CN115717130B - Preparation method of aminoacyl-tRNA synthase mutant and alkenyl tyrosyl-tRNA - Google Patents
Preparation method of aminoacyl-tRNA synthase mutant and alkenyl tyrosyl-tRNA Download PDFInfo
- Publication number
- CN115717130B CN115717130B CN202211072207.0A CN202211072207A CN115717130B CN 115717130 B CN115717130 B CN 115717130B CN 202211072207 A CN202211072207 A CN 202211072207A CN 115717130 B CN115717130 B CN 115717130B
- Authority
- CN
- China
- Prior art keywords
- trna
- alkenyl
- tyrosine
- aminoacyl
- pnfrs
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Enzymes And Modification Thereof (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及酶催化领域,具体而言,涉及一种氨酰-tRNA合酶突变体及烯基酪氨酰-tRNA的制备方法。The present invention relates to the field of enzyme catalysis, and in particular to a method for preparing an aminoacyl-tRNA synthase mutant and an alkenyl tyrosyl-tRNA.
背景技术Background Art
烯丙基在有机合成中有着广泛的应用,可以参与复分解,Diels-Alder反应(双烯加成反应),1,3-偶极环加成反应(1,3-Dipolar Cycloaddition),已经被用于氨基酸衍生物交联反应和环肽合成。烯丙基-L-酪氨酸(O-allyl-L-tyrosine,OAY)作为一种重要的非天然氨基酸,引入蛋白或者多肽中,进一步通过化学反应和其他的官能团发生反应,从而可以实现蛋白标记、蛋白和其他分子偶联的目的。通过正交的tRNA,氨酰-tRNA合成酶(aaRS)和琥珀密码子(TAG)来实现非天然氨基酸的引入已被证实是一种高效可行的方案,然而由于引入的非天然氨基酸多是天然氨基酸的衍生物,导致特异性不强。Allyl groups are widely used in organic synthesis. They can participate in metathesis, Diels-Alder reaction (dienes addition reaction), 1,3-dipolar cycloaddition reaction (1,3-Dipolar Cycloaddition), and have been used in amino acid derivative cross-linking reaction and cyclopeptide synthesis. Allyl-L-tyrosine (O-allyl-L-tyrosine, OAY) is an important non-natural amino acid. It is introduced into proteins or peptides and further reacts with other functional groups through chemical reactions, so as to achieve the purpose of protein labeling and protein-to-molecule coupling. The introduction of non-natural amino acids through orthogonal tRNA, aminoacyl-tRNA synthetase (aaRS) and amber codon (TAG) has been proven to be an efficient and feasible solution. However, since the non-natural amino acids introduced are mostly derivatives of natural amino acids, the specificity is not strong.
发明内容Summary of the invention
本发明的主要目的在于提供一种氨酰-tRNA合酶突变体及烯基酪氨酰-tRNA的制备方法,以解决现有技术中蛋白质引入酪氨酸衍生物特异性差的问题。The main purpose of the present invention is to provide a method for preparing an aminoacyl-tRNA synthase mutant and an alkenyl tyrosyl-tRNA, so as to solve the problem of poor specificity of introducing tyrosine derivatives into proteins in the prior art.
为了实现上述目的,根据本发明的第一个方面,提供了一种氨酰-tRNA合酶突变体,包括:SEQ ID NO:1所示的pNFRS的氨基酸序列发生突变的蛋白,突变选自N160突变以及如下任意一种或多种突变:A31突变为A31S、A31G、A31C、A31T或A31L;L32突变为L32G、L32S、L32C、L32T、L32V、L32A或L32I;L65突变为L65V、L65T、L65C或L65I;A67突变为A67S;L69突变为L69S、L69V或L69I;S107突变为S107R、S107A或S107T;F108突变为F108S、F108H或F108W;Q109突变为Q109G、Q109S、Q109V或Q109N;L110突变为L110R、L110Y、L110K、L110I或L110V;P158突变为P158A、P158L、P158S、P158D或P158M;L159突变为L159T、L159Q、L159E、L159V、L159D、L159I或L159A;Y161突变为Y161M、Y161Q、Y161N、Y161S、Y161W或Y161F;E162突变为E162V、E162M、E162L、E162T、E162I或E162D;N160突变为N160S、N160G、N160E、N160F、N160D、N160A、N160I、N160M、N160H或N160V。In order to achieve the above object, according to the first aspect of the present invention, there is provided an aminoacyl-tRNA synthase mutant, comprising: SEQ ID A protein in which the amino acid sequence of pNFRS shown in NO: 1 is mutated, wherein the mutation is selected from the N160 mutation and any one or more of the following mutations: A31 is mutated to A31S, A31G, A31C, A31T or A31L; L32 is mutated to L32G, L32S, L32C, L32T, L32V, L32A or L32I; L65 is mutated to L65V, L65T, L65C or L65I; A67 is mutated to A67S; L69 is mutated to L69S, L69V or L69I; S107 is mutated to S107R, S107A or S107T; F108 is mutated to F108S, F108H or F108W; Q109 is mutated to Q109G, Q109S, Q109V or Q109N; L110 is mutated to L110R, L110Y, L110K, L110I or L110V; P158 mutated to P158A, P158L, P158S, P158D or P158M; L159 mutated to L159T, L159Q, L159E, L159V, L159D, L159I or L159A; Y161 mutated to Y161M, Y161Q , Y161N, Y161S, Y161W or Y161F; E162 mutates to E162V, E162M, E162L, E162T, E162I or E162D; N160 mutates to N160S, N160G, N160E, N160F, N160D, N160A, N160I, N160M, N160H or N160V.
进一步地,氨酰-tRNA合酶突变体选自以SEQ ID NO:1所示的pNFRS的氨基酸序列为基础发生如下任一种组合突变的突变体,Furthermore, the aminoacyl-tRNA synthase mutant is selected from a mutant having any of the following combined mutations based on the amino acid sequence of pNFRS shown in SEQ ID NO: 1,
1)A31S+L32G+P158A+L159T+N160S+Y161M+E162V;1)A31S+L32G+P158A+L159T+N160S+Y161M+E162V;
2)A31G+L32S+L65V+L69S+S107R+F108S+Q109G+L110R+P158L+L159Q+N160G+Y161Q+E162M;2)A31G+L32S+L65V+L69S+S107R+F108S+Q109G+L110R+P158L+L159Q+N160G+Y161Q+E162M;
3)A31G+L32C+P158S+L159E+N160E+Y161N+E162L;3)A31G+L32C+P158S+L159E+N160E+Y161N+E162L;
4)A31C+L32T+P158S+L159Q+N160F+Y161S+E162T;4)A31C+L32T+P158S+L159Q+N160F+Y161S+E162T;
5)A31G+L32V+L65T+A67S+S107A+F108H+Q109S+L110Y+P158D+L159V+N160D+Y161Q+E162I;5)A31G+L32V+L65T+A67S+S107A+F108H+Q109S+L110Y+P158D+L159V+N160D+Y161Q+E162I;
6)A31T+L32V+L65C+L69V+S107A+F108S+Q109V+L110K+P158M+L159T+N160G+Y161W+E162T;6)A31T+L32V+L65C+L69V+S107A+F108S+Q109V+L110K+P158M+L159T+N160G+Y161W+E162T;
7)L32S+L159D+N160A+Y161S+E162T;7)L32S+L159D+N160A+Y161S+E162T;
8)N160H+L32V+S107T+Q109N+L110I+L159I;8)N160H+L32V+S107T+Q109N+L110I+L159I;
9)N160H+L32A;9)N160H+L32A;
10)N160H+L32V;10)N160H+L32V;
11)N160H+L32I+L65V+A67S+S107T+F108W+L110R+P158A+L159D+E162D;11)N160H+L32I+L65V+A67S+S107T+F108W+L110R+P158A+L159D+E162D;
12)N160H+A31L+L32A+L65I+L69I+L110V+L159A+Y161F。12)N160H+A31L+L32A+L65I+L69I+L110V+L159A+Y161F.
为了实现上述目的,根据本发明的第二个方面,提供了一种DNA分子,该DNA分子编码上述氨酰-tRNA合酶突变体。In order to achieve the above object, according to the second aspect of the present invention, a DNA molecule is provided, which encodes the above aminoacyl-tRNA synthase mutant.
为了实现上述目的,根据本发明的第三个方面,提供了一种重组质粒,该重组质粒连接有上述DNA分子。In order to achieve the above object, according to the third aspect of the present invention, a recombinant plasmid is provided, wherein the recombinant plasmid is connected to the above DNA molecule.
为了实现上述目的,根据本发明的第四个方面,提供了一种宿主细胞,该宿主细胞内含有上述DNA分子、或上述重组质粒。In order to achieve the above object, according to the fourth aspect of the present invention, a host cell is provided, wherein the host cell contains the above DNA molecule or the above recombinant plasmid.
进一步地,宿主细胞包括原核细胞;优选地,原核细胞包括大肠杆菌。Further, the host cell includes a prokaryotic cell; preferably, the prokaryotic cell includes Escherichia coli.
为了实现上述目的,根据本发明的第五个方面,提供了一种烯基酪氨酰-tRNA的制备方法,该方法包括利用上述氨酰-tRNA合酶突变体,催化烯基酪氨酸和tRNA结合,制备获得烯基酪氨酰-tRNA,烯基酪氨酸为非天然氨基酸。In order to achieve the above object, according to the fifth aspect of the present invention, a method for preparing alkenyl tyrosyl-tRNA is provided, the method comprising using the above aminoacyl-tRNA synthase mutant to catalyze the binding of alkenyl tyrosine and tRNA to prepare alkenyl tyrosyl-tRNA, wherein alkenyl tyrosine is a non-natural amino acid.
