α交配因子或称α因子是由“α”交配型的细胞分泌的含13个氨基酸的肽。其作用于相对“a”交配型的细胞,以促进两种类型的细胞之间的有效接合,从而形成“α-a”二倍体细胞(Thorner et al.,The MolecularBiology of The Yeast Saccharomyces,Cold Spring Harbor Laboratory,ColdSpring Harbor,143(1981))。AMF前原序列是包含在AMF前体中的前导序列并包括有蛋白质水解加工和分泌所需的Glu-Lys-Arg编码序列。AMF前原序列(包括Leu-Lys-Arg编码序列)是一个258bp的片段。Yeast alpha mating factor or alpha factor is a 13 amino acid peptide secreted by cells of the "alpha" mating type. It acts on cells of relative "a" mating type to promote efficient conjugation between the two types of cells, resulting in "alpha-a" diploid cells (Thorner et al., The Molecular Biology of The Yeast Saccharomyces, Cold Spring Harbor Laboratory, Cold Spring Harbor, 143 (1981)). The AMF preprosequence is the leader sequence contained in the AMF precursor and includes the Glu-Lys-Arg coding sequence required for proteolytic processing and secretion. The AMF prepro sequence (including the Leu-Lys-Arg coding sequence) is a 258bp fragment.
根据本发明在甲基营养型酵母中表达HSA的表达盒还含有转录终止子,其具有一个编码多聚腺苷酸信号和聚腺苷酸化位点的亚片段,和/或为从启动子起始转录提供转录终止信号的亚片段。The expression cassette for expressing HSA in methylotrophic yeast according to the invention also contains a transcription terminator, which has a subfragment encoding a polyadenylation signal and a polyadenylation site, and/or is derived from a promoter A subfragment that initiates transcription and provides a transcription termination signal.
上述用于本发明的HSA表达和分泌的功能性调控序列(非结构基因调控元件)一般均已包括在本发明为表达HSA目的所选用的表达载体pPIC9(Invitrogen)中,并且其中转录终止子与启动子的来源可以是相同或不同的。The above-mentioned functional regulatory sequences (non-structural gene regulatory elements) for HSA expression and secretion of the present invention have generally been included in the expression vector pPIC9 (Invitrogen) selected for the purpose of expressing HSA in the present invention, and wherein the transcription terminator and The origin of the promoters can be the same or different.
根据本发明的表达载体,其中还可包括可在甲基营养型酵母如巴斯德毕赤酵母中发挥功能的选择标志基因。为此,所说的选择标志基因可以是任何赋予甲基营养型酵母如巴斯德酵母以某种表型,从而得以鉴定它们并使之获得未被转化的细胞所不具有的生长能力的基因。例如,适当的选择标志基因包括由营养缺陷型突变体巴斯德毕赤酵母宿主菌株和弥补宿主缺陷的野生型生物合成基因组成的选择标志系统。例如当转化HIS4-巴斯德毕赤酵母菌株时,可利用啤酒酵母或巴斯德毕赤酵母HIS4基因。The expression vector according to the present invention may also include a selectable marker gene that can function in methylotrophic yeast such as Pichia pastoris. For this purpose, the selectable marker gene can be any gene that confers a phenotype on methylotrophic yeasts such as S. pastorii, thereby allowing them to be identified and conferring on them a growth ability not possessed by untransformed cells . For example, suitable selectable marker genes include a selectable marker system consisting of an auxotrophic mutant Pichia pastoris host strain and wild-type biosynthetic genes that complement the host deficiency. For example, when transforming a HIS4 - Pichia pastoris strain, the Saccharomyces cerevisiae or Pichia pastoris HIS4 gene can be utilized.
如果用含有处于巴斯德毕赤酵母基因启动子调节下之HSA基因和加工与分泌所需之AMF序列的线性DNA片段转化酵母宿主,则上述表达盒将通过已知的一步骤或二步骤置换技术(如参见Rothstein,Methods Enzymol.101:202(1983);Sherer and Davis,Proc.Natl.Acad.Sci.,USA,76:4951(1979))被整合到宿主基因组中,可借助与靶基因有足够同源性的侧翼DNA序列将线性DNA片段导向特定的座位,以实现DNA片段在其中的整合。If the yeast host is transformed with a linear DNA fragment containing the HSA gene under the regulation of the Pichia pastoris gene promoter and the AMF sequences required for processing and secretion, the above expression cassette will be replaced by known one or two steps Technology (see Rothstein, Methods Enzymol.101: 202 (1983); Sherer and Davis, Proc. Natl. Acad. Sci., USA, 76: 4951 (1979)) is integrated into the host genome, which can be integrated with the target gene Flanking DNA sequences with sufficient homology direct the linear DNA fragments to specific loci for integration of the DNA fragments therein.
如果含有本发明合成的HSA编码序列的DNA片段包含在表达载体如环形质粒内,则可在基因组的相同或不同座位上整合一个或多个质粒拷贝。在含有本发明合成的HSA编码序列的DNA片段被整合前或整合后,其中表达盒的各部分是彼此可操作地连接的。对于启动子、编码啤酒酵母AMF加工位点的DNA序列及转录终止子来说,编码HSA的DNA序列是位于其功能性位置和方向上的。因此,HSA编码序列可在启动子区的控制下被转录成能够在转译后产生所需的HSA的转录物。因为表达载体内存在AMF前原序列,所以可从培养基中分离得到作为被分泌的整体的HSA产物。由于含有本发明合成的HSA基因序列的DNA片段包括允许其在细菌特别是大肠杆菌中复制的序列,所以可在细菌中大量产生该DNA片段。If the DNA fragment containing the synthetic HSA coding sequence of the present invention is contained in an expression vector such as a circular plasmid, one or more copies of the plasmid can be integrated at the same or different loci of the genome. Before or after the DNA fragment containing the synthetic HSA coding sequence of the present invention is integrated, the various parts of the expression cassette are operably linked to each other. With respect to the promoter, the DNA sequence encoding the AMF processing site in Saccharomyces cerevisiae, and the transcription terminator, the DNA sequence encoding HSA is located in its functional position and orientation. Thus, the HSA coding sequence can be transcribed under the control of the promoter region into a transcript capable of producing the desired HSA upon translation. Because of the presence of the AMF prepro sequence within the expression vector, the HSA product as a whole is secreted and can be isolated from the culture medium. Since the DNA fragment containing the HSA gene sequence synthesized in the present invention includes a sequence allowing it to replicate in bacteria, especially Escherichia coli, the DNA fragment can be produced in large quantities in bacteria.
根据本发明这一目的的一个优选实施方案,可将按本发明上述方法合成的编码HSA的DNA序列可操作地连接到可从市场上购得的,携带适于在甲基营养型酵母中表达和分泌外源蛋白质的功能性调控序列(非结构基因调控元件)的表达载体,例如可购自Invitrogen公司的pPIC9中。该质粒含有5’AOX1启动子片段、α-因子分泌信号、多克隆位点区、3’AOX1转录终止片段,HIS4 ORF、3’AOX1片段、COLE1复制原点及氨苄青霉素抗性基因。转化甲基营养型酵母例如巴斯德毕赤酵母的方法,以及用于培养其基因组中含有编码外源蛋白质之基因的甲基营养酵母,例如巴斯德毕赤酵母的方法是本技术领域中已知的。根据本发明,可用Cregg等人(Mol.Cell.Biol.55:3376(1985))、所述的原生质体技术或全细胞氯化理酵母转化系统(ITO,et al,Agric.Biol.Chem.48:341(1984))以及电穿孔技术将表达载体转化到甲基营养型酵母细胞中。在使用单转录单位的情况下,较好选用电穿孔转化技术。According to a preferred embodiment of this purpose of the present invention, the DNA sequence encoding HSA synthesized according to the above-mentioned method of the present invention can be operably linked to a commercially available DNA sequence that is suitable for expression in methylotrophic yeast. and expression vectors of functional regulatory sequences (non-structural gene regulatory elements) that secrete foreign proteins, such as pPIC9 that can be purchased from Invitrogen. The plasmid contains 5'AOX1 promoter fragment, α-factor secretion signal, multiple cloning site region, 3'AOX1 transcription termination fragment, HIS4 ORF, 3'AOX1 fragment, COLE1 replication origin and ampicillin resistance gene. Methods for transforming methylotrophic yeast such as Pichia pastoris, and methods for cultivating methylotrophic yeast such as Pichia pastoris containing a gene encoding a foreign protein in its genome are in the art known. According to the present invention, available Cregg et al. (Mol.Cell.Biol.55:3376 (1985)), described protoplast technique or whole cell chlorination yeast transformation system (ITO, et al, Agric.Biol.Chem. 48:341(1984)) and electroporation to transform the expression vector into methylotrophic yeast cells. In cases where a single transcription unit is used, electroporation transformation is preferred.
用Southern印迹分析法(Sambrook et al.,Molecular Cloning,2nded.,Chapter9,Cold Spring Harborlaboratory Press,Cold Spring,NY,USA,1989)分析DNA整合位点,并用Northern印迹法(Sambrook等人,上述文献,第7章)分析甲醇反应性HSA基因表达,以进一步鉴定阳性转化体细胞。DNA integration sites were analyzed by Southern blot analysis (Sambrook et al., Molecular Cloning, 2nded., Chapter 9, Cold Spring Harborlaboratory Press, Cold Spring, NY, USA, 1989), and analyzed by Northern blot (Sambrook et al., cited above). , Chapter 7) analysis of methanol-responsive HSA gene expression to further identify positive transformant cells.
本发明进一步提供利用甲基营养型酵母表达系统生产重组HSA的方法,该方法包括在适于表达所需的蛋白质的条件下培养按上述方法制备的包含编码HSA之核苷酸序列的酵母宿主细胞,然后从培养物中回收并纯化所说的HSA。为此,在发酵器中培养带有预期的表型和基因型的被转化的菌株。为了由甲基营养型酵母如巴士德毕赤酵母大规模生产基于重组DNA技术的产品,一般可采用三阶段高密度分批发酵系统。第一阶段即生长阶段是在以过量甘油作为碳源的培养基中培养宿主细胞。在这种碳源上生长时,酵母宿主中的异源基因的表达受到限制,从而使细胞在没有产生异源蛋白质的情况下增殖。然后是较短时间的甘油限制生长阶段。在甘油限制生长阶段以后,加入甲醇诱导所需的异源蛋白质的表达,即为生产阶段(第三阶段)。图13显示了本发明合成的HSA基因在巴士德毕赤酵母中表达的时间过程。The present invention further provides a method for producing recombinant HSA using a methylotrophic yeast expression system, the method comprising cultivating the yeast host cell comprising the nucleotide sequence encoding HSA prepared by the above-mentioned method under conditions suitable for expressing the desired protein , the HSA is then recovered and purified from the culture. For this purpose, transformed strains with the expected phenotype and genotype are grown in fermenters. For large-scale production of products based on recombinant DNA technology from methylotrophic yeasts such as Pichia pastoris, a three-stage high-density batch fermentation system is generally available. The first phase, the growth phase, involves culturing the host cells in a medium with excess glycerol as a carbon source. When grown on this carbon source, the expression of heterologous genes in the yeast host is restricted, allowing cells to proliferate without producing heterologous proteins. This is followed by a shorter glycerol-limited growth phase. After the glycerol-limited growth phase, methanol is added to induce the expression of the desired heterologous protein, which is the production phase (third phase). Figure 13 shows the time course of expression of the synthetic HSA gene of the present invention in Pichia pastoris.
根据本发明的一个优选实施方案,用于生产HSA的异源蛋白质表达系统利用了衍生于巴斯德毕赤酵母的甲醇调节之AOX1基因的启动子。该启动子可有效地启动基因的表达并严格接受外源营养因子的调节。所说的基因也可以是转录终止子的来源。本发明优选的表达盒包括可操作地彼此连接的巴斯德毕赤酵母AOX1启动子、编码啤酒酵母AMF前原序列(或称α因子)的DNA、按本文前述原则全合成的编码成熟HSA的DNA序列,以及衍生于巴斯德毕赤酵母AOX1基因的转录终止子。在一个DNA片段上最好含有两个或多个头尾连接的这样的表达盒,以在单一连续DNA片段上产生多表达盒。According to a preferred embodiment of the present invention, the heterologous protein expression system for the production of HSA utilizes the promoter of the methanol-regulated AOX1 gene derived from Pichia pastoris. The promoter can effectively initiate gene expression and strictly accept the regulation of exogenous nutritional factors. The gene may also be the source of a transcription terminator. The preferred expression cassette of the present invention includes the Pichia pastoris AOX1 promoter operably linked to each other, the DNA encoding the AMF preprosequence (or alpha factor) of Saccharomyces cerevisiae, and the DNA encoding mature HSA fully synthesized according to the aforementioned principles herein sequence, and the transcription terminator derived from the Pichia pastoris AOX1 gene. Preferably two or more such expression cassettes are contained on a single DNA segment joined head-to-tail to generate multiple expression cassettes on a single contiguous DNA segment.
如前所述,为了提高HSA基因序列在巴斯德毕赤酵母中的表达效率和表达水平,本发明人充分考虑了天然存在的HSA编码序列的某些结构特征及其可能存在的对表达效率的不利影响,全面修饰并重新合成了所说的HSA基因。这些修饰包括用酵母偏性密码子取代天然HSA基因中的所有非酵母偏性密码子、加入适当的便于片段连接与重组的核酸内切酶位点、粘端加入必要的保护性碱基和信号肽识别序列与切割位点,以及附加的终止密码子。另一方面,本发明还针对HSA基因序列中的内含子剪接序列、转录终止序列中长的重复序列、内部启动子序列及核糖体结合位点等可能对基因转录和/或转译效率带来不利影响的部分进行了必要的碱基修饰、改动、和置换。As mentioned above, in order to improve the expression efficiency and expression level of the HSA gene sequence in Pichia pastoris, the inventors fully considered certain structural features of the naturally occurring HSA coding sequence and their possible impact on the expression efficiency. adverse effects, the HSA gene was fully modified and de novo synthesized. These modifications include replacing all non-yeast biased codons in the native HSA gene with yeast biased codons, adding appropriate endonuclease sites to facilitate fragment ligation and recombination, and adding necessary protective bases and signals to sticky ends. Peptide recognition sequence and cleavage site, and additional stop codon. On the other hand, the present invention also aims at the intron splicing sequence in the HSA gene sequence, the long repeat sequence in the transcription termination sequence, the internal promoter sequence and the ribosome binding site, etc., which may affect gene transcription and/or translation efficiency. Necessary base modifications, alterations, and substitutions were carried out for the unfavorably affected portions.