进一步地,烯基酪氨酸包括烯丙基酪氨酸,进一步包括O-烯丙基-L-酪氨酸。Further, alkenyl tyrosine includes allyl tyrosine, and further includes O-allyl-L-tyrosine.
进一步地,O-烯丙基-L-酪氨酸的浓度为1~5mM。Furthermore, the concentration of O-allyl-L-tyrosine is 1 to 5 mM.
进一步地,利用上述宿主细胞中含有的氨酰-tRNA合酶突变体,催化烯基酪氨酸和tRNA结合;优选地,烯基酪氨酸溶于2~10M氢氧化钠形成烯基酪氨酸溶液,烯基酪氨酸溶液的pH为9-11。Furthermore, the aminoacyl-tRNA synthase mutant contained in the above host cell is used to catalyze the binding of alkenyl tyrosine and tRNA; preferably, alkenyl tyrosine is dissolved in 2-10M sodium hydroxide to form an alkenyl tyrosine solution, and the pH of the alkenyl tyrosine solution is 9-11.
应用本发明的技术方案,利用上述氨酰-tRNA合酶突变体,能够特异性高的识别酪氨酸衍生物,催化酪氨酸衍生物与相应的tRNA结合,形成烯基酪氨酰-tRNA。By applying the technical solution of the present invention and utilizing the aminoacyl-tRNA synthase mutant, tyrosine derivatives can be recognized with high specificity, and catalyze the binding of tyrosine derivatives with corresponding tRNA to form alkenyl tyrosyl-tRNA.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:The drawings constituting a part of the present application are used to provide a further understanding of the present invention. The exemplary embodiments of the present invention and their descriptions are used to explain the present invention and do not constitute an improper limitation of the present invention. In the drawings:
图1示出了根据本发明实施例8的不同氨酰-tRNA合酶突变体对应的单位菌浓荧光值的统计图。FIG. 1 shows a statistical graph of fluorescence values per unit bacterial concentration corresponding to different aminoacyl-tRNA synthase mutants according to Example 8 of the present invention.
具体实施方式DETAILED DESCRIPTION
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将结合实施例来详细说明本发明。It should be noted that, in the absence of conflict, the embodiments and features in the embodiments of the present application can be combined with each other. The present invention will be described in detail below in conjunction with the embodiments.
术语解释:Terminology explanation:
非天然氨基酸:非天然氨基酸,指不由现有的64种遗传密码子编码的氨基酸,即不同于现有的20种天然氨基酸的氨基酸。Unnatural amino acids: Unnatural amino acids refer to amino acids that are not encoded by the existing 64 genetic codons, that is, amino acids that are different from the existing 20 natural amino acids.
非天然氨基酸引入的正交性:外源引入的氨酰-tRNA合酶(aaRS)仅识别外源引入的tRNA,将非天然氨基酸和tRNA连接形成某氨酰-tRNA,而不能与宿主细胞内源性的氨酰-tRNA合酶,内源性tRNA及天然氨基酸发生交叉反应。某氨酰-tRNA,即为某种氨基酸与tRNA连接形成的产物,如酪氨酸与tRNA连接形成酪氨酰-tRNA。Orthogonality of the introduction of non-natural amino acids: Exogenously introduced aminoacyl-tRNA synthase (aaRS) only recognizes exogenously introduced tRNA, connects non-natural amino acids and tRNA to form a certain aminoacyl-tRNA, and cannot cross-react with endogenous aminoacyl-tRNA synthase, endogenous tRNA and natural amino acids in the host cell. A certain aminoacyl-tRNA is the product formed by the connection of a certain amino acid and tRNA, such as tyrosine and tRNA to form tyrosyl-tRNA.
如背景技术所提到的,现有技术中利用的氨酰-tRNA合成酶,能够催化氨基酸衍生物与相应的tRNA结合,生成某氨酰-tRNA。但对于非天然氨基酸的结合特异性不强,在具体应用过程中容易导致引入天然氨基酸,从而导致产物不纯。As mentioned in the background art, the aminoacyl-tRNA synthetase used in the prior art can catalyze the binding of amino acid derivatives with corresponding tRNA to generate a certain aminoacyl-tRNA. However, the binding specificity for non-natural amino acids is not strong, which can easily lead to the introduction of natural amino acids in specific applications, resulting in impure products.
因而,在本申请中,针对O-allyl-L-tyrosine(OAY)等酪氨酸衍生物的引入同样存在的此类问题,发明人一方面针对来源于Methanocaldococcus jannaschii的酪氨酰-tRNA合酶突变体pNFRS构建14个位点的饱和突变库,经过多轮筛选获得高特异性的氨酰-tRNA合酶突变体;另一方面发明人尝试采用具有更低天然氨基酸引入的pNFRS-160H作为出发模板,通过基于红色荧光蛋白和抗生素抗性基因的正反筛选系统,经过多轮筛选获得了更高特异性的氨酰-tRNA合酶突变体。因而提出了本申请的一系列保护方案。Therefore, in this application, for the same problems that exist in the introduction of tyrosine derivatives such as O-allyl-L-tyrosine (OAY), the inventors, on the one hand, constructed a saturated mutation library of 14 sites for the tyrosyl-tRNA synthase mutant pNFRS from Methanocaldococcus jannaschii, and obtained highly specific aminoacyl-tRNA synthase mutants after multiple rounds of screening; on the other hand, the inventors tried to use pNFRS-160H with lower natural amino acid introduction as a starting template, and obtained aminoacyl-tRNA synthase mutants with higher specificity after multiple rounds of screening through a positive and negative screening system based on red fluorescent protein and antibiotic resistance genes. Therefore, a series of protection schemes for this application are proposed.
在本申请第一种典型的实施方式中,提供了一种氨酰-tRNA合酶突变体,包括:SEQID NO:1所示的pNFRS的氨基酸序列发生突变的蛋白,突变选自N160突变以及如下任意一种或多种突变:A31突变为A31S、A31G、A31C、A31T或A31L;L32突变为L32G、L32S、L32C、L32T、L32V、L32A或L32I;L65突变为L65V、L65T、L65C或L65I;A67突变为A67S;L69突变为L69S、L69V或L69I;S107突变为S107R、S107A或S107T;F108突变为F108S、F108H或F108W;Q109突变为Q109G、Q109S、Q109V或Q109N;L110突变为L110R、L110Y、L110K、L110I或L110V;P158突变为P158A、P158L、P158T、P158S、P158D或P158M;L159突变为L159T、L159Q、L159C、L159E、L159V、L159D、L159I或L159A;Y161突变为Y161M、Y161Q、Y161T、Y161N、Y161S、Y161W或Y161F;E162突变为E162V、E162M、E162A、E162L、E162T、E162I或E162D;其中,上述N160突变为N160S、N160G、N160L、N160E、N160F、N160D、N160A、N160I、N160M、N160H或N160V。In a first typical embodiment of the present application, an aminoacyl-tRNA synthase mutant is provided, comprising: a protein in which the amino acid sequence of pNFRS shown in SEQ ID NO: 1 is mutated, wherein the mutation is selected from N160 mutation and any one or more of the following mutations: A31 is mutated to A31S, A31G, A31C, A31T or A31L; L32 is mutated to L32G, L32S, L32C, L32T, L32V, L32A or L32I; L65 is mutated to L65V, L65T, L65C or L65I; A67 mutated to A67S; L69 mutated to L69S, L69V or L69I; S107 mutated to S107R, S107A or S107T; F108 mutated to F108S, F108H or F108W; Q109 mutated to Q109G, Q109S, Q109V or Q109N; L110 mutated to L110R, L110Y, L110K, L110I or L110V; P158 mutated to P158A, P158L, P158T, P158S, P158D or P158M; L159 mutated to L159T, L159Q, L159C, L159E, L159V, L159D, L159I or L159A; Y161 mutated to Y161M, Y161Q, Y161T, Y161N, Y161 61S, Y161W or Y161F; E162 mutates to E162V, E162M, E162A, E162L, E162T, E162I or E162D; wherein the above-mentioned N160 mutates to N160S, N160G, N160L, N160E, N160F, N160D, N160A, N160I, N160M, N160H or N160V.
发明人比较了pNFRS基础上突变N160为H160,或将S207突变为A207,经过测试发现N160突变为H160有着更低的天然氨基酸引入,基于结构分析发现N160可以与Tyr(酪氨酸)的羟基形成氢键,当N160突变为H等上述氨基酸后氢键被破坏,从而导致该氨酰-tRNA合酶不能和Tyr形成氢键,因此推测以pNFRS-160H作为出发模板对酪氨酸对位羟基以内的除去160位的其他13个氨基酸构建多位点饱和突变库可能获得更特异的氨酰-tRNA合酶突变体,结果经过高通量筛选确实获得了更高效、特异的非天然氨基酸引入的氨酰-tRNA合酶突变体。The inventors compared the mutation of N160 to H160 or S207 to A207 based on pNFRS. After testing, it was found that the mutation of N160 to H160 had a lower introduction of natural amino acids. Based on structural analysis, it was found that N160 could form a hydrogen bond with the hydroxyl group of Tyr (tyrosine). When N160 mutated to H or other amino acids, the hydrogen bond was destroyed, resulting in the inability of the aminoacyl-tRNA synthase to form a hydrogen bond with Tyr. Therefore, it is speculated that pNFRS-160H is used as a starting template for the para-hydroxyl group of tyrosine. Removing the other 13 amino acids at position 160 to construct a multi-site saturation mutation library may result in more specific aminoacyl-tRNA synthase mutants. As a result, more efficient and specific aminoacyl-tRNA synthase mutants with the introduction of non-natural amino acids were indeed obtained through high-throughput screening.
在一种优选的实施例中,氨酰-tRNA合酶突变体选自以SEQ ID NO:1所示的pNFRS的氨基酸序列为基础发生如下任一种组合突变的突变体:In a preferred embodiment, the aminoacyl-tRNA synthase mutant is selected from a mutant having any of the following combined mutations based on the amino acid sequence of pNFRS shown in SEQ ID NO: 1:
1)OAYRS-1#:A31S+L32G+P158A+L159T+N160S+Y161M+E162V;1) OAYRS-1#: A31S+L32G+P158A+L159T+N160S+Y161M+E162V;
2)OAYRS-3#:A31G+L32S+L65V+L69S+S107R+F108S+Q109G+L110R+P158L+L159Q+N160G+Y161Q+E162M;2) OAYRS-3#: A31G+L32S+L65V+L69S+S107R+F108S+Q109G+L110R+P158L+L159Q+N160G+Y161Q+E162M;
3)OAYRS-8#:A31G+L32C+P158S+L159E+N160E+Y161N+E162L;3) OAYRS-8#: A31G+L32C+P158S+L159E+N160E+Y161N+E162L;
4)OAYRS-10#:A31C+L32T+P158S+L159Q+N160F+Y161S+E162T;4) OAYRS-10#: A31C+L32T+P158S+L159Q+N160F+Y161S+E162T;
5)OAYRS-12#:A31G+L32V+L65T+A67S+S107A+F108H+Q109S+L110Y+P158D+L159V+N160D+Y161Q+E162I;5) OAYRS-12#: A31G+L32V+L65T+A67S+S107A+F108H+Q109S+L110Y+P158D+L159V+N160D+Y161Q+E162I;
6)OAYRS-14#:A31T+L32V+L65C+L69V+S107A+F108S+Q109V+L110K+P158M+L159T+N160G+Y161W+E162T;6) OAYRS-14#: A31T+L32V+L65C+L69V+S107A+F108S+Q109V+L110K+P158M+L159T+N160G+Y161W+E162T;
7)OAYRS-18#:L32S+L159D+N160A+Y161S+E162T;7) OAYRS-18#: L32S+L159D+N160A+Y161S+E162T;
8)OAYRS-6#:N160H+L32V+S107T+Q109N+L110I+L159I;8) OAYRS-6#: N160H+L32V+S107T+Q109N+L110I+L159I;
9)OAYRS-13#:N160H+L32A;9)OAYRS-13#:N160H+L32A;
10)OAYRS-25#:N160H+L32V;10) OAYRS-25#: N160H+L32V;
11)OAYRS-30#:N160H+L32I+L65V+A67S+S107T+F108W+L110R+P158A+L159D+E162D;11) OAYRS-30#: N160H+L32I+L65V+A67S+S107T+F108W+L110R+P158A+L159D+E162D;
12)OAYRS-35#:N160H+A31L+L32A+L65I+L69I+L110V+L159A+Y161F。12) OAYRS-35#: N160H+A31L+L32A+L65I+L69I+L110V+L159A+Y161F.
上述氨酰-tRNA合酶突变体,均为以pNFRS的氨基酸序列为基础进行突变获得的突变体,相较于原始蛋白和现有蛋白,上述氨酰-tRNA合酶突变体对于酪氨酸衍生物的引入特异性较高。The above aminoacyl-tRNA synthase mutants are all mutants obtained by mutation based on the amino acid sequence of pNFRS. Compared with the original protein and the existing protein, the above aminoacyl-tRNA synthase mutants have higher specificity for the introduction of tyrosine derivatives.
上述突变的位点与酪氨酸对位羟基的距离均在之内,因此上述位点与酪氨酸对位羟基的结合能较大,对于酪氨酸的特异性结合影响较大。相较于底物酪氨酸,作为非天然氨基酸酪氨酸的衍生物(如烯丙基酪氨酸),能够在酪氨酸对位羟基的位置发生取代反应,形成醚键代替羟基。因此对于此对位羟基附近的氨基酸进行探究,能够影响该蛋白对于底物的结合特异性。The distance between the above mutation sites and the para-hydroxyl group of tyrosine is Therefore, the binding energy of the above site with the para-hydroxyl group of tyrosine is relatively large, which has a greater impact on the specific binding of tyrosine. Compared with the substrate tyrosine, derivatives of non-natural amino acid tyrosine (such as allyl tyrosine) can undergo substitution reactions at the position of the para-hydroxyl group of tyrosine, forming an ether bond instead of the hydroxyl group. Therefore, exploring the amino acids near this para-hydroxyl group can affect the binding specificity of the protein to the substrate.
但由于之内的位点过多,对于多位点突变的蛋白结构和活性,难以通过如计算机推测的方法进行模拟,且模拟获得的结果在实际应用中也存在较大的偏差。因此必须通过实际试验的大量筛选,才能够获得具体何种突变位点的组合能够得到活性较好的氨酰-tRNA合酶突变体。But because There are too many sites within the protein structure and activity of multiple site mutations, and it is difficult to simulate them by computer speculation, and the results obtained by simulation also have large deviations in practical applications. Therefore, it is necessary to conduct a large number of screenings through actual experiments to obtain the specific combination of mutation sites that can produce aminoacyl-tRNA synthase mutants with better activity.
在本申请第二种典型的实施方式中,提供了一种DNA分子,该DNA分子编码上述氨酰-tRNA合酶突变体。In a second typical embodiment of the present application, a DNA molecule is provided, which encodes the above-mentioned aminoacyl-tRNA synthase mutant.
在本申请第三种典型的实施方式中,提供了一种重组质粒,该重组质粒连接有上述DNA分子。In a third typical embodiment of the present application, a recombinant plasmid is provided, wherein the recombinant plasmid is connected to the above-mentioned DNA molecule.
上述DNA能够编码上述氨酰-tRNA合酶突变体,并能够连接在重组质粒上形成环状DNA。上述DNA和重组质粒均能在RNA聚合酶、核糖体、tRNA等的作用下,进行转录、翻译,获得上述氨酰-tRNA合酶突变体。针对DNA分子或重组质粒的不同的宿主种类,可以利用现有技术灵活对核苷酸序列进行密码子优化,从而获得转录、翻译效率更高的核苷酸序列。The above DNA can encode the above aminoacyl-tRNA synthase mutant, and can be connected to a recombinant plasmid to form a circular DNA. The above DNA and recombinant plasmid can be transcribed and translated under the action of RNA polymerase, ribosome, tRNA, etc. to obtain the above aminoacyl-tRNA synthase mutant. For different host species of DNA molecules or recombinant plasmids, the nucleotide sequence can be flexibly codon-optimized using existing technology to obtain a nucleotide sequence with higher transcription and translation efficiency.
在本申请第四种典型的实施方式中,提供了一种宿主细胞,该宿主细胞内含有上述DNA分子或重组质粒。In a fourth typical embodiment of the present application, a host cell is provided, wherein the host cell contains the above-mentioned DNA molecule or recombinant plasmid.
在一种优选的实施例中,宿主细胞包括原核细胞;优选地,原核细胞包括大肠杆菌。In a preferred embodiment, the host cell comprises a prokaryotic cell; preferably, the prokaryotic cell comprises Escherichia coli.
利用上述宿主细胞,能够在宿主细胞中进行重组质粒的复制,也能够将重组质粒上携带的DNA分子进行转录、翻译,获得大量氨酰-tRNA合酶突变体。在上述宿主细胞中通过引入外源tRNA的表达质粒,使得宿主细胞能够合成氨酰-tRNA对应的外源tRNA,以及表达氨酰-tRNA合酶突变体,在外界额外添加酪氨酸衍生物作为底物,即能够在生物体中进行针对于酪氨酸衍生物和tRNA的催化,获得相应某氨酰-tRNA。由于氨酰-tRNA合酶突变体的结合特异性,虽然宿主细胞中能够自身合成酪氨酸等天然氨基酸,但能够与tRNA结合的酪氨酸较少,即最终生成的主要为非天然氨基酸与tRNA组合产生的某氨酰-tRNA,此氨酰-tRNA上携带的即为目标非天然氨基酸。Utilize the above-mentioned host cell, can carry out the replication of recombinant plasmid in host cell, can also carry out transcription, translation of DNA molecule carried on recombinant plasmid, obtain a large amount of aminoacyl-tRNA synthase mutant.In the above-mentioned host cell, by introducing the expression plasmid of exogenous tRNA, host cell can synthesize exogenous tRNA corresponding to aminoacyl-tRNA, and express aminoacyl-tRNA synthase mutant, extra tyrosine derivative is added as substrate in the outside, namely can carry out catalysis for tyrosine derivative and tRNA in organism, obtain corresponding aminoacyl-tRNA.Due to the binding specificity of aminoacyl-tRNA synthase mutant, although natural amino acids such as tyrosine can be synthesized by itself in host cell, the tyrosine that can be combined with tRNA is less, namely the final generation is mainly a certain aminoacyl-tRNA produced by the combination of non-natural amino acid and tRNA, and the target non-natural amino acid is carried on this aminoacyl-tRNA.