可将本发明的按上述原则合成的HSA基因序列插入适当的表达载体如pPIC9中,并用所得重组载体转化适当的大肠杆菌细胞。从被转化的大肠杆菌中分离质粒DNA并进行序列分析。分析结果显示本发明合成的HSA被正确地连接到表达载体所携带的AOX1基因的5’启动子序列和3’转录终止子序列之间,并以5’端直接连接到包括AMF前原序列(α因子编码序列)之蛋白水解加工位点Glu-Lys-Arg的3’编码序列上(参见图11)。The HSA gene sequence synthesized according to the above principle of the present invention can be inserted into an appropriate expression vector such as pPIC9, and the resulting recombinant vector can be used to transform appropriate Escherichia coli cells. Plasmid DNA was isolated from transformed E. coli and sequenced. Analysis results show that the synthetic HSA of the present invention is correctly connected between the 5' promoter sequence and the 3' transcription terminator sequence of the AOX1 gene carried by the expression vector, and is directly connected to the AMF prepro sequence (α Factor coding sequence) on the 3' coding sequence of the proteolytic processing site Glu-Lys-Arg (see Figure 11).
上述合成基因对天然HSA编码序列的修饰和改动以及其在适当表达载体中的正确连接,充分保证了基因表达的有效启动、顺利转录和转录终止,同时也确保了转录产物之转译过程的顺利进行。The modification and alteration of the natural HSA coding sequence by the above-mentioned synthetic gene and its correct connection in an appropriate expression vector fully ensure the effective initiation of gene expression, smooth transcription and transcription termination, and also ensure the smooth progress of the translation process of the transcript .
可用上述表达盒转化的优选的宿主细胞是具有可用存在于转化DNA片段上的标志基因弥补的至少一种突变的巴斯德毕赤酵母细胞,最好是利用HIS4-(GS115)或ARG4-(GS190)营养缺陷型突变体巴斯德毕赤酵菌株。将含有一个或多个表达盒的DNA片段插入到含有弥补宿主之缺陷的标志基因的质粒中。本发明优选的表达载体是质粒PAO815或pPIC9,特别是pPIC9。Preferred host cells that can be transformed with the above-mentioned expression cassettes are Pichia pastoris cells with at least one mutation complemented by a marker gene present on the transforming DNA fragment, preferably using HIS4-(GS115) or ARG4-( GS190) auxotrophic mutant Pichia pastoris strain. A DNA fragment containing one or more expression cassettes is inserted into a plasmid containing a marker gene that complements a defect in the host. The preferred expression vector of the present invention is plasmid pAO815 or pPIC9, especially pPIC9.
为了建立巴斯德毕赤酵母的Mut-表达菌株,可用一步骤基因置换技术将含有表达盒的转化DNA整合到宿主基因组中,用适当的核酸内切酶消化表达载体以产生两末端同源于AOX1座位的线性DNA片段(借助侧翼同源序列)。经这样的基因置换即得到Mut3菌株。这里所说的Mut是指甲醇利用表型。在Mut3菌株中,AOX基因被表达盒所取代,因而降低了菌株利用甲醇的能力。在这种情况下,酵母菌株便通过AOX2基因产物的表达来维持其在甲醇上的缓慢生长。可根据补偿基因的存在来鉴定其中表达盒已通过位点特异性重组而整合到AOXI座位中的转化株。In order to establish Mut - expressing strains of Pichia pastoris, a one-step gene replacement technique can be used to integrate the transformation DNA containing the expression cassette into the host genome, and digest the expression vector with an appropriate endonuclease to generate homologs at both ends. Linear DNA fragment of the AOX1 locus (via flanking homologous sequences). The Mut 3 strain was obtained through such gene replacement. The Mut mentioned here refers to the methanol utilization phenotype. In the Mut 3 strain, the AOX gene was replaced by an expression cassette, thereby reducing the ability of the strain to utilize methanol. In this case, the yeast strain maintained its slow growth on methanol through the expression of the AOX2 gene product. Transformants in which the expression cassette has been integrated into the AOXI locus by site-specific recombination can be identified by the presence of a compensatory gene.
为了建立表达HSA的Mut+菌株,最好用包括表达盒的环形质粒转化宿主细胞,使包括一个或多个表达盒的DNA片段整合到宿主基因组中。在这种情况下,整合是通过在与转化载体上的一个或多个序列有同源性的座位上加入来实现的。为了鉴定阳性转化株,可以用Southern印迹法分析DNA整合的位点,用Northern印迹法分析甲醇反应性HSA基因的表达,并通过检测培养基中的HSA产物来证实HSA蛋白质的分泌表达。可用Southern印迹法鉴定在预期的位点整合了一个或多个表达盒的巴斯德毕赤酵母菌株。可用Northern印迹法和蛋白质产物分析法鉴定提高了HSA分泌产率的酵母菌株(参见图14)。In order to establish a Mut + strain expressing HSA, it is preferable to transform a host cell with a circular plasmid including an expression cassette, so that the DNA fragment including one or more expression cassettes is integrated into the host genome. In this case, integration is achieved by addition at loci that share homology to one or more sequences on the transformation vector. To identify positive transformants, the site of DNA integration can be analyzed by Southern blotting, the expression of methanol-responsive HSA gene can be analyzed by Northern blotting, and secreted expression of HSA protein can be confirmed by detecting HSA product in the culture medium. Pichia pastoris strains incorporating one or more expression cassettes at the expected sites can be identified by Southern blotting. Yeast strains with increased HSA secretion yields can be identified by Northern blotting and protein product analysis (see Figure 14).
在发酵罐中,例如在改良的YNB或YPD液体培养基中,于大约30℃的温度下培养已证明具有预期的基因型和表型的甲基营养型酵母转化株。可使用典型的三阶段生产方法发酵生产HSA,首先使细胞生长在抑制性碳源,最好是在过量甘油上。这个阶段是在没有表达的情况下产生细胞群体。然后使细胞在限制甘油供应条件下生长。当甘油被消耗后,向培养器内加人单一甲醇或有限量甘油+甲醇,以导致由甲醇反应性启动子驱动的HSA基因的表达。为了以高细胞密度发酵并提高产物的表达水平,可在此阶段以补料分批培养的方法加入少量的高浓度蔗糖和葡萄糖以避免高浓度底物对细胞生长的抑制,必要时亦可以向培养基中加入脂肪酸如有6-18个碳原子的脂肪酸来改善HSA产物的产率。Methylotrophic yeast transformants that demonstrate expected genotypes and phenotypes are grown in fermentors, eg, in modified YNB or YPD broth, at a temperature of about 30°C. HSA can be produced fermentatively using a typical three-stage production process, starting with cells grown on an inhibitory carbon source, preferably on an excess of glycerol. This stage is to generate a population of cells in the absence of expression. Cells were then grown under conditions of limited glycerol supply. After glycerol is consumed, methanol alone or limited amounts of glycerol+methanol are added to the incubator to result in expression of the HSA gene driven by a methanol-responsive promoter. In order to ferment at a high cell density and increase the expression level of the product, a small amount of high-concentration sucrose and glucose can be added at this stage in a fed-batch culture method to avoid inhibition of cell growth by high-concentration substrates. Fatty acids, such as fatty acids with 6-18 carbon atoms, are added to the medium to improve the yield of HSA product.
分离和收获HSA的方法可包括加热处理上述培养物上清以灭活蛋白酶,并使用选自阳离子交换剂、疏水载体及活性碳的至少一种材料将HSA与着色成份分离开,以抑制产物的颜色生成。可以在培养期间向培养基中加适当的胺如甲胺、乙胺或丙胺以抑制HSA的颜色。The method for isolating and harvesting HSA may include heat-treating the above-mentioned culture supernatant to inactivate proteases, and using at least one material selected from the group consisting of cation exchangers, hydrophobic carriers, and activated carbon to separate HSA from coloring components to inhibit the production of the product. Color generated. Appropriate amines such as methylamine, ethylamine or propylamine can be added to the medium during the culture to suppress the color of HSA.
可使用选自加热处理、超滤、亲和层析、阳离子交换层析、疏水层析、阴离子交换层析、盐析、和螯合树脂处理的至少五种组合方法纯化得到高纯度HSA。为了适当的简化纯化步骤,尽可能地在保证HSA产物纯度的前提下降低生产成本,较好选用依次加热处理、超滤、疏水层析、和阴离子交换层析或高压液相层析的连续纯化方法。按本发明方法生产的HSA产率一般约为3.5g/升培养液,产物纯度基本可达到99.99%。High-purity HSA can be purified by at least five combined methods selected from heat treatment, ultrafiltration, affinity chromatography, cation exchange chromatography, hydrophobic chromatography, anion exchange chromatography, salting out, and chelating resin treatment. In order to appropriately simplify the purification steps and reduce the production cost as much as possible under the premise of ensuring the purity of the HSA product, it is better to use sequential purification of heat treatment, ultrafiltration, hydrophobic chromatography, and anion exchange chromatography or high pressure liquid chromatography method. The yield of HSA produced by the method of the present invention is generally about 3.5 g/liter of culture solution, and the purity of the product can basically reach 99.99%.
下列实施例旨在进一步举例描述本发明,但这些实施例均不以任何方式构成对本发明待批权利要求之范围的限制。实施例1:HSA基因全长序列的合成与克隆The following examples are intended to further exemplify and describe the present invention, but these examples are not intended to limit the scope of the pending claims of the present invention in any way. Example 1: Synthesis and cloning of the full-length sequence of the HSA gene
本实施例描述编码HSA的全长度核苷酸序列的合成。鉴于全长HSA基因的核苷酸序列相对较长,一次合成可能遇到操作上的困难,因此将全长基因序列分为三个较大的核苷酸片段分别合成。这三个片段分别称为HSA-Ⅰ(612bp),HSA-Ⅱ(562bp),和HSA-Ⅲ(705bp),并且它们每个都由8个寡核苷酸片段拼接而成。1.HSA-Ⅰ片段的合成与克隆This example describes the synthesis of the full length nucleotide sequence encoding HSA. In view of the relatively long nucleotide sequence of the full-length HSA gene, one-time synthesis may encounter operational difficulties, so the full-length gene sequence was divided into three larger nucleotide fragments and synthesized separately. These three fragments are called HSA-I (612bp), HSA-II (562bp), and HSA-III (705bp), respectively, and each of them is spliced by 8 oligonucleotide fragments. 1. Synthesis and Cloning of HSA-Ⅰ Fragment
(1)为了合成长度为612bp的包括HSA基因之5’侧的片段HSA-Ⅰ,首先使用ABI394型DNA自动合成仪(Appiled Biosystem Inc.)按仪器制造商推荐的步骤在1000固相载体上合成有下示序列的8个寡核苷酸链:OA-1GGCGGATCCCTCGAGAAAAGAGATGCACACAAGAGTGAGGTTGCTCATCGGTTTAAAGATTTGGGTGAGGAAAATTTCAAAGCCTTAGTGTTAATOA-2GCGAACTCAGTGACCTCGTTAACCAACTTTACATGATCCTCAAATGGACATTGCTGAAGATATTGGGCAAAAGCAATTAACACTAAGGCTTTGOA-3CGAGGTCACTGAGTTCGCTAAAACTTGTGTTGCAGACGAATCTGCTGAAAATTGTGATAAGTCTCTGCATACCCTATTTGGTGACAAATTGTGCOA-4GCATTCGTTTCTGCCAGGTTCTTGCTTTGCACAGCAGTCGGCCATTTCACCGTAAGTTTCTCGAAGGGTAGCCGACTGTGCACAATTTGTCACCAAAOA-5CCTGGCAGAAACGAATGCTTTTTGCAGCACAAACATGACAACCCTAATCTTCCACGTTTAGTGAGACCTGAAGTTGATGTGATGOA-6TATGGGTGCCTTCTTGCAATTTCATATAAGTACTTCTTCAAAAAAGTTTCTTCATTATCATGGAAGGCTGTACACATCACATTCAACTTCAGGOA-7GCAAGAAGGCACCCATACTTCTATGCCCCGGAGCTACTGTTCTTTGCTAAACGTTATAAAGCTGCATTCACAGAATGTTGCCAAGCOA-8CCTATCGATGGCAGAAGAAGCTTTACCCTCATCTCTTAATTCGTCTAGCTTTGGCAACAGACAAGCTGCCTTATCGGCAGCTTGGCAACATTCTGTG(1) In order to synthesize the fragment HSA-I including the 5' side of the HSA gene with a length of 612bp, first use the ABI394 type DNA automatic synthesizer (Appiled Biosystem Inc.) on a solid phase carrier at 1000 Å according to the steps recommended by the instrument manufacturer合成有下示序列的8个寡核苷酸链:OA-1GGCGGATCCCTCGAGAAAAGAGATGCACACAAGAGTGAGGTTGCTCATCGGTTTAAAGATTTGGGTGAGGAAAATTTCAAAGCCTTAGTGTTAATOA-2GCGAACTCAGTGACCTCGTTAACCAACTTTACATGATCCTCAAATGGACATTGCTGAAGATATTGGGCAAAAGCAATTAACACTAAGGCTTTGOA-3CGAGGTCACTGAGTTCGCTAAAACTTGTGTTGCAGACGAATCTGCTGAAAATTGTGATAAGTCTCTGCATACCCTATTTGGTGACAAATTGTGCOA-4GCATTCGTTTCTGCCAGGTTCTTGCTTTGCACAGCAGTCGGCCATTTCACCGTAAGTTTCTCGAAGGGTAGCCGACTGTGCACAATTTGTCACCAAAOA-5CCTGGCAGAAACGAATGCTTTTTGCAGCACAAACATGACAACCCTAATCTTCCACGTTTAGTGAGACCTGAAGTTGATGTGATGOA-6TATGGGTGCCTTCTTGCAATTTCATATAAGTACTTCTTCAAAAAAGTTTCTTCATTATCATGGAAGGCTGTACACATCACATTCAACTTCAGGOA-7GCAAGAAGGCACCCATACTTCTATGCCCCGGAGCTACTGTTCTTTGCTAAACGTTATAAAGCTGCATTCACAGAATGTTGCCAAGCOA-8CCTATCGATGGCAGAAGAAGCTTTACCCTCATCTCTTAATTCGTCTAGCTTTGGCAACAGACAAGCTGCCTTATCGGCAGCTTGGCAACATTCTGTG
将分别合成的寡核苷酸(OA-1至OA-8)从固相载体柱上洗脱并用含7M尿素的10%聚丙烯酰胺凝胶电泳纯化后,分别回收之。The respectively synthesized oligonucleotides (OA-1 to OA-8) were eluted from the solid-phase carrier column and purified by 10% polyacrylamide gel electrophoresis containing 7M urea, and recovered respectively.
按照图2所示的合成策略,使用PCR反应介导的DNA合成技术,由上述8个寡核苷酸经三步骤PCR扩增得到HSA-Ⅰ片段。具体地说,首先在四个PCR反应试管中分别加入OA-1和OA-2(各10μl)、OA-3和OA-4(各个10μl)、OA-5和OA-6(各个10μl)以及OA-7和OA-8(各10μl)。然后向总反应体积为50μl的各管内分别加入约50l1×PCR缓冲液,200μM dNTP(各50μM),1.5mM MgCl2和2.5单位Taq DNA聚合酶。在94℃,10秒;55℃,30秒;72℃,1分种的PCR反应条件下,经15次PCR循环得到8条寡核苷酸链两两连接的4个双链DNA片段:片段A、B、C、和D。然后将片段A和B、C和D分别混合在两个反应容器内,再次按上述条件进行PCR反应,分别得到进一步融合并扩增的片段E和F。最后,使用寡核苷酸OA-1和OA-8作为两末端引物,再次对如上得到的片段E和F的混合物进行PCR反应,从而得到代表HSA基因的5’端的片段HSA-Ⅰ。用1.5%琼脂糖凝胶分离并纯化该片段后,置-70℃下保存备用。According to the synthesis strategy shown in Figure 2, using the DNA synthesis technology mediated by PCR reaction, the HSA-I fragment was obtained by three-step PCR amplification from the above eight oligonucleotides. Specifically, first add OA-1 and OA-2 (10 μl each), OA-3 and OA-4 (10 μl each), OA-5 and OA-6 (10 μl each) and OA-7 and OA-8 (10 μl each). Approximately 50 l of 1×PCR buffer, 200 μM dNTPs (50 μM each), 1.5 mM MgCl 2 and 2.5 units of Taq DNA polymerase were then added to each tube with a total reaction volume of 50 μl. Under the PCR reaction conditions of 94°C, 10 seconds; 55°C, 30 seconds; 72°C, 1 minute, after 15 PCR cycles, 4 double-stranded DNA fragments in which 8 oligonucleotide chains are connected in pairs are obtained: Fragment A, B, C, and D. Then fragments A and B, C and D were mixed in two reaction containers, and the PCR reaction was carried out again according to the above conditions to obtain further fused and amplified fragments E and F respectively. Finally, using oligonucleotides OA-1 and OA-8 as primers at both ends, the PCR reaction was performed again on the mixture of fragments E and F obtained above, thereby obtaining fragment HSA-I representing the 5' end of the HSA gene. After the fragment was separated and purified by 1.5% agarose gel, it was stored at -70°C for future use.
(2)将携带质粒pBKS的大肠杆菌DH5α菌株接种于50ml LB培养基中,37℃振荡培养15小时。培养后离心(5000rpm,5分钟)收集细胞,并以碱裂解法制备用于克隆合成的HSA片段的质粒pBKS。为此,首先将细胞沉淀物悬浮于5ml溶液Ⅰ(50mM蔗糖,25mM Tris,10mMEDTA,pH8.0)中,然后向悬液中加入10ml新鲜的溶液Ⅱ(0.2NaOH,1%SDS),混匀并置冰水浴中放置10分钟后再加入7.5ml溶液Ⅲ(3MKAc,pH4.8),再次混匀于冰浴中放置15分钟,离心(12000rpm,10分钟)收集沉淀物。用70%乙醇洗细胞沉淀物并重新悬浮于1ml TE缓冲液中。向所得溶液内加入RNA酶A(Promega)(200μg/ml)并于37℃保温30分钟。然后依次用苯酚;酚∶氯仿(1∶1)和氯仿∶异戊醇(24∶1)抽提,并向提取液内加入1/10体积的3M NaAc(pH4.8)和两倍体积的无水乙醇以沉淀之。离心后用70%乙醇洗涤沉淀物并重新溶解于0.1ml TE缓冲液中,从而得到pBKS质粒DNA。最后用限制性核酸内切酶BamHⅠ和ClaⅠ(各2单位)消化该质粒DNA,用1%琼脂糖电泳分离并回收所得的3.0Kb的酶切产物,得到纯化的线性化pBKS载体。(2) Inoculate the Escherichia coli DH5α strain carrying the plasmid pBKS in 50ml of LB medium, and culture with shaking at 37°C for 15 hours. After culturing, the cells were collected by centrifugation (5000 rpm, 5 minutes), and the plasmid pBKS for cloning the synthetic HSA fragment was prepared by alkaline lysis. To do this, first suspend the cell pellet in 5ml solution I (50mM sucrose, 25mM Tris, 10mM EDTA, pH 8.0), then add 10ml fresh solution II (0.2NaOH, 1% SDS) to the suspension, mix well Place in an ice-water bath for 10 minutes, then add 7.5ml of solution III (3MKAc, pH 4.8), mix again and place in an ice-bath for 15 minutes, centrifuge (12000rpm, 10 minutes) to collect the precipitate. Wash the cell pellet with 70% ethanol and resuspend in 1 ml TE buffer. To the resulting solution was added RNase A (Promega) (200 µg/ml) and incubated at 37°C for 30 minutes. Then use phenol successively; Anhydrous ethanol to precipitate it. After centrifugation, the precipitate was washed with 70% ethanol and redissolved in 0.1 ml TE buffer to obtain pBKS plasmid DNA. Finally, the plasmid DNA was digested with restriction endonucleases BamHI and ClaI (2 units each), separated and recovered by 1% agarose electrophoresis to obtain a purified linearized pBKS vector.
(3)用BamHⅠ和ClaⅠ双酶(各1单位)酶切如前制备的的HSA-Ⅰ片段(4μg),将此HSA-Ⅰ片段的酶切产物(1μg)与如上同样酶切的pBKS质粒(约4μg)混合,在T4 DNA连接酶(3单位)存在下,于16℃水浴中反应17小时。反应完成后按常规方法用所得连接混合物转化感受态大肠杆菌DH5α菌株的细胞悬液(OD600约为0.6)。转化反应中使用pBKS空质粒作为阴性对照。将细菌细胞悬液铺敷在添加氨苄青霉素(100μg/ml)的固体LB平板上,37C保温过夜后,筛选出被转化的阳性菌落,并制备质粒DNA。用BamHⅠ和ClaⅠ酶切该DNA,根据所得DNA片段的大小初步鉴定以正确方向连接有HSA-Ⅰ片段的重组质粒pBKS/HSA-Ⅰ。(3) Digest the HSA-I fragment (4 μg) prepared above with BamHI and ClaI double enzymes (1 unit each), and combine the digested HSA-I fragment product (1 μg) with the pBKS plasmid digested in the same way as above (about 4 μg) were mixed, and reacted in a water bath at 16° C. for 17 hours in the presence of T4 DNA ligase (3 units). After the reaction was completed, the obtained ligation mixture was used to transform the cell suspension of competent Escherichia coli DH5α strain (OD 600 was about 0.6) according to conventional methods. The pBKS empty plasmid was used as a negative control in the transformation reaction. The bacterial cell suspension was plated on a solid LB plate supplemented with ampicillin (100 μg/ml), incubated overnight at 37°C, and the transformed positive colonies were screened out, and plasmid DNA was prepared. The DNA was digested with BamHI and ClaI, and the recombinant plasmid pBKS/HSA-I with the HSA-I fragment linked in the correct direction was preliminarily identified according to the size of the obtained DNA fragment.
(3)在添加氨苄青霉素(100μg/ml)的固体培养基上培养经初步鉴定的携带重组质粒pBKS/HSA-Ⅰ的阳性菌株,并按上述方法从中制备DNA并以此DNA作为下述测序反应的模板。按已知方法对模板DNA(2μg)进行变性处理,然后向其中加入测序引物和退火缓冲液(各2μl)以完成退火反应,并按已知的Sanger双脱氧链终止法(Sambrook et al.,MolecularCloning,2nd Edition Chapter 13,Cold Spring Harbor laboratory Press,ColdSprng,NY,USA,1989)检测变性的双链DNA模板的核苷酸序列,测序结果显示所有五个克隆均包括有数目不等的碱基缺失和置换。为此利用HSA-Ⅰ系列中的适当位置上存在的酶切位点,切出没有碱基错误的小片段并与其他克隆中带有正确序列的小片段重新连接后得到去除了错误碱基的HSA-Ⅰ片段。在纠正HSA-Ⅰ片段的碱基错误中,选择使用了两个内部单一酶切位点即核苷酸位置282处的HaeⅢ和核苷酸位置431处的ScaⅠ位点。2.HSA-Ⅱ片段的合成与克隆(3) Cultivate the preliminarily identified positive strain carrying the recombinant plasmid pBKS/HSA-I on a solid medium supplemented with ampicillin (100 μg/ml), and prepare DNA from it according to the above method, and use the DNA as the following sequencing reaction template. Template DNA (2 μg) was denatured according to a known method, and then sequencing primers and annealing buffer (2 μl each) were added to complete the annealing reaction, and the known Sanger dideoxy chain termination method (Sambrook et al., Molecular Cloning, 2nd Edition Chapter 13, Cold Spring Harbor laboratory Press, Cold Spring, NY, USA, 1989) detected the nucleotide sequence of the denatured double-strand DNA template, and the sequencing results showed that all five clones contained varying numbers of bases Deletions and substitutions. To this end, use the enzyme cutting sites at the appropriate positions in the HSA-I series to cut out small fragments without base errors and reconnect them with small fragments with correct sequences in other clones to obtain a base-removed fragment. HSA-I fragment. In correcting base errors in the HSA-I fragment, two internal single restriction sites, HaeIII at nucleotide position 282 and ScaI site at
按照上文1(1)中所述合成HSA-Ⅰ片段的相似方法,首先合成具有下示8个寡核苷酸:OA-9GGCGGATCCGAGGGTAAAGCTTCTTCTGCCAAACAAAGATTGAAGTGCGCTAGTCTACAGAAATOA-10AAACTCGGCTTTGGGAAATCTCTGGCTCAGGCGAGCTACAGCCCATGCCTTAAAAGCTCTTTCTCCAAATTTCTGTAGACTAGCGOA-11TTCCCAAAGCCGAGTTTGCAGAAGTTTCCAAGTTAGTGACGGATTTGACCAAAGTCCATACGGAATGTTGCCATGAGATTTGCTTGAATGTGCOA-12CTTCAGTTTACTCGAGATCGAATCTTGATTTTCACAGATATACTTGGCCAAGTCCGCCCTGTCATCAGCACATTCAAGCAAATCTCCOA-13CGATCTCCAGTAAACTGAAGGAATGTTGTTAAAAACCTCTTTTGGAAAAATCCCACTGCATTGCCGAAGTGGAAAACGATGAGATGCCOA-14CCTTTGCCTCAGCGTAGTTTTTGCAAACATCCTTACTTTCAACAAAATCAGCAGCTAATGATGGCAAGTCAGCAGGCATCTCATCGTTTTCCOA-15CTACGCTGAGGCAAAGGATGTCTTCTTGGGCATGTTTTTGTATGAATACGCAAGAAGGCATCCAGATTACTCTGTCGTGCTGTTCCCCCGCTGAOA-16CCTATCGATACATTCATGAGGATCTGCAGCGGCACAGCACTTCTCTAGAGTGGTTTCATATGTCTTGGCAAGTCTCAGCAACAGACCACA按照上文1(1)中所述合成HSA-Ⅰ片段的相似方法,首先合成具有下示8个寡核苷酸:OA-9GGCGGATCCGAGGGTAAAGCTTCTTCTGCCAAACAAAGATTGAAGTGCGCTAGTCTACAGAAATOA-10AAACTCGGCTTTGGGAAATCTCTGGCTCAGGCGAGCTACAGCCCATGCCTTAAAAGCTCTTTCTCCAAATTTCTGTAGACTAGCGOA-11TTCCCAAAGCCGAGTTTGCAGAAGTTTCCAAGTTAGTGACGGATTTGACCAAAGTCCATACGGAATGTTGCCATGAGATTTGCTTGAATGTGCOA-12CTTCAGTTTACTCGAGATCGAATCTTGATTTTCACAGATATACTTGGCCAAGTCCGCCCTGTCATCAGCACATTCAAGCAAATCTCCOA-13CGATCTCCAGTAAACTGAAGGAATGTTGTTAAAAACCTCTTTTGGAAAAATCCCACTGCATTGCCGAAGTGGAAAACGATGAGATGCCOA-14CCTTTGCCTCAGCGTAGTTTTTGCAAACATCCTTACTTTCAACAAAATCAGCAGCTAATGATGGCAAGTCAGCAGGCATCTCATCGTTTTCCOA-15CTACGCTGAGGCAAAGGATGTCTTCTTGGGCATGTTTTTGTATGAATACGCAAGAAGGCATCCAGATTACTCTGTCGTGCTGTTCCCCCGCTGAOA-16CCTATCGATACATTCATGAGGATCTGCAGCGGCACAGCACTTCTCTAGAGTGGTTTCATATGTCTTGGCAAGTCTCAGCAACAGACCACA