在本申请第五种典型的实施方式中,提供了一种烯基酪氨酰-tRNA的制备方法,利用上述氨酰-tRNA合酶突变体,催化烯基酪氨酸和tRNA结合,制备获得烯基酪氨酰-tRNA。In a fifth typical embodiment of the present application, a method for preparing alkenyl tyrosyl-tRNA is provided, using the above-mentioned aminoacyl-tRNA synthase mutant to catalyze the binding of alkenyl tyrosine and tRNA to prepare alkenyl tyrosyl-tRNA.
在一种优选的实施例中,烯基酪氨酸包括O-烯丙基-L-酪氨酸。In a preferred embodiment, the alkenyl tyrosine comprises O-allyl-L-tyrosine.
在一种优选的实施例中,O-烯丙基-L-酪氨酸的浓度为1~5mM;优选地,利用上述宿主细胞含有的氨酰-tRNA合酶突变体,催化烯基酪氨酸和tRNA结合,该结合具有非天然氨基酸引入的正交性;优选地,烯基酪氨酸溶于2-10M氢氧化钠形成烯基酪氨酸溶液,烯基酪氨酸溶液的pH为9-11;更优选地氢氧化钠浓度为10M,烯基酪氨酸溶液的pH为10。In a preferred embodiment, the concentration of O-allyl-L-tyrosine is 1-5 mM; preferably, the aminoacyl-tRNA synthase mutant contained in the above host cell is used to catalyze the binding of alkenyl tyrosine and tRNA, and the binding has the orthogonality of the introduction of non-natural amino acids; preferably, alkenyl tyrosine is dissolved in 2-10 M sodium hydroxide to form an alkenyl tyrosine solution, and the pH of the alkenyl tyrosine solution is 9-11; more preferably, the concentration of sodium hydroxide is 10 M, and the pH of the alkenyl tyrosine solution is 10.
利用上述制备方法,利用氨酰-tRNA合酶突变体催化O-烯丙基-L-酪氨酸等烯基酪氨酸与相应的tRNA结合,从而制备获得烯基酪氨酰-tRNA。tRNA与相应要引入的氨基酸理论上是一一对应的关系。为了达到引入特定氨基酸的目的,需要保证采用的氨酰-tRNA合酶突变体、特定氨基酸(即非天然氨基酸)和对应tRNA,不能与宿主细胞(如大肠杆菌)来源的合酶、天然氨基酸及tRNA发生交叉反应。因此该方法一方面可以用于在体内进行非天然氨基酸的定点引入,此外该制备方法可以灵活选用酶催化、固定化、生物转化等方式进行烯基酪氨酰-tRNA的体外制备,从而用于采用无细胞合成的方式进行含非天然氨基酸蛋白的高效合成。Utilize the above-mentioned preparation method, utilize aminoacyl-tRNA synthase mutant to catalyze O-allyl-L-tyrosine and other alkenyl tyrosines to combine with corresponding tRNA, thus prepare alkenyl tyrosyl-tRNA.tRNA and the corresponding amino acid to be introduced are theoretically one-to-one corresponding relationship.In order to achieve the purpose of introducing specific amino acids, it is necessary to ensure that the aminoacyl-tRNA synthase mutant, specific amino acids (i.e. non-natural amino acids) and corresponding tRNA adopted can not cross-react with the synthase, natural amino acids and tRNA in host cell (such as Escherichia coli) source.Therefore, the method can be used for the fixed-point introduction of non-natural amino acids in vivo on the one hand, and the preparation method can flexibly select enzyme catalysis, immobilization, biotransformation and other modes to carry out the in vitro preparation of alkenyl tyrosyl-tRNA in addition, so as to be used for adopting the mode of cell-free synthesis to carry out the efficient synthesis of non-natural amino acid protein.
基于宿主细胞能够自身产生tRNA原料,携带有上述DNA分子、外源正交tRNA,及重组质粒的宿主细胞,能够表达外源的氨酰-tRNA合酶突变体和外源正交tRNA,从而发挥催化作用,获得烯基酪氨酰-tRNA产物。该催化反应为生物正交反应,宿主细胞中产生的化合物包括天然氨基酸,均不参与该催化反应;该催化反应所需的烯基酪氨酸、外源正交酪氨酸tRNA以及烯基酪氨酰-tRNA产物,也不影响宿主细胞的自身生化反应和生命活动。Based on the host cell's ability to produce tRNA raw materials by itself, the host cell carrying the above-mentioned DNA molecule, exogenous orthogonal tRNA, and recombinant plasmid can express exogenous aminoacyl-tRNA synthase mutants and exogenous orthogonal tRNA, thereby exerting a catalytic effect to obtain alkenyl tyrosyl-tRNA products. The catalytic reaction is a bioorthogonal reaction, and the compounds produced in the host cell, including natural amino acids, do not participate in the catalytic reaction; the alkenyl tyrosine, exogenous orthogonal tyrosine tRNA, and alkenyl tyrosyl-tRNA products required for the catalytic reaction do not affect the host cell's own biochemical reactions and life activities.
下面将结合具体的实施例来进一步详细解释本申请的有益效果。The beneficial effects of the present application will be further explained in detail below in conjunction with specific embodiments.
实施例1构建基于红色荧光蛋白和氯霉素抗性的筛选方案Example 1 Construction of a screening scheme based on red fluorescent protein and chloramphenicol resistance
构建基于红色荧光蛋白和氯霉素抗性的筛选方案,具体是采用红色荧光蛋白mcherry的编码基因替代文献筛选质粒中的绿色荧光蛋白基因GFPuv。由金唯智进行全基因合成经过密码子优化的mcherry序列,在序列5’端引入NcoI酶切位点,在序列3’端引入XhoI酶切位点,构建于pET-28a载体,序列如SEQ ID NO:3所示。A screening scheme based on red fluorescent protein and chloramphenicol resistance was constructed, specifically using the coding gene of red fluorescent protein mcherry to replace the green fluorescent protein gene GFPuv in the screening plasmid in the literature. The mcherry sequence with codon optimization was synthesized by Jin Weizhi, and the NcoI restriction site was introduced at the 5' end of the sequence, and the XhoI restriction site was introduced at the 3' end of the sequence, and constructed in the pET-28a vector. The sequence is shown in SEQ ID NO: 3.
SEQ ID NO:3:ccatgggcatgggcgttagcaaaggcgaagaagataacatggccatcatcaaggagttcatgcgcttcaaggtgcacatggagggcagcgtgaacggccatgagtttgaaatcgagggcgaaggcgaaggtcgcccatacgaaggcacccagaccgccaaactgaaagtgacgaaaggcggtccgctgccattcgcgtgggatattctgagcccacagttcatgtacggcagcaaagcctacgtgaagcatccggccgatatcccggattatctgaagctgagcttcccagagggcttcaagtgggagcgcgtgatgaactttgaagatggcggtgtggttaccgttacgcaagatagcagtctgcaagatggcgagttcatctacaaggttaagctccgcggcaccaacttcccgagcgatggtccggtgatgcagaaaaagacgatgggctgggaagcgagcagcgaacgcatgtatccagaagatggcgcgctgaaaggcgagatcaaacagcgtctgaagctgaaagacggcggccattacgatgcggaggtgaagaccacctacaaggcgaaaaagccggttcagctgccgggcgcgtacaacgtgaacatcaagctggacatcaccagccacaacgaagactacaccatcgtggagcagtacgaacgcgcggaaggtcgccatagtaccggcggcatggacgaactgtataaataatgactcgag。SEQ ID NO: 3: ccatgggcatgggcgttagcaaaggcgaagaagataacatggccatcatcaaggagttcatgcgcttcaaggtgcacatggagggcagcgtgaacggccatgagtttgaaatcgagggcgaaggcgaaggtcgcccatacgaaggcacccagaccgccaaactgaaagtgacgaaaggcggtccgctg ccattcgcgtgggatattctgagcccacagttcatgtacggcagcaaagcctacgtgaagcatccggccgatatcccggattatctgaagctgagcttcccagagggcttcaagtggggagcgcgtgatgaactttgaagatggcggtgtggttaccgttacgcaagatagcagtc tgcaagatggcgagttcatctacaaggttaagctccgcggcaccaacttcccgagcgatggtccggtgatgcagaaaaagacgatgggctgggaagcgagcagcgaacgcatgtatccagaagatggcgcgctgaaaggcgagatcaaacagcgtctgaagctgaaagacggcggccattacgatgcggaggtgaaga ccacctacaaggcgaaaaagccggttcagctgccgggcgcgtacaacgtgaacatcaagctggacatcaccagccacaacgaagactacaccatcgtggagcagtacgaacgcgcggaaggtcgccatagtaccggcggcatggacgaactgtataaataatgactcgag.
表达质粒转化BL21(DE3)感受态细胞,涂布LB+50μg/mL卡那霉素的固体LB培养基平板,过夜培养后获得单克隆,单克隆接种于5ml LB培养基37℃200rpm振荡培养2-3h后,OD600为0.6-0.8时,加入终浓度为0.5mM IPTG,30℃诱导20h,发现培养液变紫红色,说明红色荧光蛋白可用。以RFP-HR-Bone-F(SEQ ID NO:4:gagtcgtattaatttcgcgggatcgagtgagcgcaacgcaattaatg)和RFP-HR-Bone-R(SEQ ID NO:5:gcattaagcgcggcgggtgtggtgttttcaccgtcatcaccg)为引物通过PCR扩增基于绿色荧光和抗生素筛选质粒的除绿色荧光蛋白编码序列外的序列(N at Biotechnol.2002Oct;20(10):1044-8.),以RFP-HR-F:(SEQ ID NO:6:cattaattgcgttgcgctcactcgatcccgcgaaattaatacgactc)和RFP-HR-R:(SEQ ID NO:7:cggtgatgacggtgaaaacaccacacccgccgcgcttaatgc)为引物,采用PCR扩增mcherry编码框序列,包括T7启动子和T7终止子部分,然后通过同源重组构建成一个质粒,即完成了荧光蛋白的替换,将构建的筛选质粒转化DH10B感受态,经过测序,获得含有筛选质粒的DH10B菌株,命名为DH10B-REP(筛选质粒),制备成电转化感受态备用。The expression plasmid was transformed into BL21 (DE3) competent cells, and the solid LB medium plates containing LB + 50 μg/mL kanamycin were coated. After overnight culture, a single clone was obtained. The single clone was inoculated into 5 ml LB medium and cultured at 37°C with shaking at 200 rpm for 2-3 h. When the OD600 was 0.6-0.8, a final concentration of 0.5 mM IPTG was added and induced at 30°C for 20 h. The culture solution turned purple-red, indicating that the red fluorescent protein was available. The sequences of the green fluorescence and antibiotic screening plasmid except the green fluorescent protein coding sequence were amplified by PCR using RFP-HR-Bone-F (SEQ ID NO: 4: gagtcgtattaatttcgcgggatcgagtgagcgcaacgcaattaatg) and RFP-HR-Bone-R (SEQ ID NO: 5: gcattaagcgcggcgggtgtggtgttttcaccgtcatcaccg) as primers (N at Biotechnol. 2002 Oct; 20(10): 1044-8.), and the sequences of the green fluorescence and antibiotic screening plasmid except the green fluorescent protein coding sequence were amplified by PCR using RFP-HR-F: (SEQ ID NO: 6: cattaattgcgttgcgctcactcgatcccgcgaaattaatacgactc) and RFP-HR-R: (SEQ ID NO: 7: cattaattgcgttgcgctcactcgatcccgcgaaattaatacgactc) as primers. NO:7:cggtgatgacggtgaaaacaccacacccgccgcgcttaatgc) was used as primers, PCR was used to amplify the mcherry coding frame sequence, including the T7 promoter and T7 terminator, and then a plasmid was constructed through homologous recombination, thus completing the replacement of the fluorescent protein. The constructed screening plasmid was transformed into DH10B competent cells, and after sequencing, a DH10B strain containing the screening plasmid was obtained, named DH10B-REP (screening plasmid), and prepared into an electroporation competent cell for standby use.
实施例2构建pET-Gln组成型表达质粒Example 2 Construction of pET-Gln constitutive expression plasmid
为了实现氨酰tRNA合酶的组成型表达,将pET-28a上的启动子和终止子部分,采用Gln启动子和GlnTT终止子替换,启动子和终止子由金唯智进行合成为一条DNA序列,在启动子的5’端引入BglII酶切位点,在3’端引入NdeI和EcoRI位点,在GlnTT终止子3’端引入XhoI位点,将合成的序列通过BglII和XhoI酶切与pET28a载体连接,经过测序获得pET-Gln,备用。In order to achieve constitutive expression of aminoacyl-tRNA synthase, the promoter and terminator on pET-28a were replaced with Gln promoter and GlnTT terminator. The promoter and terminator were synthesized into a DNA sequence by GeneWeizhi. A BglII restriction site was introduced at the 5' end of the promoter, NdeI and EcoRI sites were introduced at the 3' end, and an XhoI site was introduced at the 3' end of the GlnTT terminator. The synthesized sequence was ligated to the pET28a vector by BglII and XhoI restriction enzymes, and pET-Gln was obtained after sequencing for later use.
合成的启动子和终止子序列如SEQ ID NO:8所示。The synthetic promoter and terminator sequences are shown in SEQ ID NO:8.
SEQ ID NO:8:agatctgagctcccggtcatcaatcatccccataatccttgttagatgatcaattttaaaaaactaacagttcagcctgtcccgcttataagatccgttatacgtttacgctttgaggaatcccatcatatggaattcctgcagtttcaaacgctaaattgcctgatgcgctacgcttatcaggcctacatgatctctgatatattgagtacgtcttttgtaggccggataatcgttcactcgcatccggcagaaacagcaacatccaaaacgccgcgttcagcggcgtttatgcttttcttcgcgaattaattccgcttcgcaacatgtgagcaccggtttattgactaccggaagcagtgtgaccgtgtgctttaaatgcctgaggccagtttgctcaggctctccccgtggaggtaataattgacgatatgatcactcgag。SEQ ID NO: 8: agatctgagctcccggtcatcaatcatccccataatccttgttagatgatcaattttaaaaaactaacagttcagcctgtcccgcttataagatccgttatacgtttacgctttgaggaatcccatcatatggaattcctgcagtttcaaacgctaaattgcctgatgcgctacgcttatcaggcctacat gatctctgatatattgagtacgtcttttg taggccggataatcgttcactcgcatccggcagaaacagcaacatccaaaacgccgcgttcagcggcgtttatgctttcttcgcgaattaattccgcttcgcaacatgtgagcaccggtttattgactaccggaagcagtgtgaccgtgtgctttaaatgcctgaggccagtttgctcaggctctccccgtgg aggtaataattgacgatatgatcactcgag.
实施例3构建pNFRS合酶突变体文库Example 3 Construction of pNFRS synthase mutant library
pNFRS的氨基酸序列如SEQ ID NO:1所示。The amino acid sequence of pNFRS is shown in SEQ ID NO:1.
SEQ ID NO:1:SEQ ID NO: 1:
MDEFEMIKRNTSEIISEEELREVLKKDEKSALIGFEPSGKIHLGHYLQIKKMIDLQNAGFDIIILLADLHAYLNQKGELDEIRKIGDYNKKVFEAMGLKAKYVYGSSFQLDKDYTLNVYRLALKTTLKRARRSMELIAREDENPKVAEVIYPIMQVNPLNYEGVDVAVGGMEQRKIHMLARELLPKKVVCIHNPVLTGLDGEGKMSSSKGNFIAVDDSPEEIRAKIKKAYCPAGVVEGNPIMEIAKYFLEYPLTIKRPEKFGGDLTVNSYEELESLFKNKELHPMDLKNAVAEELIKILEPIRKRL。MDEFEMIKRNTSEIISEEELREVLKKDEKSALIGFEPSGKIHLGHYLQIKKMIDLQNAGFDIIILLADLHAYLNQKGELDEIRKIGDYNKKVFEAMGLKAKYVYGSSFQLDKDYTLNVYRLALKTTLKRARRSMELIAREDENPKVAEVIYPIMQVNPLNYEGVDVAVGGMEQRKIHMLARELLPKKVVCIHNPVLTGLDGEGK MSSSSKGNFIAVDDSPEEIRAKIKKAYCPAGVVEGNPIMEIAKYFLEYPLTIKRPEKFGGDLTVNSYEELESLFKNKELHPMDLKNAVAEELIKILEPIRKRL.
编码pNFRS的核苷酸如SEQ ID NO:2所示。The nucleotide sequence encoding pNFRS is shown in SEQ ID NO:2.
SEQ ID NO 2:atggatgaatttgaaatgattaaacgcaacaccagcgaaattattagcgaagaagaactgcgcgaagtgctgaagaaggacgagaagtcagctctgattggctttgaaccgagcggcaagatacacctgggccattatttacagattaagaagatgatcgatttacagaacgcgggctttgatattattattctgctggcggatctgcatgcgtatctgaaccagaaaggcgaactggatgaaattcgcaagatcggagattataacaagaaggtatttgaggcgatgggcctgaaagcgaaatatgtgtatggcagcagctttcagctggataaagattataccctgaacgtgtatcgcctggcgctgaagacgacactgaaacgcgcgcgccgcagcatggaactgattgcgcgcgaagatgagaatcccaaagtggcggaagtgatttatccgattatgcaggtgaacccgctgaactatgaaggcgtggatgtggcggtgggcggcatggaacagcgcaagatacacatgctggcgcgcgaactgctgccgaagaaggtagtttgcattcataacccggtgctgaccggcctggatggcgaaggcaagatgtccagcagcaaaggcaactttattgcggtggatgatagcccggaagaaattcgcgcgaagatcaagaaagcgtactgcccggcgggcgtggtggaaggcaacccgattatggaaattgcgaaatatttcttagagtatccgctgaccattaaacgcccggagaagttcggtggcgatctgaccgtgaacagctatgaagaactggaaagcctgtttaagaataaggaactgcatccgatggatctgaagaatgctgtggcggaagaactgattaagatactcgaaccgattcgcaaacgcctgtaa。SEQ ID NO 2: atggatgaatttgaaatgattaaacgcaacaccagcgaaattattagcgaagaagaactgcgcgaagtgctgaagaaggacgagaagtcagctctgattggctttgaaccgagcggcaagatacacctgggccattatttacagattaagaagaagatgatcgatttacagaacgcgggctttgatattattattctgctggcggatctgcatg cgtatctgaaccagaaag gcgaactggatgaaattcgcaagatcggagattataacaagaaggtatttgaggcgatgggcctgaaagcgaaatatgtgtatggcagcagctttcagctggataaagattataccctgaacgtgtatcgcctggcgctgaagacgacactgaaacgcgcgcgccgcagcatggaactgattgcgcgcgaagatgagaat cccaaagtggcggaagtgatttatccgatta tgcaggtgaacccgctgaactatgaaggcgtggatgtggcggtgggcggcatggaacagcgcaagatacacatgctggcgcgcgaactgctgccgaagaaggtagtttgcattcataacccggtgctgaccggcctggatggcgaaggcaagatgtccagcagcaaaggcaactttattgcggtggatgatagcccggaagaaatt cgcgcgaagatcaagaaagcgtact gcccggcgggcgtggtggaaggcaacccgattatggaaattgcgaaatatttcttagagtatccgctgaccattaaacgcccggagaagttcggtggcgatctgaccgtgaacagctatgaagaactggaaagcctgtttaagaataaggaactgcatccgatggatctgaagaatgctgtggcggaagaactgattaagatactcgaaccgattcg caaacgcctgtaa.