然后按上文1(1)中所述的方法经三次PCR扩增将此8个寡核苷酸(OA-9至OA-16)连接成带有5’端BamHⅠ和3’端ClaⅠ酶切位点,长度为564bp的双链HSA-Ⅱ片段。该片段代表了HSA基因序列的中间部分。同样,按上文1(2)和中所述方法纯化和克隆所合成的HSA-Ⅱ片段,并制备含有HSA-Ⅱ的重组克隆载体pBKS/HSA-Ⅱ。图6中图解显示了用于克隆和鉴定目的的重组克隆载体pBKS/HSA的构建。然后按上文1(3)中所述的方法,同样取5个携带pBKS/HSA-Ⅱ的大肠杆菌克隆,分离DNA并进行序列分析。序列分析结果显示所分析的5个克隆中只有一个克隆的碱基序列带有单个碱基错误,但该错误并未导致氨基酸序列的改变。3.HSA-Ⅲ片段的合成与克隆Then the 8 oligonucleotides (OA-9 to OA-16) were ligated to have the 5' end BamHI and the 3' end ClaI restriction enzyme-cut site, a double-stranded HSA-II fragment with a length of 564bp. This fragment represents the middle part of the HSA gene sequence. Similarly, the synthesized HSA-II fragment was purified and cloned according to the methods described in 1(2) and above, and the recombinant cloning vector pBKS/HSA-II containing HSA-II was prepared. The construction of the recombinant cloning vector pBKS/HSA for cloning and characterization purposes is schematically shown in Figure 6 . Then, according to the method described in 1(3) above, 5 Escherichia coli clones carrying pBKS/HSA-II were also taken, and the DNA was isolated and sequenced. Sequence analysis results showed that only one clone had a single base error in the base sequence of the five clones analyzed, but the error did not lead to changes in the amino acid sequence. 3. Synthesis and Cloning of HSA-Ⅲ Fragment
按照上文1(1)所述的合成HSA-Ⅰ片段的方法,首先合成具有下示序列的8个寡核苷酸:OA-17CGCGGATCCGTGCCGCTGCAGATCCTCATGAATGTTATGCCAAAGTTTTCGATGAATTTAAACCTCTTGTGGAAGAGCCACAAAATTTAATTAAACAAAATTGTGAGOA-18GGAGTTGACACTTGGGGTACTTTCTTGGTGTAACGAACTAACAGCGCATTCTGGAATTTGTATTCACCAAGTTGCTCAAAAAGCTCACAATTTTGTTTAATOA-19CCCCAAGTGTCAACTCCAACTTTGGTAGAGGTCTCAAGAAACCTAGGTAAAGTGGGTAGCAAGTGTTTGTAAACATCCTGAAGCAAAAAGAATGCOA-20GACTCTGTCACTTACTGGCGTTTTCTCATGCAACACACATAACTGGTTCAGGACAACGGATAGATAGTGTTCTGCACATGGCATTCTTTTTGCTTCAGGOA-21CCAGTAAGTGACAGAGTCACCAAGTGCTGCACAGAATCTTTGGTTAACAGGCGACCATGCTTTTCAGCTCTGGAAGTCGATGAAACATACGTTCCCAAAGAGTTTAATGCOA-22GTGTTTCACTAGCTCAACTAGTGCAGTTTGTTTCTTGATTTGTCTTTCCTTCTCAGAAAGTGTACATATATCTGCATGGAAGGTGAAAGTTTCAGCATTAAACTCTTTGGGOA-23GTTGAGCTAGTGAAACACAAGCCGAAGGCGACTAAAGAACAACTGAAAGCTGTTATGGATGGATGATTTTCGCGGCTTTTGTAGAAAAGTGTTGTAATGCTGACGOA-24CCTATCGATCAAGAATTCCTATTATAAACCTAAGGCAGCTTGAGATGCAGCAACTAGTTTCTTACCTTCCTCGGCAAAGCAAGTTTCCTTATCGTCAGCCTTAGAAGAC按照上文1(1)所述的合成HSA-Ⅰ片段的方法,首先合成具有下示序列的8个寡核苷酸:OA-17CGCGGATCCGTGCCGCTGCAGATCCTCATGAATGTTATGCCAAAGTTTTCGATGAATTTAAACCTCTTGTGGAAGAGCCACAAAATTTAATTAAACAAAATTGTGAGOA-18GGAGTTGACACTTGGGGTACTTTCTTGGTGTAACGAACTAACAGCGCATTCTGGAATTTGTATTCACCAAGTTGCTCAAAAAGCTCACAATTTTGTTTAATOA-19CCCCAAGTGTCAACTCCAACTTTGGTAGAGGTCTCAAGAAACCTAGGTAAAGTGGGTAGCAAGTGTTTGTAAACATCCTGAAGCAAAAAGAATGCOA-20GACTCTGTCACTTACTGGCGTTTTCTCATGCAACACACATAACTGGTTCAGGACAACGGATAGATAGTGTTCTGCACATGGCATTCTTTTTGCTTCAGGOA-21CCAGTAAGTGACAGAGTCACCAAGTGCTGCACAGAATCTTTGGTTAACAGGCGACCATGCTTTTCAGCTCTGGAAGTCGATGAAACATACGTTCCCAAAGAGTTTAATGCOA-22GTGTTTCACTAGCTCAACTAGTGCAGTTTGTTTCTTGATTTGTCTTTCCTTCTCAGAAAGTGTACATATATCTGCATGGAAGGTGAAAGTTTCAGCATTAAACTCTTTGGGOA-23GTTGAGCTAGTGAAACACAAGCCGAAGGCGACTAAAGAACAACTGAAAGCTGTTATGGATGGATGATTTTCGCGGCTTTTGTAGAAAAGTGTTGTAATGCTGACGOA-24CCTATCGATCAAGAATTCCTATTATAAACCTAAGGCAGCTTGAGATGCAGCAACTAGTTTCTTACCTTCCTCGGCAAAGCAAGTTTCCTTATCGTCAGCCTTAGAAGAC
然后按上文1(1)中所述方法经三次PCR扩增将此8个寡核苷酸链(AO-17至OA-24)连接成带有5’端BamHⅠ和3’端ClaⅠ酶切位点,长度为705bp的双链HSA-Ⅲ片段。该片段代表了HSA基因序列的3’端部分。同样按上述1(2)中所述的相似方法纯化并克隆所合成的HSA-Ⅲ片段,并制备含有HSA-Ⅲ的重组克隆载体pBKS/HSA-Ⅲ。图8中图解显示了用于纯化、克隆和鉴定目的的重组载体pBKS/HSA-Ⅲ的构建。然后按上文1(3)中所述方法,同样取5个携带pBKS/HSA-Ⅲ的大肠杆菌克隆,分离DNA并进行序列分析。序列分析结果显示,所有5个克隆均存在个别错误碱基。为此,按上文1(3)中所述方法用带有正确碱基的亚片段取代带有错误碱基的片段。在纠正HSA-Ⅲ片段的碱基错误中,借助核苷酸位置216处的StyⅠ位点和核苷酸位置373处的Hap-Ⅰ位点将三个亚片段重新连接成完整的HSA-Ⅲ片段。4.全长度HSA基因的制备与克隆Then, the eight oligonucleotide chains (AO-17 to OA-24) were ligated into 5'-end BamHI and 3'-end ClaI enzymes through PCR amplification three times as described above. site, a double-stranded HSA-Ⅲ fragment with a length of 705 bp. This fragment represents the 3' portion of the HSA gene sequence. Purify and clone the synthesized HSA-III fragment by the similar method described in 1(2) above, and prepare the recombinant cloning vector pBKS/HSA-III containing HSA-III. The construction of the recombinant vector pBKS/HSA-III for purification, cloning and characterization purposes is shown schematically in Figure 8 . Then, according to the method described in 1(3) above, 5 Escherichia coli clones carrying pBKS/HSA-III were also taken, and the DNA was isolated and sequenced. Sequence analysis results showed that all 5 clones had individual wrong bases. To this end, subfragments with correct bases were substituted for fragments with incorrect bases as described in 1(3) above. In correcting the base error of the HSA-III fragment, the three subfragments were rejoined into the complete HSA-III fragment by means of the StyI site at nucleotide position 216 and the Hap-I site at nucleotide position 373 . 4. Preparation and cloning of full-length HSA gene
基本上按照如上文所说的克隆HSA编码序列中各片段的方法制备携带全长HSA基因序列的重组克隆载体。首先分别用BamHⅠ和HindⅢ,HindⅢ和PstⅠ,以及PstⅠ和ClaⅠ从相应的重组质粒pBKS/HSA-Ⅰ,pBKS/HSA-Ⅱ和pBKS/HSA-Ⅲ中切出片段HSA-Ⅰ、HSA-Ⅱ和HSA-Ⅲ。纯化各片段后,将它们以相等的量混合在一起,然后向所得各片段的混合物中加入用BamHⅠ和ClaⅠ双酶切成线性的质粒pBKS。图12显示了HSA-Ⅰ、HSA-Ⅱ、HSA-Ⅲ片段和全长度HSA DNA片段的1%琼脂糖凝胶电泳图谱。按上述反应条件完成4个片段的连接,重新环化并经筛选和序列分析后,得到定名为pBKS/HSA的重组质粒。进一步地全长度序列分析表明,所得的HSA基因序列具有如图1所示的全长度核苷酸序列。Basically, the recombinant cloning vector carrying the full-length HSA gene sequence was prepared according to the above-mentioned method for cloning each fragment of the HSA coding sequence. First, use BamHI and HindIII, HindIII and PstI, and PstI and ClaI to cut out the fragments HSA-I, HSA-II and HSA from the corresponding recombinant plasmids pBKS/HSA-I, pBKS/HSA-II and pBKS/HSA-III, respectively. -Ⅲ. After the respective fragments were purified, they were mixed together in equal amounts, and then the plasmid pBKS linearized with BamHI and ClaI double enzymes was added to the mixture of the obtained fragments. Figure 12 shows the 1% agarose gel electrophoresis patterns of HSA-I, HSA-II, HSA-III fragments and full-length HSA DNA fragments. The connection of the four fragments was completed according to the above reaction conditions, and after recircularization, screening and sequence analysis, a recombinant plasmid named pBKS/HSA was obtained. Further full-length sequence analysis showed that the obtained HSA gene sequence had a full-length nucleotide sequence as shown in FIG. 1 .
遗传稳定性实验结果显示,按上述方法制得的重组质粒pBKS/HSA的DH5α菌株在继式培养后,所得10个单克隆中携带的质粒DNA具有与原始克隆完全相同的DNA序列,表明本发明合成的HSA基因序列具有良好的遗传稳定性。The result of the genetic stability experiment shows that after the DH5α bacterial strain of the recombinant plasmid pBKS/HSA obtained by the above-mentioned method is cultured, the plasmid DNA carried in the obtained 10 single clones has the exact same DNA sequence as the original clone, indicating that the present invention The synthetic HSA gene sequence has good genetic stability.
实施例2:重组表达载体的构建Embodiment 2: Construction of recombinant expression vector
本实施例描述用于在甲基营养型酵母中表达HSA的重组表达载体的构建。一般说来,可按本领域中已知的标准方法完成用于本发明目的的表达载体的构建(如参见Sambrook et al,Molecular Cloning,A LaboratoryManual,2nd ed.,Cold Spring Harbor Laboratory Press,1989)。可按照欧洲专利申请0344459和国际专利申请WO90/10697中所述的方法构建用于表达本发明的全合成HSA基因的重组载体。This example describes the construction of a recombinant expression vector for expression of HSA in methylotrophic yeast. Generally speaking, the construction of the expression vector for the purpose of the present invention can be accomplished according to standard methods known in the art (such as referring to Sambrook et al, Molecular Cloning, A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, 1989) . The recombinant vectors for expressing the fully synthetic HSA gene of the present invention can be constructed according to the methods described in European Patent Application 0344459 and International Patent Application WO90/10697.
为了方便起见,作为一种可供选择的方法,我们利用可从市场上购得的适用于甲基营养型酵母系统的质粒pPIC9(Invitrogen)构建用于分泌表达HSA的重组表达载体。质粒pPIC9含有适于在甲基营养型酵母中表达和分泌外源蛋白质的必要调控序列(非结构基因调控元件),其中包括AOX1启动子片段、α因子分泌信号(AMF前原序列)、多克隆位点、3’AOX1转录终止片段、HIS4-ORF、3’AOX1片段、ColE1复制原点以及氨苄青霉素抗性基因。使用该载体还具有更便于检验本发明合成的HSA基因在甲基营养型酵母中分泌表达的优点。For convenience, as an alternative method, we used the commercially available plasmid pPIC9 (Invitrogen) suitable for the methylotrophic yeast system to construct a recombinant expression vector for secreting and expressing HSA. Plasmid pPIC9 contains the necessary regulatory sequences (non-structural gene regulatory elements) suitable for expression and secretion of foreign proteins in methylotrophic yeast, including AOX1 promoter fragment, α factor secretion signal (AMF prepro sequence), multiple cloning site point, 3'AOX1 transcription termination fragment, HIS4-ORF, 3'AOX1 fragment, ColE1 origin of replication, and ampicillin resistance gene. The use of this vector also has the advantage that it is easier to test the secretion and expression of the synthesized HSA gene of the present invention in methylotrophic yeast.