通过分子对接找到pNFRS上与酪氨酸的对位羟基相距以内的氨基酸(31,32,65,67,69,107,108,109,110,158,159,160,161,162位)进行多点饱和突变。所用引物:Molecular docking was used to find the distance between the para-hydroxyl group of pNFRS and tyrosine Multiple-point saturation mutagenesis was performed on the amino acids within (31, 32, 65, 67, 69, 107, 108, 109, 110, 158, 159, 160, 161, 162). Primers used:
31-32NNK,SEQ ID NO:9:gctgaagaaggacgagaagtcannknnkattggctttgaaccgagcggcaagatac。31-32NNK, SEQ ID NO: 9: gctgaagaaggacgagaagtcannknnkattggctttgaaccgagcggcaagatac.
65-69-MNN,SEQ ID NO:10:tctggttcagatacgcatgmnnatcmnncagmnnaataataatatcaaagcccgcgttctg。65-69-MNN, SEQ ID NO: 10: tctggttcagatacgcatgmnnatcmnncagmnnaataataatatcaaagcccgcgttctg.
65-69NNK,SEQ ID NO:11:gggctttgatattattattnnkctgnnkgatnnkcatgcgtatctgaaccagaaaggcgaactg。65-69NNK, SEQ ID NO: 11: gggctttgatattattattnnkctgnnkgatnnkcatgcgtatctgaaccagaaaggcgaactg.
107-110MNN,SEQ ID NO:12:cacgttcagggtataatctttatcmnnmnnmnnmnngctgccatacacatatttcgctttcaggcccatc。107-110MNN, SEQ ID NO: 12: cacgttcagggtataatctttatcmnnmnnmnnmnngctgccatacacatatttcgctttcaggcccatc.
107-110NNK,SEQ ID NO:13:gcgaaatatgtgtatggcagcnnknnknnknnkgataaagattataccctgaacgtgtatcgcctg。107-110NNK, SEQ ID NO: 13: gcgaaatatgtgtatggcagcnnknnknnknnkgataaagattataccctgaacgtgtatcgcctg.
158-162MNN,SEQ ID NO:14:catgccgcccaccgccacatccacgccmnnmnnmnnmnnmnngttcacctgcataatcggataaatcacttccgc。158-162MNN, SEQ ID NO: 14: catgccgcccaccgccacatccacgccmnnmnnmnnmnnmnngttcacctgcataatcggataaatcacttccgc.
本申请的引物中存在简并碱基,其中,简并碱基n代表a、t、g、c中的任意一种,简并碱基k代表g或者t,简并碱基m代表a或者c。The primers of the present application contain degenerate bases, wherein the degenerate base n represents any one of a, t, g, and c, the degenerate base k represents g or t, and the degenerate base m represents a or c.
分别用以上引物扩增31-69,65-110,107-162三段,再通过over-lap PCR得到pNFRS(31-162aa)的含NNK片段,载体部分以SEQ ID NO:15:tgacttctcgtccttcttcagcacttcg(31-bone-R)和SEQ ID NO:16:ggatgtggcggtgggcggcatg(162-bone-F)为引物,通过PCR扩增获得。将描述的部分放于此处NNK片段和载体部分通过环状聚合酶延伸克隆(circular polymerase extension cloning,CPEC)进行连接,构建步骤如下:分别以31-32NNK和65-69NNK作引物PCR扩增出第一个片段,以65-69NNK和107-110MNN作引物PCR扩增出第二个片段,以107-110NNK和158-162MNN作引物PCR扩增出第三个片段,然后以31-32NNK和158-162MNN作为引物进行overlap PCR扩增出融合的NNK片段,之后通过CPEC的方法将融合片段与质粒骨架进行连接。重组载体通过电击转化于DH10B电转化感受态细胞,加入卡那霉素过夜培养,采用质粒提取试剂盒,提出突变体混合质粒,-20℃存放备用。The above primers were used to amplify segments 31-69, 65-110, and 107-162, respectively, and then the NNK-containing fragment of pNFRS (31-162aa) was obtained by over-lap PCR. The vector part was obtained by PCR amplification using SEQ ID NO: 15: tgacttctcgtccttcttcagcacttcg (31-bone-R) and SEQ ID NO: 16: ggatgtggcggtgggcggcatg (162-bone-F) as primers. The described part is placed here. The NNK fragment and the vector part are connected by circular polymerase extension cloning (CPEC). The construction steps are as follows: PCR amplification of the first fragment with 31-32NNK and 65-69NNK as primers, PCR amplification of the second fragment with 65-69NNK and 107-110MNN as primers, PCR amplification of the third fragment with 107-110NNK and 158-162MNN as primers, and then overlap PCR amplification of the fused NNK fragment with 31-32NNK and 158-162MNN as primers, and then the fusion fragment is connected to the plasmid backbone by the CPEC method. The recombinant vector is transformed into DH10B electroporation competent cells by electroporation, and kanamycin is added for overnight culture. The mutant mixed plasmid is extracted using a plasmid extraction kit and stored at -20°C for use.
实施例4突变模板的选择Example 4 Selection of mutation template
为了提高非天然氨基酸的特异性引入和提高筛选的效率,降低或者消除氨酰-tRNA合酶对天然氨基酸的引入将有助于筛选过程。最初采用Methanocaldococcusjannaschii来源的野生型氨酰-tRNA合酶MjTyrRS进行筛选,由于其特异性识别天然底物酪氨酸Tyr,所以筛选时成功率不高,且筛选获得突变特异性较差,因此我们推测采用低本底的MjTyrRS突变体将有助于获得高效的特异的新颖氨酰-tRNA合酶突变体,结合文献调研,发现MjTyrRS突变体pNFRS可以引入对-硝基-L-苯丙氨酸pNF,对-碘-L-苯丙氨酸pIF和酪氨酸,但是特异性较差。因此合成密码子优化的pNFRS序列,在上述实施例的基础上,结合结构模拟和对接分析,进一步突变获得N160H(第478-480位核苷酸,原核苷酸aac,突变为cat编码His)和S207A(第619-621位核苷酸agc,突变为gcg编码丙氨酸),进行氨基酸引入比较,找到一个更合适的模板进行突变研究。In order to improve the specific introduction of non-natural amino acids and improve the efficiency of screening, reducing or eliminating the introduction of natural amino acids by aminoacyl-tRNA synthase will help the screening process. Initially, the wild-type aminoacyl-tRNA synthase MjTyrRS from Methanocaldococcusjannaschii was used for screening. Due to its specific recognition of the natural substrate tyrosine Tyr, the success rate of screening was not high, and the specificity of the mutations obtained by screening was poor. Therefore, we speculated that the use of low-background MjTyrRS mutants would help obtain efficient and specific novel aminoacyl-tRNA synthase mutants. Combined with literature research, it was found that the MjTyrRS mutant pNFRS can introduce p-nitro-L-phenylalanine pNF, p-iodo-L-phenylalanine pIF and tyrosine, but with poor specificity. Therefore, a codon-optimized pNFRS sequence was synthesized. Based on the above examples, combined with structural simulation and docking analysis, further mutations were performed to obtain N160H (nucleotides 478-480, original nucleotides aac, mutated to cat encoding His) and S207A (nucleotides 619-621 agc, mutated to gcg encoding alanine), and amino acid introduction was compared to find a more suitable template for mutation studies.
将pNFRS、pNFRS-160H和pNFRS-S207A编码序列分别连接于pET-Gln,和基于红色荧光蛋白的筛选质粒REP共同转化于DH10B,在加入和不加对应氨基酸的LB培养基中进行培养,结果如表1所示。The coding sequences of pNFRS, pNFRS-160H and pNFRS-S207A were connected to pET-Gln, respectively, and transformed into DH10B together with the red fluorescent protein-based screening plasmid REP. They were cultured in LB medium with or without the corresponding amino acids. The results are shown in Table 1.
表1Table 1
因此最优初始模板是pNFRS-160H,为了验证我们方法的可行性,我们分别选择pNFRS和pNFRS-160H分别作模板,构建多点突变文库,进行筛选。Therefore, the optimal initial template is pNFRS-160H. In order to verify the feasibility of our method, we selected pNFRS and pNFRS-160H as templates, respectively, constructed a multi-point mutation library, and performed screening.
实施例5构建pNFRS-160H合酶突变体文库Example 5 Construction of pNFRS-160H synthase mutant library
从实施例4实验得到的结论,发现160H突变后,引入非天然氨基酸的特异性增强,因此构建一个合酶突变体文库,保留160H的位点,其他所用到的引物同实施例3,只是158-162MNN的引物改变,如SEQ ID NO:17所示。From the conclusions obtained from the experiment in Example 4, it was found that after the 160H mutation, the specificity of introducing non-natural amino acids was enhanced, so a synthase mutant library was constructed, retaining the 160H site, and the other primers used were the same as in Example 3, except that the primers 158-162MNN were changed, as shown in SEQ ID NO: 17.
SEQ ID NO:17:catgccgcccaccgccacatccacgccmnnmnnatgmnnmnngttcacctgcataatcggataaatcacttccgc。SEQ ID NO: 17: catgccgcccaccgccacatccacgccmnnmnnatgmnnmnngttcacctgcataatcggataaatcacttccgc.
同样经过PCR扩增3个短片段,进一步通过over-lap PCR得到pNFRS-160H(31-162aa)的含NNK片段和载体CPEC方法连接,电转化DH10B电转化感受态细胞,加入卡那霉素过夜培养,提取质粒,-20℃存放备用。Similarly, three short fragments were amplified by PCR, and the NNK-containing fragment of pNFRS-160H (31-162aa) was further obtained by over-lap PCR and connected to the vector CPEC method, and electroporated DH10B electroporation competent cells, kanamycin was added for overnight culture, and the plasmid was extracted and stored at -20°C for future use.
实施例6pNFRS和pNFRS-160H突变库筛选合酶突变体Example 6 Screening of synthase mutants from pNFRS and pNFRS-160H mutant libraries
将实施例3和5中得到的合酶突变体,电转化DH10B-REP,37℃复苏1h后涂布于含有10μg/mL四环素,50μg/mL卡那霉素,50μg/mL氯霉素,0.1%阿拉伯糖,1mM OAY的LB固体筛选平板(以后称为B板)进行培养,48h~72h培养至红色克隆长出,将红色克隆在B板和C(去掉B板上的1mM OAY)上同时培养,挑选在C板上不长,在B板上生长且有红色荧光的克隆在B板上划线,待长出红色克隆,进一步在B和C板上进行2~3轮筛选,结果从pNFRS突变库中筛选获得1#,3#,8#,10#,12#,14#和18#合酶突变体可以引入OAY,从pNFRS-160H突变库中筛选得到6#,13#,25#,30#和35#合酶突变体,进一步对合酶突变体进行测序,结果如表2所示。The synthase mutants obtained in Examples 3 and 5 were electro-transformed into DH10B-REP, and after resuscitation at 37°C for 1 h, they were spread on LB solid screening plates (hereinafter referred to as B plates) containing 10 μg/mL tetracycline, 50 μg/mL kanamycin, 50 μg/mL chloramphenicol, 0.1% arabinose, and 1 mM OAY for culture. The plates were cultured for 48 to 72 h until red clones grew out. The red clones were plated on plates B and C (the 1 mM OAY on the B plate was removed). OAY), and clones that did not grow on C plate but grew on B plate and had red fluorescence were selected and streaked on B plate. After red clones grew out, 2 to 3 rounds of screening were further performed on B and C plates. As a result, 1#, 3#, 8#, 10#, 12#, 14# and 18# synthase mutants were screened from the pNFRS mutation library and introduced into OAY. 6#, 13#, 25#, 30# and 35# synthase mutants were screened from the pNFRS-160H mutation library. The synthase mutants were further sequenced, and the results are shown in Table 2.
表2Table 2
对红色克隆进行摇瓶培养和比较,-OAY是不加非天然氨基酸的实验组,OAY对应添加1mM OAY,同时测定OD600的值,用于计算单位生物量下的荧光比,结果如表3所示。The red clones were cultured in shake flasks and compared. -OAY was the experimental group without the addition of unnatural amino acids, and OAY corresponded to the addition of 1 mM OAY. The OD600 value was measured at the same time to calculate the fluorescence ratio per unit biomass. The results are shown in Table 3.
表3Table 3
实施例7构建pNFRS和pNFRS-160H突变体和tRNA共表达质粒Example 7 Construction of pNFRS and pNFRS-160H mutants and tRNA co-expression plasmids
采用tRNA-XhoI-F(SEQ ID NO:18:gggctcgagcccatcaaaaaaatattctcaac)和tRNA-HR-XhoI-R(SEQ ID NO:19:gggctcgagtaaaaaaaatccttagctttc),从筛选质粒REP上扩增TyrT的编码序列,包括启动子和终止子,产物经过XhoI酶切后和pET-Gln-pNFRS突变体(1#,3#,7#,8#,10#,12#,14#,18#),pET-Gln-pNFRS-160H突变体(6#,13#,25#,30#,35#)进行连接,测序获得正确质粒pET-Gln-pNFRS(1#,3#,8#,10#,12#,14#或18#)-tRNA和pET-Gln-pNFRS-160H突变体(6#,13#,25#,30#或35#)-tRNA。tRNA-XhoI-F (SEQ ID NO: 18: gggctcgagcccatcaaaaaaatattctcaac) and tRNA-HR-XhoI-R (SEQ ID NO: 19: gggctcgagcccatcaaaaaaatattctcaac) were used. NO: 19: gggctcgagtaaaaaaaatccttagctttc), the coding sequence of TyrT, including the promoter and terminator, was amplified from the screening plasmid REP, the product was digested with XhoI and connected with pET-Gln-pNFRS mutants (1#, 3#, 7#, 8#, 10#, 12#, 14#, 18#), pET-Gln-pNFRS-160H mutants (6#, 13#, 25#, 30#, 35#), and sequencing was performed to obtain the correct plasmids pET-Gln-pNFRS (1#, 3#, 8#, 10#, 12#, 14# or 18#)-tRNA and pET-Gln-pNFRS-160H mutants (6#, 13#, 25#, 30# or 35#)-tRNA.
实施例8评估烯丙基-L-酪氨酸引入Example 8 Evaluation of Allyl-L-Tyrosine Introduction
由金唯智合成密码子优化的绿色荧光蛋白sfGFP基因,构建于pACYCduet1的NcoI和XhoI位点,sfGFP基因序列如SEQ ID NO:20所示。The codon-optimized green fluorescent protein sfGFP gene was synthesized by GENEWIZ and constructed at the NcoI and XhoI sites of pACYCduet1. The sfGFP gene sequence is shown in SEQ ID NO: 20.
SEQ ID NO:20:atgagcaaaggtgaagaactgtttaccggcgttgtgccgattctggtggaactggatggcgatgtgaacggtcacaaattcagcgtgcgtggtgaaggtgaaggcgatgccacgattggcaaactgacgctgaaatttatctgcaccaccggcaaactgccggtgccgtggccgacgctggtgaccaccctgacctatggcgttcagtgttttagtcgctatccggatcacatgaaacgtcacgatttctttaaatctgcaatgccggaaggctatgtgcaggaacgtacgattagctttaaagatgatggcaaatataaaacgcgcgccgttgtgaaatttgaaggcgataccctggtgaaccgcattgaactgaaaggcacggattttaaagaagatggcaatatcctgggccataaactggaatacaactttaatagccataatgtttatattacggcggataaacagaaaaatggcatcaaagcgaattttaccgttcgccataacgttgaagatggcagtgtgcagctggcagatcattatcagcagaataccccgattggtgatggtccggtgctgctgccggataatcattatctgagcacgcagaccgttctgtctaaagatccgaacgaaaaaggcacgcgggaccacatggttctgcacgaatatgtgaatgcggcaggtattacgtggagccatccgcagttcgaaaaa。SEQ ID NO: 20: atgagcaaaggtgaagaactgtttaccggcgttgtgccgattctggtggaactggatggcgatgtgaacggtcacaaattcagcgtgcgtggtgaaggtgaaggcgatgccacgattggcaaactgacgctgaaatttatctgcaccaccggcaaactgccggtgccgtggccgacgctggtga ccaccctgacctatggcgttcagtgttttagtcgctatccggatcacatgaaacgtcacgatttctttaaatctgcaatgccggaaggctatgtgcaggaacgtacgattagctttaaagatgatggcaaatataaaacgcgcgccgttgtgaaatttgaaggcgataccctg gtgaaccgcattgaactgaaaggcacggattttaaagaagatggcaatatcctgggccataaactggaatacaactttaatagccataatgtttatattacggcggataaacagaaaaatggcatcaaagcgaattttaccgttcgccataacgttgaagatggcagtgtgcagctggcagatcattatcagcagaataccccgattggtgatggtccggt gctgctgccggataatcattatctgagcacgcagaccgttctgtctaaagatccgaacgaaaaaggcacgcgggaccacatggttctgcacgaatatgtgaatgcggcaggtattacgtggagccatccgcagttcgaaaaa.
为了实现在sfGFP中特定位点引入非天然氨基酸,将其编码I39的3联密码子由att突变为tag,DNA测序获得pACYCduet-sfGFP(I39)质粒。In order to introduce non-natural amino acids into specific sites in sfGFP, the 3-codon encoding I39 was mutated from att to tag, and the pACYCduet-sfGFP (I39) plasmid was obtained by DNA sequencing.