为此,首先将携带质粒pPIC19的大肠杆菌37℃振荡培养15小时,培养后离心(5000rpm,5分钟)收集细胞沉淀物并以碱裂解法制备质粒DNA(参见实施例1有关pPKS的制备方法)。然后用EcoRⅠ和XhoⅠ(各3单位)消化该质粒DNA。在1%琼脂糖凝胶上电泳分离并回收长度约8.0Kb的线性DNA片段。For this purpose, at first the Escherichia coli carrying the plasmid pPIC19 was shaken and cultured at 37°C for 15 hours, and after cultivation, the cell sediment was collected by centrifugation (5000rpm, 5 minutes) and the plasmid DNA was prepared by alkaline lysis (see Example 1 for the preparation method of pPKS) . The plasmid DNA was then digested with EcoRI and XhoI (3 units each). A linear DNA fragment with a length of about 8.0Kb was separated and recovered by electrophoresis on 1% agarose gel.
将按上述方法(参见实施例1)制备的pBKS/HSA质粒DNA与2μl多用酶切缓冲液(Promega)及EcoRⅠ和XhoⅠ(各3单位)混合并于37℃保温1.5小时后,在1%琼脂糖凝胶上电泳分离并回收HSA基因片段。将大约2μg(10μl)所得HSA基因片段与用同样酶切的pPIC9酶切产物混合,于T4 DNA连接酶(3单位)存在下,在16℃水浴中保温17小时,完成连接反应。Mix the pBKS/HSA plasmid DNA prepared according to the above method (see Example 1) with 2 μl of multipurpose digestion buffer (Promega) and EcoRI and XhoI (3 units each) and incubate at 37° C. for 1.5 hours, and place on 1% agar The HSA gene fragment was separated and recovered by gel electrophoresis. Mix about 2 μg (10 μl) of the obtained HSA gene fragment with the pPIC9 digestion product digested with the same enzyme, and in the presence of T4 DNA ligase (3 units), incubate in a water bath at 16°C for 17 hours to complete the ligation reaction.
用所得到的连接混合物转化经过0.1M CaCl2处理的感受态大肠杆菌DH5α细胞。然后在含有氨苄青霉素的LB平板上选择有氨苄青霉素抗性(AmpR)的转化菌落,并从中提取质粒DNA。用BamHⅠ和ClaⅠ消化所得质粒DNA并以SDS-PAGE法初步鉴定后,再经DNA序列分析筛选出在正确位置上以正确方向插入了含有HSA基因的重组质pPIC9/HSA。实施例3:酵母宿主菌株的转化和阳性转化株的筛选The resulting ligation mixture was used to transform competent E. coli DH5α cells treated with 0.1 M CaCl 2 . Transformed colonies with ampicillin resistance (Amp R ) were then selected on LB plates containing ampicillin, and plasmid DNA was extracted therefrom. The resulting plasmid DNA was digested with BamHI and ClaI and initially identified by SDS-PAGE, and the recombinant plasmid pPIC9/HSA containing the HSA gene inserted in the correct position and in the correct direction was screened by DNA sequence analysis. Example 3: Transformation of yeast host strains and screening of positive transformants
本实施例描述用上述方法制备的重组表达载体pPIC9/HSA转化巴斯德毕赤酵母细胞,以得到稳定表达和分泌HSA的重组体细胞的方法。This example describes the method of transforming Pichia pastoris cells with the recombinant expression vector pPIC9/HSA prepared by the above method to obtain recombinant cells stably expressing and secreting HSA.
用碱裂解法从携带pPIC9/HSA质粒的大肠杆菌DH5α中分离得到重组质粒pPIC9/HSA。经苯酚/氯仿提取,并用无水乙醇沉淀后,得到经过纯化的可用于转化巴斯德毕赤酵母菌株的pPIC9/HSA的质粒DNA。用SalⅠ(5单位)于37℃水浴中消化10μg pPIC9/HSA,将其切成线性DNA。直接用此酶切反应混合物转化巴斯德毕赤酵母GS115(HIS-)菌株(NRRLY-15851)。SalⅠ切割的pPIC9/HSA可整合到毕赤酵母染色体中的组氨醇脱氢酶基因中,而不破坏AOX1基因。由于pPIC9/HSA携带有HIS基因,故可基于HIS+表型选择所得到的转化株。The recombinant plasmid pPIC9/HSA was isolated from Escherichia coli DH5α carrying the pPIC9/HSA plasmid by alkaline lysis. After extraction with phenol/chloroform and precipitation with absolute ethanol, the purified plasmid DNA of pPIC9/HSA that can be used to transform Pichia pastoris strain was obtained. 10 µg of pPIC9/HSA was digested with SalI (5 units) in a 37°C water bath to cut it into linear DNA. Directly use this digestion reaction mixture to transform Pichia pastoris GS115 (HIS - ) strain (NRRLY-15851). The pPIC9/HSA cut by SalI can be integrated into the histidinol dehydrogenase gene in the chromosome of Pichia pastoris without destroying the AOX1 gene. Since pPIC9/HSA carries the HIS gene, the resulting transformants can be selected based on the HIS + phenotype.
将巴斯德毕赤酵母GS115〔NRRL Y-15851〕接种于约10ml YPD培养基(1%酵母提取物,2%蛋白胨,2%葡萄糖)中,30℃振荡培养过夜。然后取1ml过夜培养物,于500ml新鲜YPD培养基中培养约12-14小时,至OD600=1.3-1.5离心(3000rpm,5分钟,4℃)收集细胞,并重新悬浮于用冰浴预冷的无菌水中。用无菌水将细胞再洗涤两次后,重新悬浮于1M山梨醇溶液中。Pichia pastoris GS115 [NRRL Y-15851] was inoculated in about 10 ml of YPD medium (1% yeast extract, 2% peptone, 2% glucose), and cultured overnight at 30°C with shaking. Then take 1ml of the overnight culture, culture it in 500ml of fresh YPD medium for about 12-14 hours, and centrifuge (3000rpm, 5 minutes, 4°C) to OD 600 =1.3-1.5 to collect the cells, and resuspend them in an ice bath pre-cooled of sterile water. After washing twice more with sterile water, the cells were resuspended in 1M sorbitol solution.
将10μg线性化的pPIC9/HSA质粒DNA加入80μl上述的GS115细胞悬液中,混匀后,转移到预冷却的电转移槽内,冰浴5分钟。使用电穿孔仪(Invitrogen),按仪器制造商推荐的条件(电场强度1500V/cm,)10毫秒以电穿孔法转化毕赤酵母细胞。施加电脉冲后,立即向电转移槽中加入1ml用冰浴预冷的1M山梨醇溶液,并将内容物转移到微量离心管中。取200ul细胞悬液铺敷于MD平板(1.34%YNB,4×10-5%生物素,0.5%甲醇)和MD(1.34%YNB,4×10-5%生物素,1%右旋糖)平板的相同位置上。同时在MD和MM平板上分别接种携带HSA基因的GS115-Albumin(HIS+Muts)半乳糖苷酶的GS115(GS115-β-gal)和携带(HIS+Mut+)菌株作为对照以筛选具有HIS+Mut+表型的带有pPIC9/HSA重组质粒的阳性转化株。为此将上述制备的平板于30C培养两天,其中具有HIS+Mut+表型的菌株在MM培养基和MD培养基上均能正常生长,所得菌株大小与对照菌株相似。具有HIS+Mut5表型的菌株能够在MD培养基上正常生长,但在MM培养基上生长很慢或几乎不能生长。Add 10 μg of linearized pPIC9/HSA plasmid DNA to 80 μl of the above-mentioned GS115 cell suspension, mix well, transfer to a pre-cooled electrotransfer tank, and place on ice for 5 minutes. Using an electroporation instrument (Invitrogen), Pichia pastoris cells were transformed by electroporation for 10 milliseconds according to the conditions recommended by the instrument manufacturer (electric field strength 1500 V/cm,). Immediately after applying the electric pulse, add 1 ml of 1 M sorbitol solution pre-cooled in an ice bath to the electrotransfer cell, and transfer the contents to a microcentrifuge tube. Take 200ul of cell suspension and spread on MD plates (1.34% YNB, 4×10 -5 % biotin, 0.5% methanol) and MD (1.34% YNB, 4×10 -5 % biotin, 1% dextrose) in the same position on the plate. At the same time, GS115 (GS115-β-gal) carrying HSA gene GS115-Albumin (HIS+Mut s ) galactosidase and carrying (HIS + Mut + ) strains were inoculated on MD and MM plates respectively as controls to screen for HIS + Mut + phenotype of positive transformants carrying the pPIC9/HSA recombinant plasmid. For this reason, the plates prepared above were cultured at 30C for two days, and the strains with HIS + Mut + phenotype could grow normally on both MM medium and MD medium, and the obtained strains were similar in size to the control strains. Strains with the HIS + Mut 5 phenotype can grow normally on MD medium, but grow very slowly or barely grow on MM medium.
将按上述方法筛选到的50个HIS+Mut+单克隆菌株分别接种3mlYPD液体培养基中,30℃振荡培养24小时,然后离心收集细胞。将细胞沉淀重新悬浮于120μl无菌水中,各加0.4g经无菌处理的玻璃珠,剧烈振荡3分钟破碎细胞。离心去除细胞沉淀后,按前述方法依次用苯酚/氯仿(1∶1,总体积100μl)和氯仿/异戊醇(24∶1,总体积100μl),提取染色体DNA。Inoculate 50 HIS + Mut + monoclonal strains screened by the above method into 3ml YPD liquid medium, shake culture at 30°C for 24 hours, and then collect the cells by centrifugation. Resuspend the cell pellet in 120 μl sterile water, add 0.4 g sterile glass beads each, shake vigorously for 3 minutes to break the cells. After centrifuging to remove the cell pellet, chromosomal DNA was extracted sequentially with phenol/chloroform (1:1,
可用PCR方法检测如上述制备的染色体DNA,以进一步筛选出携带有本发明合成的HSA基因的阳性转化株。为此,将1μg(5μl)上述被转化细胞的基因组DNA分别加入到由下列成分组成的PCR反应体系中:10XPCR反应缓冲液(5μl)、基因组DNA(1μg)约5ul;100mM dNTPs(1μl);5’AOX1引物(0.1μg/μl约5μl);3’AOX1引物(0.1μg/μl约5μl);补加无菌水至总体积为50μl。再加入0.25μl Taq DNA聚合酶(5U/μl),其中5’AOX1引物,3’AOX1引物均购自Invitrogen公司。The chromosomal DNA prepared as above can be detected by PCR method to further screen out the positive transformants carrying the synthesized HSA gene of the present invention. To this end, add 1 μg (5 μl) of the genomic DNA of the above-mentioned transformed cells into a PCR reaction system consisting of the following components: 10X PCR reaction buffer (5 μl), about 5 μl of genomic DNA (1 μg); 100 mM dNTPs (1 μl); 5'AOX1 primer (0.1 μg/μl about 5 μl); 3'AOX1 primer (0.1 μg/μl about 5 μl); add sterile water to a total volume of 50 μl. Then add 0.25 μl Taq DNA polymerase (5U/μl), wherein the 5'AOX1 primer and the 3'AOX1 primer were purchased from Invitrogen.
PCR反应条件是:94℃热变性2分钟,然后按下述条件进行25次循环:94℃变性(40秒),55℃复性(90秒),72℃延伸(1分钟),最后72℃延伸7分钟。PCR反应完成后,将PCR反应产物于1%琼脂糖凝胶电泳上电泳,观察是否有扩增的HSA基因片段,以进一步筛选出含有HSA基因的转化株。该细胞株已按照用于专利程序的国际公认微生物保藏布达佩斯条约的规定,携带重组质粒pPIC9/HSA的毕赤氏酵母GS115菌株将保藏于中国微生物菌种保藏管理委员会普通微生物保藏中心(CGMCC),其保藏登记号为CGMCC NO.0354。实施例4:HSA基因在GS115酵母中的表达及蛋白质产物的免疫印迹分析The PCR reaction conditions are: heat denaturation at 94°C for 2 minutes, and then perform 25 cycles according to the following conditions: denaturation at 94°C (40 seconds), annealing at 55°C (90 seconds), extension at 72°C (1 minute), and finally 72°C Extend for 7 minutes. After the PCR reaction is completed, the PCR reaction product is electrophoresed on 1% agarose gel electrophoresis to observe whether there is an amplified HSA gene fragment, so as to further screen out transformants containing the HSA gene. The cell strain has been in accordance with the provisions of the Budapest Treaty on the Deposit of Internationally Recognized Microorganisms for Patent Procedures. The Pichia GS115 strain carrying the recombinant plasmid pPIC9/HSA will be deposited in the General Microorganism Collection Center (CGMCC) of the China Committee for the Collection of Microorganisms. Its deposit registration number is CGMCC NO.0354. Example 4: Expression of HSA gene in GS115 yeast and Western blot analysis of protein product
本实施例描述本发明合成的HSA基因在巴斯德毕赤酵母GS115菌株中的表达和分泌,以及对培养物上清中的表达产物的免疫印迹分析。将按实施例3中所述方法鉴定的阳性菌株接种于BMG培养基(100mM磷酸钾,1.34%YNB,4×10-5%生物素,1%甘油)中,30℃振荡培养18小时。离心收集细胞后重新悬浮于BMM培养基(100mM磷酸钾,1.34%YNB,4×10-5%生物素,0.5%甲醇)中30℃继续振荡培养,分别于0、24、48、96、120、144小时取样,对所有样品进行SDS-PAGE分析。结果显示,除0小时外,其余各时间的样品均显现出分子量约66KD的条带,且在此时间内随表达时间延长条带由浅变深,表明表达量逐渐增加(图13)。This example describes the expression and secretion of the HSA gene synthesized by the present invention in Pichia pastoris GS115 strain, and the western blot analysis of the expression product in the culture supernatant. The positive strains identified by the method described in Example 3 were inoculated in BMG medium (100 mM potassium phosphate, 1.34% YNB, 4×10 −5 % biotin, 1% glycerol), and cultured with shaking at 30° C. for 18 hours. Cells were collected by centrifugation and resuspended in BMM medium (100 mM potassium phosphate, 1.34% YNB, 4× 10-5 % biotin, 0.5% methanol) at 30°C for shaking culture. 1. Samples were taken at 144 hours, and all samples were analyzed by SDS-PAGE. The results showed that, except for 0 hour, the samples at all other time periods showed a band with a molecular weight of about 66KD, and the band changed from light to dark with the extension of expression time during this time, indicating that the expression level gradually increased (Figure 13).
以Western免疫印迹法检测按上述力法制备并纯化的HSA蛋白质产物,并使用市售的重组HSA(上海生物制品所提供)作为阳性对照,用携带有pPIC9质粒的GS115细胞48小时发酵培养上清液作为阴性对照。The HSA protein product prepared and purified according to the above method was detected by Western immunoblotting, and commercially available recombinant HSA (provided by Shanghai Biological Products) was used as a positive control, and the culture supernatant of GS115 cells carrying the pPIC9 plasmid was fermented for 48 hours solution as a negative control.
对实验样品和对照样品进行十二烷基磺酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)分离,然后将凝胶上的蛋白质电转移到硝酸纤维滤膜上,将该硝酸纤维膜素膜用含5%脱脂奶粉的PBS溶液于室温下封闭2小时并用PBS洗涤3次后,将滤膜与羊抗HSA抗血清(华美公司)(1∶50稀释)37℃保温1.5小时。再次用PBS将滤膜洗涤3次并用脱脂奶粉封闭后,使滤膜与辣根过氧化物酶偶联的猴抗羊第二抗体(Cooper Biomedical Inc.)(1∶3000稀释)混合并于37℃下温育1.5小时。然后用50mM Tris-HCl,pH6.8溶液洗涤3次,最后加入底物溶液邻苯二胺(DNB)显色5-10分钟后,滤膜上出现棕色条带。从图14所示的结果可以看出,本发明合成的HSA基因能够在巴斯德毕赤宿主中表达并分泌与天然HSA具有相同免疫学特征的蛋白质。实施例5:HSA表达产物的纯化The experimental samples and control samples were separated by sodium dodecylsulfonate-polyacrylamide gel electrophoresis (SDS-PAGE), and then the protein on the gel was transferred to a nitrocellulose filter membrane by electrophoresis. The membrane was blocked with PBS solution containing 5% skimmed milk powder at room temperature for 2 hours and washed 3 times with PBS, then the filter membrane was incubated with goat anti-HSA antiserum (1:50 dilution) at 37°C for 1.5 hours. After the filter was washed 3 times with PBS and blocked with skimmed milk powder, the filter was mixed with horseradish peroxidase-coupled monkey anti-sheep secondary antibody (Cooper Biomedical Inc.) (1:3000 dilution) and incubated at 37 Incubate for 1.5 hours at °C. Then wash 3 times with 50mM Tris-HCl, pH6.8 solution, and finally add the substrate solution o-phenylenediamine (DNB) to develop color for 5-10 minutes, and brown bands appear on the filter membrane. It can be seen from the results shown in Figure 14 that the synthetic HSA gene of the present invention can express and secrete proteins with the same immunological characteristics as natural HSA in the Pichia pastoris host. Embodiment 5: Purification of HSA expression product
将pPIC9/HSA转化的GS115菌株在50ml含改良的BMGY培养基的培养瓶中30℃振荡培养约48小时,使细胞培养物的OD600值达到4.0。然后收集细胞并在无菌条件下接种到含700ml BMGY培养基的两升发酵罐内,于30℃下通气发酵。通过调节通气速度(5升/分钟)和搅拌速度(1500rpm)使罐内溶解氧保持在20%以上空气饱和度。在整个发酵过程中,定时加入市售的Struktol J673消泡剂以控制过多的气泡生成。当甘油逐渐消耗后,向罐内泵入含0.5%甲醇但不含甘油的BMMY培养基(700ml),30℃下继续进行补料分批培养。此培养阶段内发酵罐中的甲醇浓度始终保持在0.3%-0.7%。发酵后20小时开始收集培养物,以天然HSA标准品作为对照,经10%聚丙烯酰胺凝胶电泳并染色后检测光密度,估测发酵培养物HSA的浓度为4.5g/L。发酵完成后,离心(10,000rpm,15分钟)收集培养物上清液,于70℃加热处理20分钟,然后快速冷却到15℃,离心(15,000rpm,20分钟)去除包括微量蛋白酶在内的热变性杂质后使离心上清液通过孔径为0.45μ的微孔滤膜(Millipore)过滤。过滤后再用截留分子量为30,000的超滤膜(Millipore)将此上清液到浓缩至大约0.5L体积。然后用乙酸将溶液pH调节到4.5左右,通过预先用50mM醋酸钠缓冲液(pH4.5)平衡过的RBO2脱色树脂(5×25cm,柱床体积约500ml)进行脱色,向所得澄清透明洗出液内加入硫酸铵,使其终浓度为10%,然后经预先用50mM磷酸盐+10%(NH4)2SO4,PH6.8缓冲液平衡过的phenyl Sepharose柱吸附,用一倍柱床体积平衡的上述预平衡缓冲液洗涤柱,最后用洗脱缓冲液(200mM PB+30%异丙醇缓冲液,pH6.8)洗脱并收集280nM吸收峰的洗脱部分。进一步将该洗脱液经G-25凝胶层析柱脱盐后得到基本上适于临床应用的高纯度HSA产物。The pPIC9/HSA-transformed GS115 strain was cultured with shaking at 30°C for about 48 hours in a 50 ml culture flask containing modified BMGY medium, so that the OD 600 value of the cell culture reached 4.0. Then the cells were collected and inoculated into a two-liter fermenter containing 700 ml of BMGY medium under aseptic conditions, and fermented with aeration at 30°C. The dissolved oxygen in the tank was kept at an air saturation above 20% by adjusting the ventilation speed (5 liters/minute) and the stirring speed (1500 rpm). During the whole fermentation process, commercially available Struktol J673 antifoaming agent was regularly added to control excessive bubble generation. After the glycerol was gradually consumed, the BMMY medium (700 ml) containing 0.5% methanol but no glycerol was pumped into the tank, and the fed-batch culture was continued at 30°C. The methanol concentration in the fermenter was always kept at 0.3%-0.7% during this cultivation period. The culture was collected 20 hours after fermentation, and the natural HSA standard was used as a control, and the optical density was detected after 10% polyacrylamide gel electrophoresis and staining, and the concentration of HSA in the fermentation culture was estimated to be 4.5g/L. After the fermentation is completed, the culture supernatant is collected by centrifugation (10,000rpm, 15 minutes), heat-treated at 70°C for 20 minutes, then rapidly cooled to 15°C, and centrifuged (15,000rpm, 20 minutes) to remove heat including trace proteases. After denaturing the impurities, the centrifuged supernatant was filtered through a millipore filter membrane (Millipore) with a pore size of 0.45 μ. After filtration, the supernatant was concentrated to a volume of about 0.5 L using an ultrafiltration membrane (Millipore) with a molecular weight cut off of 30,000. Then use acetic acid to adjust the pH of the solution to about 4.5, decolorize it with RBO2 decolorizing resin (5×25 cm, column bed volume about 500 ml) equilibrated with 50 mM sodium acetate buffer (pH 4.5) in advance, and wash out to the obtained clarity Ammonium sulfate was added to the solution to make the
序列表(1)、一般信息(Ⅰ)申请人: 上海海济生物工程有限公司(Ⅱ)发明名称: 重组人血清白蛋白的生产方法(Ⅲ)序列数: 2(Ⅳ)通讯地址:Sequence Listing (1), General Information (I) Applicant: Shanghai Haiji Bioengineering Co., Ltd. (II) Invention Name: Production Method of Recombinant Human Serum Albumin (III) Sequence Number: 2 (IV) Correspondence Address:
(A)联系人:李绍极(A) Contact: Li Shaoji
(B)街道: 太原路192号(B) Street: No. 192 Taiyuan Road
(C)城市: 上海(C) City: Shanghai
(D)国家: 中华人民共和国(D) Country: People's Republic of China
(E)邮编: 200031(Ⅴ)计算机可读形式:(E) Zip code: 200031 (Ⅴ) Computer readable form:
(A)介体类型:3.5英寸软盘(A) Media type: 3.5-inch floppy disk
(B)计算机: AST PentiumⅢ+4/66d(B) Computer: AST PentiumⅢ+4/66d
(C)操作系统:Windows95(C) Operating system: Windows95
(D)软件: Word97(Ⅵ)电讯信息:(D) Software: Word97 (Ⅵ) Telecom information:
(A)电话: 86-21-64735898(A) Tel: 86-21-64735898
(B)电传: 86-21-64674742(2)SEQ ID NO: 1的信息(Ⅰ)序列特征:(B) Telex: 86-21-64674742 (2) Information of SEQ ID NO: 1 (I) Sequence characteristics:
(A)长度: 1758个碱基对(A) Length: 1758 base pairs
(B)类型: 核酸(B) type: nucleic acid
(C)链型: 双链(C) Chain type: double chain
(D)拓扑结构:线性(Ⅱ)分子类型: DNA(Ⅲ)序列描述: SEQ ID NO:11GATGCACACA AGAGTGAGGT GCTCATCGG TTTAAAGATT TGGGTGAGGA51AAATTTCAAA GCCTTAGTGT TAATTGCTTT TGCCCAATAT CTTCAGCAAT101GTCCATTTGA GGATCATGTA AAGTTGGTTA ACGAGGTCAC TGAGTTCGCT151AAAACTTGTG TTGCAGACGA ATCTGCTGAA AATTGTGATA AGTCTCTGCA201TACCCTATTT GGTGACAAAT TGTGCACAGT CGCTACCCTT CGAGAAACTT251ACGGTGAAAT GGCCGACTGC TGTGCAAAGC AAGAACCTGA GAGAAACGAA301TGCTTTTTGC AGCACAAAGA TGACAACCCT AATCTTCCAC GTTTAGTGAG351ACCTGAAGTT GATGTAATGT GTACAGCCTT CCATGATAAT GAAGAAACTT401TTTTGAAGAA GTACTTATAT GAAATTGCAA GAAGGCACCC ATACTTCTAT451GCCCCGGAGC TACTGTTCTT TGCTAAACGT TATAAAGCTG CATTCACAGA501ATGTTGCCAA GCTGCCGATA AGGCAGCTTG TCTGTTGCCA AAGCTAGACG551AATTAAGAGA TGAGGGTAAA GCTTCTTCTG CCAAACAAAG ATTGAAGTGC601GCTAGTCTAC AGAAATTTGG AGAAAGAGCT TTTAAGGCAT GGGCTGTAGC651GCGCCTGAGC CAGAGATTTC CCAAAGCCGA GTTTGCAGAA GTTTCCAAGT701TAGTGACGGA TTTGACCAAA GTCCATACGG AATGTTGCCA TGGAGATTTG751CTTGAATGTG CTGATGACAG GGCGGACTTG GCCAAGTATA TCTGTGAAAA801TCAAGATTCG ATCTCCAGTA AACTGAAGGA ATGTTGTGAA AAACCTCTTT851TGGAAAAATC CCACTGCATT GCCGAAGTGG AAAACGATGA GATGCCTGCT901GACTTGCCAT CATTAGCTGC TGATTTTGTT GAAAGTAAGG ATGTTTGCAA951AAACTACGCT GAGGCAAAGG ATGTCTTCTT GGGCATGTTT TTGTATGAAT1001ACGCAAGAAG GCATCCAGAT TACTCTGTCG TGCTGTTGCT GAGACTTGCC1051AAGACATATG AAACCACTCT AGAGAAGTGC TGTGCCGCTG CAGATCCTCA1101TGAATGTTAT GCCAAAGTTT TCGATGAATT TAAACCTCTT GTGGAAGAGC1151CACAAAATTT AATTAAACAA AATTGTGAGC TTTTTGAGCA ACTTGGTGAA1201TACAAATTCC AGAATGCGCT GTTAGTTCGT TACACCAAGA AAGTACCCCA1251AGTGTCAACT CCAACTTTGG TAGAGGTCTC AAGAAACCTA GGTAAAGTGG1301GTACCAAGTG TTGTAAACAT CCTGAAGCAA AAAGAATGCC ATGTGCAGAA1351GACTATCTAT CCGTTGTCCT GAACCAGTTA TGTGTGTTGC ATGAGAAAAC1401GCCAGTAAGT GACAGAGTCA CCAAGTGCTG CACAGAATCT TTGGTTAACA1451GGCGACCATG CTTTTCAGCT CTGGAAGTCG ATGAAACATA CGTTCCCAAA1501GAGTTTAATG CTGAAACTTT CACCTTCCAT GCAGATATAT GTACACTTTC1551TGAGAAGGAA AGACAAATCA AGAAACAAAC TGCACTAGTT GAGCTAGTGA1601AACACAAGCC GAAGGCGACT AAAGAACAAC TGAAAGCTGT TATGGATGAT1651TTCGCGGCTT TTGTAGAAAA GTGTTGTAAG GCTGACGATA AGGAAACTTG1701CTTTGCCGAG GAAGGTAAGA AACTAGTTGC TGCATCTCAA GCTGCCTTAG1751GTTTATAA(3)SEQ ID NO:2的信息(Ⅰ)序列特征:(D)拓扑结构:线性(Ⅱ)分子类型: DNA(Ⅲ)序列描述: SEQ ID NO:11GATGCACACA AGAGTGAGGT GCTCATCGG TTTAAAGATT TGGGTGAGGA51AAATTTCAAA GCCTTAGTGT TAATTGCTTT TGCCCAATAT CTTCAGCAAT101GTCCATTTGA GGATCATGTA AAGTTGGTTA ACGAGGTCAC TGAGTTCGCT151AAAACTTGTG TTGCAGACGA ATCTGCTGAA AATTGTGATA AGTCTCTGCA201TACCCTATTT GGTGACAAAT TGTGCACAGT CGCTACCCTT CGAGAAACTT251ACGGTGAAAT GGCCGACTGC TGTGCAAAGC AAGAACCTGA GAGAAACGAA301TGCTTTTTGC AGCACAAAGA TGACAACCCT AATCTTCCAC GTTTAGTGAG351ACCTGAAGTT GATGTAATGT GTACAGCCTT CCATGATAAT GAAGAAACTT401TTTTGAAGAA GTACTTATAT GAAATTGCAA GAAGGCACCC ATACTTCTAT451GCCCCGGAGC TACTGTTCTT TGCTAAACGT TATAAAGCTG CATTCACAGA501ATGTTGCCAA GCTGCCGATA AGGCAGCTTG TCTGTTGCCA AAGCTAGACG551AATTAAGAGA TGAGGGTAAA GCTTCTTCTG CCAAACAAAG ATTGAAGTGC601GCTAGTCTAC AGAAATTTGG AGAAAGAGCT TTTAAGGCAT GGGCTGTAGC651GCGCCTGAGC CAGAGATTTC CCAAAGCCGA GTTTGCAGAA GTTTCCAAGT701TAGTGACGGA TTTGACCAAA GTCCATACGG AATGTTGCCA TGGAGATTTG751CTTGAATGTG CTGATGACAG GGCGGACTTG GCCAAGTATA TCTGTGAAAA801TCAAGATTCG ATCTCCAGTA AACTGAAGGA ATGTTGTGAA AAACCTCTTT851TGGAAAAATC CCACTGCATT GCCGAAGTGG AAAACGATGA GATGCCTGCT901GACTTGCCAT CATTAGCTGC TGATTTTGTT GAAAGTAAGG ATGTTTGCAA951AAACTACGCT GAGGCAAAGG ATGTCTTCTT GGGCATGTTT TTGTATGAAT1001ACGCAAGAAG GCATCCAGAT TACTCTGTCG TGCTGTTGCT GAGACTTGCC1051AAGACATATG AAACCACTCT AGAGAAGTGC TGTGCCGCTG CAGATCCTCA1101TGAATGTTAT GCCAAAGTTT TCGATGAATT TAAACCTCTT GTGGAAGAGC1151CACAAAATTT AATTAAACAA AATTGTGAGC TTTTTGAGCA ACTTGGTGAA1201TACAAATTCC AGAATGCGCT GTTAGTTCGT TACACCAAGA AAGTACCCCA1251AGTGTCAACT CCAACTTTGG TAGAGGTCTC AAGAAACCTA GGTAAAGTGG1301GTACCAAGTG TTGTAAACAT CCTGAAGCAA AAAGAATGCC ATGTGCAGAA1351GACTATCTAT CCGTTGTCCT GAACCAGTTA TGTGTGTTGC ATGAGAAAAC1401GCCAGTAAGT GACAGAGTCA CCAAGTGCTG CACAGAATCT TTGGTTAACA1451GGCGACCATG CTTTTCAGCT CTGGAAGTCG ATGAAACATA CGTTCCCAAA1501GAGTTTAATG CTGAAACTTT CACCTTCCAT GCAGATATAT GTACACTTTC1551TGAGAAGGAA AGACAAATCA AGAAACAAAC TGCACTAGTT GAGCTAGTGA1601AACACAAGCC GAAGGCGACT AAAGAACAAC TGAAAGCTGT TATGGATGAT1651TTCGCGGCTT TTGTAGAAAA GTGTTGTAAG GCTGACGATA AGGAAACTTG1701CTTTGCCGAG GAAGGTAAGA AACTAGTTGC TGCATCTCAA GCTGCCTTAG1751GTTTATAA(3)SEQ ID NO:2的信息(Ⅰ)序列特征:
(A)长度: 585个氨基酸(A) Length: 585 amino acids
(B)类型: 氨基酸(B) type: amino acid
(C)链型: 单链(C) Chain type: single chain
(D)拓扑结构:线性(Ⅱ)分子类型: 蛋白质(Ⅲ)序列描述: SEQ ID NO:21Asp Ala His Lys Ser Glu Val Ala His Arg Phe Lys Asp Leu Gly Glu Glu18Ash Phe Lys Ala Leu Val Leu Ile Ala Phe Ala Gln Tyr Leu Gln Gln Cys35pro Phe Glu Asp His Val Lys Leu Val Asn Glu Val Tlu Glu Phe Ala Lys52Thr Cys Val Ala Asp Glu Ser Ala Glu Asn Cys Asp Lys Ser Leu His Thr69Leu Phe Gly Asp Lys Leu Cys Thr Val Ala Thr Leu Arg Glu Thr Tyr Gly86Glu Met Ala Asp Cys Cys Ala Lys Gln Glu Pro Glu Arg Asn Glu Cys Phe103Leu Gln His Lys Asp Asp Asn Pro Asn Leu Pro Arg Leu Val Arg Pro Glu120Val Asp Val Met Cys Tlr Ala Phe His Asp Asn Glu Glu Thr Phe Leu Lys137Lys Tyr Leu Tyr Glu Ile Ala Arg Arg His Pro Tyr Phe Tyr Ala Pro Glu154Leu Leu Phe Phe Ala Lys Arg Tyr Lys Ala Ala Phe Thr Glu Cys Cys Gln171Ala Ala Asp Lys Ala Ala Cys Leu Leu Pro Lys Leu Asp Glu Leu Arg Asp188Glu Gly Lys Ala Ser Ser Ala Lys Ghn Arg Leu Lys Cys Ala Ser Leu Gln205Lys Phe Gly Glu Arg Ala Phe Lys Ala Trp Ala Val Ala Arg Leu Ser Gln222Arg Phe Pro Lys Ala Glu Phe Ala Glu Val Ser Lys Leu Val Thu Asp Leu239Thu Lys Val His Thr Glu Cys Cys His Gly Asp Leu Leu Glu Cys Ala Asp256Asp Arg Ala Asp Lcu Ala Lys Tyr Ilc Cys Glu Asn Gln Asp Ser Ilc Ser273Ser Lys Leu Lys Glu Cys Cys Glu Lys Pro Leu Leu Glu Lys Ser His Cys290Ile Ala Glu Val Glu Asn Asp Glu Met Pro Ala Asp Leu Pro Ser Leu Ala307Ala Asp Phe Val Glu Ser Lys Asp Val Cys Lys Asn Tyr Ala Glu Ala Lys324Asp Val Phe Leu Gly Met Phe Leu Tyr Glu Tyr Ala Arg Arg His Pro Asp341Tyr Ser Val Val Leu Leu Leu Arg Leu Ala Lys Thr Tyr Glu Thr Thr Leu358Glu Lys Cys Cys Ala Ala Ala Asp Pro His Glu Cys Tyr Ala Lys Val Phe375Asp Glu Phe Lys Pro Leu Val Glu Glu Pro Gln Asn Leu Ile Lys Gln Asn392Cys Glu Leu Phe Glu Gln Leu Gly Glu tyr Lys Phe Gln Asn Ala Leu Leu409Val Arg Tyr Thn Lys Lys Val Pro Gln Val Ser Thr Pro Thr Leu Val Glu426Val Ser Arg Asn Leu Gly Lys Val Gly Ser Lys Cys Cys Lys His Pro Glu443Ala Lys Arg Met Pro Cys Ala Glu Asp Tyr Lcu Ser Val Val Lcu Asn Gln460Leu Cys Val Leu His Glu Lys Thr Pro Val Ser Asp Arg Val Thr Lys Cys477Cys Thr Glu Ser Leu Val Asn Arg Arg Pro Cys Phe Ser Ala Leu Glu Val494Asp Glu Thr Tyr Val Pro Lys Glu Phe Asn Ala Glu Thr Phe Thr Phe His511Ala Asp Ile Cys Thr Leu Ser Glu Lys Glu Arg Gln Ile Lys Lys Gln Thr528Ala Leu Val Glu Leu Val Lys His Lys Pro Lys Ala Thr Lys Ghu Gln Leu545Lys Ala Val Met Asp Asp Phc Ala Ala Phe Val Glu Lys cys Cys Lys Ala562Asp Asp Lys Glu Thr Cys Phe Ala Glu Glu Gly Lys Lys Leu Val Ala Ala579 585Ser Gln Ala Ala Leu Gly Leu(D) Topological structure: linear (Ⅱ) Molecular type: Protein (Ⅲ) Sequence description: SEQ ID NO:21Asp Ala His Lys Ser Glu Val Ala His Arg Phe Lys Asp Leu Gly Glu Glu Glu18Ash Phe Le u Phe le A la la I Val Ala Gln Tyr Leu Gln Gln Cys35pro Phe Glu Asp His Val Lys Leu Val Asn Glu Val Tlu Glu Phe Ala Lys52Thr Cys Val Ala Asp Glu Ser Ala Glu Asn Cys Asp Lys Ser Leu His Thr69Leu Phe Gly Asp Lys Leu Cys Thr Val Ala Thr Leu Arg Glu Thr Tyr Gly86Glu Met Ala Asp Cys Cys Ala Lys Gln Glu Pro Glu Arg Asn Glu Cys Phe103Leu Gln His Lys Asp Asp Asn Pro Asn Leu Pro Arg Leu Val Arg Pro Glu120Val Asp Val Met Cys Tlr Ala Phe His Asp Asn Glu Glu Thr Phe Leu Lys137Lys Tyr Leu Tyr Glu Ile Ala Arg Arg His Pro Tyr Phe Tyr Ala Pro Glu154Leu Leu Phe Phe Ala Lys Arg Tyr Lys Ala Ala Phe Thr Glu Cys Cys Gln171Ala Ala Asp Lys Ala Ala Cys Leu Leu Pro Lys Leu Asp Glu Leu Arg Asp188Glu Gly Lys Ala Ser Ser Ala Lys Ghn Arg Leu Lys Cys Ala Ser Leu Gln205Lys Phe Gly Glu Arg Ala Phe Lys Ala Trp Ala Val Ala Arg Leu Ser Gln222Arg Phe Pro Lys Ala Glu Phe Ala Glu Val Ser Lys Leu Val Thu Asp Leu239Thu Lys Val His Thr Glu Cys Cys His Gly Asp Leu Leu Glu Cys Ala Asp256Asp Arg Ala Asp Lcu Ala Lys Tyr Ilc Cys Glu Asn Gln Asp Ser Ilc Ser273Ser Lys Leu Lys Glu Cys Cys Glu Lys Pro Leu Leu Glu Lys Ser His Cys290Ile Ala Glu Val Glu Asn Asp Glu Met Pro Ala Asp Leu Pro Ser Leu Ala307Ala Asp Phe Val Glu Ser Lys Asp Val Cys Lys Asn Tyr Ala Glu Ala Lys324Asp Val Phe Leu Gly Met Phe Leu Tyr Glu Tyr Ala Arg Arg His Pro Asp341Tyr Ser Val Val Leu Leu Leu Arg Leu Ala Lys Thr Tyr Glu Thr Thr Leu358Glu Lys Cys Cys Ala Ala Ala Asp Pro His Glu Cys Tyr Ala Lys Val Phe375Asp Glu Phe Lys Pro Leu Val Glu Glu Pro Gln Asn Leu Ile Lys Gln Asn392Cys Glu Leu Phe Glu Gln Leu Gly Glu tyr Lys Phe Gln Asn Ala Leu Leu409Val Arg Tyr Thn Lys Lys Val Pro Gln Val Ser Thr Pro Thr Leu Val Glu426Val Ser Arg Asn Leu Gly Lys Val Gly Ser Lys Cys Cys Lys His Pro Glu443Ala Lys Arg Met Pro Cys Ala Glu Asp Tyr Lcu Ser Val Val Lcu Asn Gln460Leu Cys Val Leu His Glu Lys Thr Pro Val Ser Asp Arg Val Thr Lys Cys477Cys Thr Glu Ser Leu Val Asn Arg Arg Pro Cys Phe Ser Ala Leu Glu Val494Asp Glu Thr Tyr Val Pro Lys Glu Phe Asn Ala Glu Thr Phe Thr Phe His511Ala Asp Ile Cys Thr Leu Ser Glu Lys Glu Arg Gln Ile Lys Lys Gln Thr528Ala Leu Val Glu Leu Val Lys His Lys Pro Lys Ala Thr Lys Ghu Gln Leu545Lys Ala Val Met Asp Asp Phc Ala Ala Phe Val Glu Lys cys Cys Lys Ala562Asp Asp Lys Glu Thr Cys Phe Ala Glu Glu Gly Lys Lys Leu Val Ala Ala579 u u Le 585Ser Le Gln ly Ala Gla
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN98102506A CN1105727C (en) | 1998-06-17 | 1998-06-17 | Production method of recombinant human serum albumin |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN98102506A CN1105727C (en) | 1998-06-17 | 1998-06-17 | Production method of recombinant human serum albumin |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN1239103A true CN1239103A (en) | 1999-12-22 |
| CN1105727C CN1105727C (en) | 2003-04-16 |
Family
ID=5217382
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN98102506A Expired - Fee Related CN1105727C (en) | 1998-06-17 | 1998-06-17 | Production method of recombinant human serum albumin |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN1105727C (en) |
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6686179B2 (en) | 1992-01-31 | 2004-02-03 | Aventis Behring L.L.C. | Fusion polypeptides of human serum albumin and a therapeutically active polypeptide |
| US6905688B2 (en) | 2000-04-12 | 2005-06-14 | Human Genome Sciences, Inc. | Albumin fusion proteins |
| US6946134B1 (en) | 2000-04-12 | 2005-09-20 | Human Genome Sciences, Inc. | Albumin fusion proteins |
| US7045318B2 (en) | 1995-12-30 | 2006-05-16 | Delta Biotechnology Limited | Recombinant fusion proteins to growth hormone and serum albumin |
| US7141547B2 (en) | 2001-12-21 | 2006-11-28 | Human Genome Sciences, Inc. | Albumin fusion proteins comprising GLP-1 polypeptides |
| US7507413B2 (en) | 2001-04-12 | 2009-03-24 | Human Genome Sciences, Inc. | Albumin fusion proteins |
| US7521424B2 (en) | 2003-01-22 | 2009-04-21 | Human Genome Sciences, Inc. | Albumin fusion proteins |
| CN103397036A (en) * | 2013-03-27 | 2013-11-20 | 广州白云山拜迪生物医药有限公司 | Gene sequence for expressing recombinant human serum albumin by pichia yeast |
| CN112480240A (en) * | 2020-12-24 | 2021-03-12 | 河北医科大学第二医院 | Separation and purification method of recombinant human serum albumin |
| WO2024045153A1 (en) * | 2022-09-02 | 2024-03-07 | 通化安睿特生物制药股份有限公司 | Method for improving expression level of recombinant human albumin, and cell and protein |
| CN118389529A (en) * | 2024-07-01 | 2024-07-26 | 中国农业科学院北京畜牧兽医研究所 | A human serum albumin optimized gene suitable for expression in Pichia pastoris and a method for expressing it in Pichia pastoris |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| IL89992A0 (en) * | 1988-04-25 | 1989-12-15 | Phillips Petroleum Co | Expression of human serum albumin in methylotrophic yeasts |
| CA2058820C (en) * | 1991-04-25 | 2003-07-15 | Kotikanyad Sreekrishna | Expression cassettes and vectors for the secretion of human serum albumin in pichia pastoris cells |
| US5330901A (en) * | 1991-04-26 | 1994-07-19 | Research Corporation Technologies, Inc. | Expression of human serum albumin in Pichia pastoris |
-
1998
- 1998-06-17 CN CN98102506A patent/CN1105727C/en not_active Expired - Fee Related
Cited By (35)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7435410B2 (en) | 1992-01-31 | 2008-10-14 | Novozymes Biopharma Uk Limited | Methods of treatment with interferson and albumin fusion protein |
| US7094577B2 (en) | 1992-01-31 | 2006-08-22 | Aventis Behring L.L.C. | Insulin and albumin fusion protein |
| US6686179B2 (en) | 1992-01-31 | 2004-02-03 | Aventis Behring L.L.C. | Fusion polypeptides of human serum albumin and a therapeutically active polypeptide |
| US6972322B2 (en) | 1992-01-31 | 2005-12-06 | Aventis Behring L.L.C. | Interferon and albumin fusion protein |
| US6987006B2 (en) | 1992-01-31 | 2006-01-17 | Aventis Behring L.L.C. | Erythropoietin and albumin fusion protein, nucleic acids, and methods thereof |
| US6989365B2 (en) | 1992-01-31 | 2006-01-24 | Aventis Behring L.L.C. | Methods of treatment with erythropoietin and albumin fusion protein |
| US7410779B2 (en) | 1992-01-31 | 2008-08-12 | Novozymes Biopharma Uk Limited | Fusion polypeptides of human serum albumin and a therapeutically active polypeptide |
| US7041478B2 (en) | 1992-01-31 | 2006-05-09 | Aventis Behring L.L.C. | G-CSF and albumin fusion protein |
| US7056701B2 (en) | 1992-01-31 | 2006-06-06 | Aventis Behring L.L.C. | Hormone and albumin fusion protein |
| US7081354B2 (en) | 1992-01-31 | 2006-07-25 | Aventis Behring L.L.C. | Interleukin and albumin fusion protein |
| US7550432B2 (en) | 1995-12-30 | 2009-06-23 | Novozymes Biopharma Uk Limited | Recombinant fusion proteins to growth hormone and serum albumin |
| US7045318B2 (en) | 1995-12-30 | 2006-05-16 | Delta Biotechnology Limited | Recombinant fusion proteins to growth hormone and serum albumin |
| US7482013B2 (en) | 2000-04-12 | 2009-01-27 | Human Genome Sciences, Inc. | Albumin fusion proteins |
| US7507414B2 (en) | 2000-04-12 | 2009-03-24 | Human Genome Sciences, Inc. | Albumin fusion proteins |
| US6926898B2 (en) | 2000-04-12 | 2005-08-09 | Human Genome Sciences, Inc. | Albumin fusion proteins |
| US6994857B2 (en) | 2000-04-12 | 2006-02-07 | Human Genome Sciences, Inc. | Albumin fusion proteins |
| US6905688B2 (en) | 2000-04-12 | 2005-06-14 | Human Genome Sciences, Inc. | Albumin fusion proteins |
| US6946134B1 (en) | 2000-04-12 | 2005-09-20 | Human Genome Sciences, Inc. | Albumin fusion proteins |
| US7507413B2 (en) | 2001-04-12 | 2009-03-24 | Human Genome Sciences, Inc. | Albumin fusion proteins |
| US7847079B2 (en) | 2001-12-21 | 2010-12-07 | Human Genome Sciences, Inc. | Albumin fusion proteins |
| US8513189B2 (en) | 2001-12-21 | 2013-08-20 | Human Genome Sciences, Inc. | Albumin fusion proteins |
| US7238667B2 (en) | 2001-12-21 | 2007-07-03 | Human Genome Sciences, Inc. | Albumin fusion proteins |
| US7592010B2 (en) | 2001-12-21 | 2009-09-22 | Human Genome Sciences, Inc. | Albumin fusion proteins |
| US7141547B2 (en) | 2001-12-21 | 2006-11-28 | Human Genome Sciences, Inc. | Albumin fusion proteins comprising GLP-1 polypeptides |
| US8071539B2 (en) | 2001-12-21 | 2011-12-06 | Human Genome Sciences, Inc. | Albumin fusion proteins |
| US8252739B2 (en) | 2001-12-21 | 2012-08-28 | Human Genome Sciences, Inc. | Albumin fusion proteins |
| US9296809B2 (en) | 2001-12-21 | 2016-03-29 | Human Genome Sciences, Inc. | Albumin fusion proteins |
| US9221896B2 (en) | 2001-12-21 | 2015-12-29 | Human Genome Sciences, Inc. | Albumin fusion proteins |
| US8993517B2 (en) | 2001-12-21 | 2015-03-31 | Human Genome Sciences, Inc. | Albumin fusion proteins |
| US7521424B2 (en) | 2003-01-22 | 2009-04-21 | Human Genome Sciences, Inc. | Albumin fusion proteins |
| CN103397036A (en) * | 2013-03-27 | 2013-11-20 | 广州白云山拜迪生物医药有限公司 | Gene sequence for expressing recombinant human serum albumin by pichia yeast |
| CN112480240A (en) * | 2020-12-24 | 2021-03-12 | 河北医科大学第二医院 | Separation and purification method of recombinant human serum albumin |
| WO2024045153A1 (en) * | 2022-09-02 | 2024-03-07 | 通化安睿特生物制药股份有限公司 | Method for improving expression level of recombinant human albumin, and cell and protein |
| CN118389529A (en) * | 2024-07-01 | 2024-07-26 | 中国农业科学院北京畜牧兽医研究所 | A human serum albumin optimized gene suitable for expression in Pichia pastoris and a method for expressing it in Pichia pastoris |
| CN118389529B (en) * | 2024-07-01 | 2024-10-29 | 中国农业科学院北京畜牧兽医研究所 | Human serum albumin optimized gene suitable for expression in pichia pastoris and method for expression in pichia pastoris |
Also Published As
| Publication number | Publication date |
|---|---|
| CN1105727C (en) | 2003-04-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN1069346C (en) | Expression and secretion of hereologous proteins by yarrowia lipolytica transformants | |
| US9206454B2 (en) | Protein expression | |
| CN1152942A (en) | N-terminally extended proteins expressed in yeast | |
| CN86107554A (en) | Method for secreting heterologous protein by using Saccharomyces cerevisiae gene BAR1 | |
| WO1990010697A1 (en) | Production of epidermal growth factor in methylotrophic yeast cells | |
| EP0206783A2 (en) | Expression and secretion of polypeptides from saccharomyces cerevisiae | |
| CN1045992A (en) | Cloning and expression of transforming growth factor β2 | |
| CN103003438B (en) | Reduce Method and Process and the protein thereof of Protein Glycosylation Overview | |
| CN1105727C (en) | Production method of recombinant human serum albumin | |
| AU7604794A (en) | A secretion sequence for the production of a heterologous protein in yeast | |
| WO1992013951A1 (en) | Production of human serum albumin in methylotrophic yeast cells | |
| US4803164A (en) | Preparation of hepatitis b surface antigen in yeast | |
| US5310660A (en) | Method and a hybrid promoter for controlling exogenous gene transcription | |
| US4940661A (en) | Metallothionein transcription control sequences and use thereof | |
| CN1100877C (en) | Pencillin V. amidohydrrolase gene from fusarium oxysporum | |
| US8691530B2 (en) | Process for obtaining aspart insulin using a Pichia pastoris yeast strain | |
| CN107778365B (en) | Multi-point integrated recombinant protein expression method | |
| EP0952158A1 (en) | Modified methylotrophic p. pastoris yeast which secretes human groth hormone | |
| CN1040053A (en) | Expression of hepatitis B preS2 protein in methylotrophic yeast | |
| CN1914317A (en) | Transformed saccharomyces cerevisiae and method for mass-production of LK8 protein using the same | |
| WO1998044146A1 (en) | Process for producing foreign proteins | |
| KR102768742B1 (en) | Escherichia coli-based recombinant strains and their construction methods and applications | |
| US7270979B1 (en) | DNA for expression of alpha 1-antitrypsin in methylotropic yeast | |
| EP1436379B1 (en) | Dna fpr expression of alpha i-antitrypsin in methylotropic yeast | |
| EP0639643B1 (en) | Mutant AOX2 promoter |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C53 | Correction of patent of invention or patent application | ||
| CB02 | Change of applicant information |
Applicant after: Haiji Medicine Bioengineering Co., Ltd., Shanghai Applicant before: Haiji Bioengineering Co., Ltd., Shanghai |
|
| COR | Change of bibliographic data |
Free format text: CORRECT: APPLICANT; FROM: HAIJI BIOENGINEERING CO., LTD., SHANGHAI TO: SHANGHAI HIGENE BIOPHARM, CO., LTD. |
|
| C57 | Notification of unclear or unknown address | ||
| DD01 | Delivery of document by public notice |
Addressee: Haiji Medicine Bioengineering Co., Ltd., Shanghai Document name: Notice of first review |
|
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| ASS | Succession or assignment of patent right |
Owner name: LI HANCHAO Free format text: FORMER OWNER: SHANGHAI HIGENE BIOPHARM, CO., LTD. Effective date: 20030815 |
|
| C41 | Transfer of patent application or patent right or utility model | ||
| TR01 | Transfer of patent right |
Effective date of registration: 20030815 Address after: 528411, room 73, garden garden, 601 East Garden, Zhongshan, Guangdong Patentee after: Li Hanchao Address before: The 20 floor No. 288 Dingxin building 200031 Zhaojiabang road in Shanghai City Patentee before: Haiji Medicine Bioengineering Co., Ltd., Shanghai |
|
| C57 | Notification of unclear or unknown address | ||
| DD01 | Delivery of document by public notice |
Addressee: Xue Qi Document name: Notification that Application Deemed not to be Proposed |
|
| ASS | Succession or assignment of patent right |
Owner name: ZHONGSHAN HAIJI MEDICAL BIOLOGICAL ENGINEERING CO. Free format text: FORMER OWNER: LI HANCHAO Effective date: 20090904 |
|
| C41 | Transfer of patent application or patent right or utility model | ||
| TR01 | Transfer of patent right |
Effective date of registration: 20090904 Address after: Guangdong province Zhongshan Torch Development Zone National Health base biological Valley Road Patentee after: Zhongshan Haiji Medicine Biological Engineering Co Ltd Address before: Room 73, Garden Garden Village, 601 East Garden, Zhongshan, Guangdong Patentee before: Li Hanchao |
|
| EE01 | Entry into force of recordation of patent licensing contract |
Assignee: Zhongshan Haiji Medicine Biological Engineering Co Ltd Assignor: Li Hanchao Contract fulfillment period: 2008.12.8 to 2016.12.7 Contract record no.: 2009440001218 Denomination of invention: Process for preparing recombined human serum albumin Granted publication date: 20030416 License type: Exclusive license Record date: 20090820 |
|
| LIC | Patent licence contract for exploitation submitted for record |
Free format text: EXCLUSIVE LICENSE; TIME LIMIT OF IMPLEMENTING CONTACT: 2008.12.8 TO 2016.12.7; CHANGE OF CONTRACT Name of requester: ZHONGSHAN HAIJI MEDICAL BIOLOGICAL ENGINEERING CO. Effective date: 20090820 |
|
| C56 | Change in the name or address of the patentee |
Owner name: ZHONGSHAN HYGENE BIOPHARM CO., LTD. Free format text: FORMER NAME: ZHONGSHAN HYGENE MEDICINE BIOLOGICAL ENGINEERING CO., LTD. |
|
| CP03 | Change of name, title or address |
Address after: 528400 No. 16, biological Valley Road, Zhongshan Torch Development Zone, Guangdong, Zhongshan Patentee after: Zhongshan Hygene Biopharm Co., Ltd. Address before: 528437, Guangdong province Zhongshan Torch Development Zone, national health base, biological Valley Road Patentee before: Zhongshan Haiji Medicine Biological Engineering Co Ltd |
|
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20030416 Termination date: 20150617 |
|
| EXPY | Termination of patent right or utility model |