将pET-Gln-pNFRS(1#)-tRNA,pET-Gln-pNFRS(3#)-tRNA,pET-Gln-pNFRS(8#)-tRNA,pET-Gln-pNFRS(10#)-tRNA,pET-Gln-pNFRS(12#)-tRNA,pET-Gln-pNFRS(14#)-tRNA,pET-Gln-pNFRS(18#)-tRNA,pET-Gln-pNFRS-160H(6#)-tRNA,pET-Gln-pNFRS-160H(13#)-tRNA,pET-Gln-pNFRS-160H(25#)-tRNA,pET-Gln-pNFRS-160H(30#)-tRNA,pET-Gln-pNFRS-160H(35#)-tRNA分别和pACYCduet-sfGFP(I39TAG)共转化BL21(DE3)感受态细胞,涂布于含有卡那霉素(kan)和氯霉素(Cm)的LB培养平板上,37℃培养至长出单克隆。挑单克隆接种在30mL LB(kan+Cm+1mM OAY),以不加OAY的LB(kan+Cm)做阴性对照,经1mM IPTG,30℃过夜诱导后,485nm作激发光,525nm发射光进行绿色荧光蛋白荧光强度测定,同时测定出OD600,计算单位菌浓的荧光值。和文献报道的突变合酶OAYRS-CK1(32S,107T,158T,159Y,162A)(Santoro S W,Wang L,Herberich B,et al.An efficient system for the evolutionof aminoacyl-tRNA synthetase specificity[J].Nature Biotechnology,2002,20(10):1044-1048.)和本实验设计的OAYRS-CKB(32Y,107A,158C,159A,162L)进行比较,结果如表4和图1所示。而SEQ ID NO:1所示的pNFRS,以及以pNFRS的氨基酸序列为基础进行N160H突变的酶,均不能引入OAY。从结果看,携带有N160H的新突变体有着更高的非天然氨基酸引入特异性。Combine pET-Gln-pNFRS(1#)-tRNA, pET-Gln-pNFRS(3#)-tRNA, pET-Gln-pNFRS(8#)-tRNA, pET-Gln-pNFRS(10#)-tRNA, pET -Gln-pNFRS(12#)-tRNA, pET-Gln-pNFRS(14#)-tRNA, pET-Gln-pNFRS(18#)-tRNA, pET-Gln-pNFRS-160H(6#)-tRNA, pET - Gln-pNFRS-160H(13#)-tRNA, pET-Gln-pNFRS-160H(25#)-tRNA, pET-Gln-pNFRS-160H(30#)-tRNA, pET-Gln-pNFRS-160H(35#)-tRNA )-tRNA and pACYCduet-sfGFP(I39TAG) were co-transformed into BL21(DE3) competent cells, spread on LB culture plates containing kanamycin (kan) and chloramphenicol (Cm), and cultured at 37°C until the cells grew. A single clone. A single clone was selected and inoculated in 30 mL LB (kan + Cm + 1 mM OAY), and LB (kan + Cm) without OAY was used as a negative control. After induction with 1 mM IPTG at 30°C overnight, 485 nm was used as the excitation light, and 525 nm was used as the emission light. The fluorescence intensity of green fluorescent protein was measured, and OD 600 was measured at the same time, and the fluorescence value per unit bacterial concentration was calculated. and the mutant synthase OAYRS-CK1 (32S, 107T, 158T, 159Y, 162A) reported in the literature (Santoro SW, Wang L, Herberich B, et al. An efficient system for the evolution of aminoacyl-tRNA synthetase specificity[J]. Nature Biotechnology, 2002, 20(10):1044-1048.) and the OAYRS-CKB (32Y, 107A, 158C, 159A, 162L) designed in this experiment were compared, and the results are shown in Table 4 and Figure 1. : 1, and the enzyme with N160H mutation based on the amino acid sequence of pNFRS, cannot introduce OAY. From the results, the new mutant carrying N160H has higher specificity for the introduction of unnatural amino acids.
表4Table 4
从以上的描述中,可以看出,本发明上述的实施例实现了如下技术效果:利用上述氨酰-tRNA合酶突变体,能够特异性高的识别烯基酪氨酸,催化烯基酪氨酸与相应的tRNA结合,形成烯基酪氨酰-tRNA,能够应用于蛋白或多肽中非天然氨基酸的定点引入及衍生出来的蛋白标记,酶催化,蛋白和其他分子偶联等领域。From the above description, it can be seen that the above embodiments of the present invention achieve the following technical effects: the above aminoacyl-tRNA synthase mutant can be used to recognize alkenyl tyrosine with high specificity, catalyze the binding of alkenyl tyrosine with the corresponding tRNA, and form alkenyl tyrosyl-tRNA, which can be applied to the field of site-specific introduction of non-natural amino acids in proteins or polypeptides and derived protein labeling, enzyme catalysis, protein and other molecular coupling.
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above description is only a preferred embodiment of the present invention and is not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and variations. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included in the protection scope of the present invention.
Claims (8)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202211072207.0A CN115717130B (en) | 2022-09-02 | 2022-09-02 | Preparation method of aminoacyl-tRNA synthase mutant and alkenyl tyrosyl-tRNA |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202211072207.0A CN115717130B (en) | 2022-09-02 | 2022-09-02 | Preparation method of aminoacyl-tRNA synthase mutant and alkenyl tyrosyl-tRNA |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN115717130A CN115717130A (en) | 2023-02-28 |
| CN115717130B true CN115717130B (en) | 2024-10-15 |
Family
ID=85254016
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202211072207.0A Active CN115717130B (en) | 2022-09-02 | 2022-09-02 | Preparation method of aminoacyl-tRNA synthase mutant and alkenyl tyrosyl-tRNA |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN115717130B (en) |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106443006A (en) * | 2005-11-16 | 2017-02-22 | Ambrx公司 | Methods and compositions comprising non-natural amino acids |
Family Cites Families (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2006180701A (en) * | 2003-02-10 | 2006-07-13 | Institute Of Physical & Chemical Research | Tyrosyl tRNA synthetase mutant and method for producing the same |
| EP2380982B1 (en) * | 2004-10-27 | 2014-07-16 | The Scripps Research Institute | Orthogonal translation components for the in vivo incorporation of unnatural amino acids |
| WO2007061136A1 (en) * | 2005-11-24 | 2007-05-31 | Riken | Method for production of protein having non-natural type amino acid integrated therein |
| EP2069396B1 (en) * | 2006-09-08 | 2015-10-21 | Ambrx, Inc. | Modified human plasma polypeptide or fc scaffolds and their uses |
| CN104531628B (en) * | 2014-12-23 | 2018-10-30 | 凯莱英医药集团(天津)股份有限公司 | Alcohol dehydrogenase mutant and its application |
| CN107022568B (en) * | 2016-02-01 | 2020-08-25 | 北京大学 | System for efficient multipoint insertion of unnatural amino acids in mammalian cells |
| MY193457A (en) * | 2017-02-08 | 2022-10-14 | Bristol Myers Squibb Co | Modified relaxin polypeptides comprising a pharmacokinetic enhancer and uses thereof |
| CN111718920B (en) * | 2019-03-19 | 2021-05-07 | 宁波鲲鹏生物科技有限公司 | aminoacyl-tRNA synthetases with high efficiency of lysine derivatives incorporation into proteins |
-
2022
- 2022-09-02 CN CN202211072207.0A patent/CN115717130B/en active Active
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106443006A (en) * | 2005-11-16 | 2017-02-22 | Ambrx公司 | Methods and compositions comprising non-natural amino acids |
Also Published As
| Publication number | Publication date |
|---|---|
| CN115717130A (en) | 2023-02-28 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN112912496B (en) | Novel mutations that increase the DNA cleavage activity of CPF1 of the genus amino acid coccus | |
| CN113699124A (en) | Preparation method of protein containing non-natural amino acid | |
| CN114381416B (en) | Recombinant escherichia coli strain for high yield of 5-aminolevulinic acid and application thereof | |
| CN112608911B (en) | RNA polymerase mutant and application thereof | |
| CN106754811A (en) | A kind of saltant type Tn5 transposases and its preparation method and application | |
| CN112795546B (en) | High-temperature-resistant reverse transcriptase mutant with high reverse transcription efficiency and application thereof | |
| CN114277046B (en) | Three-gene tandem expression vector for synthesizing tetrahydropyrimidine and application thereof | |
| CN115261363B (en) | Method for measuring RNA deaminase activity of APOBEC3A and RNA high-activity APOBEC3A variant | |
| CN112795547B (en) | Reverse transcriptase mutant with high reverse transcription efficiency | |
| MXPA04005717A (en) | Expression system. | |
| CN114875006B (en) | Transaminase mutant and preparation method of chiral amine compound | |
| WO2024113509A1 (en) | Amidase mutant and use thereof | |
| CN115717130B (en) | Preparation method of aminoacyl-tRNA synthase mutant and alkenyl tyrosyl-tRNA | |
| CN107460177A (en) | Using the RNA polymerase mutant of chemically modified nucleoside acid | |
| EP4230723A1 (en) | Polypeptide with aspartate kinase activity and use thereof in production of amino acid | |
| WO2007061136A1 (en) | Method for production of protein having non-natural type amino acid integrated therein | |
| WO2025092028A1 (en) | Mutant bst dna polymerase large fragment, and preparation method therefor | |
| US20250043267A1 (en) | Engineered bacterial tyrosyl-trna synthetase mutants for incorporating unnatural amino acids into proteins | |
| JP4427902B2 (en) | In vivo production method of chemically diverse proteins by introducing non-conventional amino acids | |
| CN110343728B (en) | A kind of method of biotransformation synthesizing hexahydropyridazine-3-carboxylic acid | |
| CN114480333B (en) | Reverse transcriptase mutant and application thereof | |
| CN112795549B (en) | Reverse transcriptase mutant | |
| CN116179623A (en) | Application of a Photoenzyme TPe in the Synthesis of Chiral Compounds by Asymmetric Catalytic Reaction | |
| EP4328308A1 (en) | Modified trna-synthetase for the incorporation of non-canonical amino acids | |
| CN118726281B (en) | Pyrrolysine aminoacyl-tRNA synthetase mutant and its use |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |