CN115281646B - Dynamic heart rate monitoring method and system based on intelligent wearable device - Google Patents
Dynamic heart rate monitoring method and system based on intelligent wearable device Download PDFInfo
- Publication number
- CN115281646B CN115281646B CN202211233533.5A CN202211233533A CN115281646B CN 115281646 B CN115281646 B CN 115281646B CN 202211233533 A CN202211233533 A CN 202211233533A CN 115281646 B CN115281646 B CN 115281646B
- Authority
- CN
- China
- Prior art keywords
- heart rate
- data
- rate data
- preset
- peak
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000012544 monitoring process Methods 0.000 title claims abstract description 27
- 238000000034 method Methods 0.000 title claims abstract description 17
- 230000036541 health Effects 0.000 claims abstract description 98
- 238000007405 data analysis Methods 0.000 claims abstract description 24
- 230000000284 resting effect Effects 0.000 claims description 32
- 238000012502 risk assessment Methods 0.000 claims description 30
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 20
- 229910052760 oxygen Inorganic materials 0.000 claims description 20
- 239000001301 oxygen Substances 0.000 claims description 20
- 238000011156 evaluation Methods 0.000 claims description 17
- 238000012549 training Methods 0.000 claims description 17
- 239000008280 blood Substances 0.000 claims description 8
- 210000004369 blood Anatomy 0.000 claims description 8
- 230000036772 blood pressure Effects 0.000 claims description 8
- 230000036284 oxygen consumption Effects 0.000 claims description 6
- 238000004458 analytical method Methods 0.000 claims description 5
- 230000002159 abnormal effect Effects 0.000 abstract description 12
- 201000010099 disease Diseases 0.000 abstract description 6
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 abstract description 6
- 230000000694 effects Effects 0.000 abstract description 4
- 230000008859 change Effects 0.000 description 4
- 235000006694 eating habits Nutrition 0.000 description 4
- 230000003449 preventive effect Effects 0.000 description 4
- 230000036760 body temperature Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012806 monitoring device Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 210000000707 wrist Anatomy 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/024—Measuring pulse rate or heart rate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/0205—Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/024—Measuring pulse rate or heart rate
- A61B5/02438—Measuring pulse rate or heart rate with portable devices, e.g. worn by the patient
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/024—Measuring pulse rate or heart rate
- A61B5/02444—Details of sensor
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Cardiology (AREA)
- Physiology (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pulmonology (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
Abstract
本发明提供了基于智能穿戴设备的动态心率监测方法及系统,运用于数据监测领域;采集人体的第一心率数据;判断第一心率数据是否达到预置的数据峰谷值,若达到,则将第一心率数据输入至预置的预测模型进行预测,得到对应预测时间段的第二心率数据;获取第二心率数据的预测峰谷值;判断预测峰谷值是否达到数据峰谷值;若达到,则采集基于第二心率数据对应的人体健康指标数据信息;将人体健康指标数据信息输入至预测模型中,得到人体的数据分析结果;本发明有效降低了人体可能在某个时间段出现心率指标异常,而智能穿戴设备却未及时发现的几率,且通过预测人体的心率活动能够有效预防突发性疾病的发生。
The present invention provides a dynamic heart rate monitoring method and system based on smart wearable devices, which are used in the field of data monitoring; collect the first heart rate data of the human body; judge whether the first heart rate data reaches the preset data peak-valley value, and if so, set the The first heart rate data is input to the preset prediction model for prediction, and the second heart rate data corresponding to the prediction time period is obtained; the predicted peak-to-valley value of the second heart rate data is obtained; and it is judged whether the predicted peak-to-valley value reaches the data peak-to-valley value; if it reaches , the data information of the human health index corresponding to the second heart rate data is collected; the data information of the human health index is input into the prediction model to obtain the data analysis result of the human body; Abnormal, but the smart wearable device is not detected in time, and by predicting the heart rate activity of the human body, it can effectively prevent the occurrence of sudden diseases.
Description
技术领域technical field
本发明涉及数据监测领域,特别涉及为基于智能穿戴设备的动态心率监测方法及系统。The invention relates to the field of data monitoring, in particular to a dynamic heart rate monitoring method and system based on smart wearable devices.
背景技术Background technique
在现有技术中,智能穿戴设备的芯片中通常设置有MDSP(Modem DigitalSignalProcessor,调制解调数字信号处理器)。智能穿戴设备(例如智能手表)中的心率监测装置在采集到用户的心率信息之后,会将采集到的原始数据发送至MDSP,然后由MDSP对接收到的数据进行处理,再由MDSP将处理后得到的用户心率数据发送至智能穿戴设备的CPU。In the prior art, an MDSP (Modem Digital Signal Processor, modem digital signal processor) is usually provided in a chip of a smart wearable device. After the heart rate monitoring device in the smart wearable device (such as a smart watch) collects the user's heart rate information, it will send the collected raw data to the MDSP, and then the MDSP will process the received data, and then the MDSP will process the received data. The obtained user's heart rate data is sent to the CPU of the smart wearable device.
但是这种智能穿戴设备的心率监测装置无法连续不断地采集人体24小时连续心率HRV心率异常指标,致使人体可能在某个时间段出现心率指标异常,而智能穿戴设备却未及时发现的问题。However, the heart rate monitoring device of this smart wearable device cannot continuously collect the human body's 24-hour continuous heart rate HRV heart rate abnormality index, resulting in a problem that the human body may have an abnormal heart rate index during a certain period of time, but the smart wearable device has not detected it in time.
发明内容Contents of the invention
本发明旨在解决人体可能在某个时间段出现心率指标异常,而智能穿戴设备却未及时发现的问题,提供基于智能穿戴设备的动态心率监测方法及系统。The invention aims to solve the problem that the human body may have an abnormal heart rate index in a certain period of time, but the smart wearable device does not detect it in time, and provides a dynamic heart rate monitoring method and system based on the smart wearable device.
本发明为解决技术问题采用如下技术手段:The present invention adopts following technical means for solving technical problems:
本发明提供基于智能穿戴设备的动态心率监测方法,包括以下步骤:The present invention provides a dynamic heart rate monitoring method based on an intelligent wearable device, comprising the following steps:
采用预置的连续心率传感器,采集人体的第一心率数据,其中,所述第一心率数据包括静息心率数据和运动心率数据;Using a preset continuous heart rate sensor to collect first heart rate data of the human body, wherein the first heart rate data includes resting heart rate data and exercise heart rate data;
判断所述第一心率数据是否达到预置的数据峰谷值,其中,所述数据峰谷值包括数据波峰值和数据波谷值;Judging whether the first heart rate data reaches a preset data peak-to-valley value, wherein the data peak-to-valley value includes a data peak value and a data valley value;
若达到,则将所述第一心率数据输入至预置的预测模型进行预测,得到对应预测时间段的第二心率数据;If it is reached, then input the first heart rate data into a preset prediction model for prediction, and obtain the second heart rate data corresponding to the prediction time period;
获取所述第二心率数据的预测峰谷值;Acquiring predicted peak-to-valley values of the second heart rate data;
判断所述预测峰谷值是否达到所述数据峰谷值;judging whether the predicted peak-to-valley value reaches the data peak-to-valley value;
若达到,则采集基于所述第二心率数据对应的人体健康指标数据信息;If it is achieved, then collect the human health index data information corresponding to the second heart rate data;
将所述人体健康指标数据信息输入至所述预测模型中,得到所述人体的数据分析结果,其中,所述数据分析结果包括人体心率波形数据和健康指标报告。Input the data information of the human body health index into the prediction model to obtain the data analysis result of the human body, wherein the data analysis result includes the human heart rate waveform data and the health index report.
进一步地,所述采用预置的连续心率传感器,采集人体的第一心率数据的步骤前,包括:Further, before the step of using the preset continuous heart rate sensor to collect the first heart rate data of the human body, it includes:
捕捉预置的传感器产生的效能,其中,所述效能包括温度数据和触感数据;Capturing performance generated by preset sensors, wherein the performance includes temperature data and tactile data;
判断所述效能是否符合预设的启用条件;judging whether the performance meets the preset enabling conditions;
若是,则采集所述人体的身体数据,其中,所述身体数据包括心电数据、血压数据和血氧数据。If yes, collect physical data of the human body, wherein the physical data includes electrocardiographic data, blood pressure data, and blood oxygen data.
进一步地,所述采用预置的连续心率传感器,采集人体的第一心率数据的步骤中,包括:Further, the step of using a preset continuous heart rate sensor to collect the first heart rate data of the human body includes:
获取所述人体的静息时间段和运动时间段;Acquiring the rest time period and exercise time period of the human body;
基于所述静息时间段和所述运动时间段,对应归类所述第一心率数据中的静息心率数据和运动心率数据;Correspondingly classifying resting heart rate data and exercise heart rate data in the first heart rate data based on the resting time period and the exercise time period;
采集所述静息心率数据的心率峰谷值和所述运动心率数据的心率峰谷值。Collecting the peak-to-valley values of the resting heart rate data and the peak-to-valley values of the exercise heart rate data.
进一步地,所述则将所述第一心率数据输入至预置的预测模型进行预测,得到对应预测时间段的第二心率数据的步骤前,包括:Further, before the step of inputting the first heart rate data into a preset prediction model for prediction, and obtaining the second heart rate data corresponding to the prediction time period, it includes:
采集心率的健康数据和健康指标数据,其中,所述健康数据包括心率区间数据和心率变异性区间数据,所述健康指标数据包括氧耐力、摄氧量和氧耗量;Collect heart rate health data and health index data, wherein the health data includes heart rate interval data and heart rate variability interval data, and the health index data includes oxygen endurance, oxygen uptake, and oxygen consumption;
将所述健康数据和所述健康指标数据作为训练样本,输入至训练模型中进行训练,得到训练完成的预测模型。The health data and the health index data are used as training samples, input into a training model for training, and a trained prediction model is obtained.
进一步地,所述则将所述第一心率数据输入至预置的预测模型进行预测,得到对应预测时间段的第二心率数据的步骤中,包括:Further, the step of inputting the first heart rate data into a preset prediction model for prediction, and obtaining the second heart rate data corresponding to the prediction time period includes:
获取预置时间段的部分第一心率数据;Obtain part of the first heart rate data for a preset time period;
采集所述部分第一心率数据对应的健康数值,其中,所述健康数值包括心率区间数值和心率变异性区间数值;Collect health values corresponding to the part of the first heart rate data, wherein the health values include heart rate interval values and heart rate variability interval values;
基于所述预置时间段和所述健康数值进行预测,得到与所述预置时间段相同时刻的人体预测心率数据。Prediction is performed based on the preset time period and the health value to obtain predicted heart rate data of the human body at the same time as the preset time period.
进一步地,所述获取所述第二心率数据的预测峰谷值的步骤中,包括:Further, the step of acquiring the predicted peak-valley value of the second heart rate data includes:
获取所述预测峰谷值的持续时间;Obtaining the duration of the predicted peak-to-valley value;
判断所述持续时间是否小于预设的时间段;judging whether the duration is less than a preset time period;
若是,则基于所述预测峰谷值对所述第二心率数据进行归类,得到所述第二心率数据对应的静息心率数据和运动心率数据。If so, classifying the second heart rate data based on the predicted peak-to-valley value to obtain resting heart rate data and exercise heart rate data corresponding to the second heart rate data.
进一步地,所述将所述人体健康指标数据信息输入至所述预测模型中,得到所述人体的数据分析结果的步骤中,包括:Further, the step of inputting the human body health index data information into the predictive model to obtain the data analysis results of the human body includes:
获取所述人体健康指标数据信息中的综合风险评估分数;Obtain the comprehensive risk assessment score in the data information of the human health index;
判断所述综合风险评估分数是否大于预置的分数评判区间;judging whether the comprehensive risk assessment score is greater than a preset score evaluation interval;
若是,则基于所述人体健康指标数据信息设立对应的风险评估报告。If yes, a corresponding risk assessment report is established based on the human health index data information.
进一步地,所述将所述人体健康指标数据信息输入至所述预测模型中,得到所述人体的数据分析结果的步骤后,包括:Further, after the step of inputting the human body health index data information into the prediction model and obtaining the data analysis results of the human body, it includes:
获取所述第二心率数据对应的心率区间数据;acquiring heart rate interval data corresponding to the second heart rate data;
判断所述心率区间数据是否符合预置的心率规律;Judging whether the heart rate interval data conforms to a preset heart rate pattern;
若是,则将所述第二心率数据与所述第一心率数据进行比对,形成不同时间段的人体心率波形数据对比。If so, comparing the second heart rate data with the first heart rate data to form a comparison of human heart rate waveform data in different time periods.
本发明还提供基于智能穿戴设备的动态心率监测系统,包括:The present invention also provides a dynamic heart rate monitoring system based on smart wearable devices, including:
第一采集模块,用于采用预置的连续心率传感器,采集人体的第一心率数据,其中,所述第一心率数据包括静息心率数据和运动心率数据;The first collection module is used to collect the first heart rate data of the human body by using a preset continuous heart rate sensor, wherein the first heart rate data includes resting heart rate data and exercise heart rate data;
第一判断模块,用于判断所述第一心率数据是否达到预置的数据峰谷值,其中,所述数据峰谷值包括数据波峰值和数据波谷值;A first judgment module, configured to judge whether the first heart rate data reaches a preset data peak-to-valley value, wherein the data peak-to-valley value includes a data peak value and a data valley value;
第一执行模块,用于若达到,则将所述第一心率数据输入至预置的预测模型进行预测,得到对应预测时间段的第二心率数据;The first execution module is configured to input the first heart rate data into a preset prediction model for prediction if it is reached, and obtain the second heart rate data corresponding to the prediction time period;
第一获取模块,用于获取所述第二心率数据的预测峰谷值;A first acquisition module, configured to acquire the predicted peak-to-valley value of the second heart rate data;
第二判断模块,用于判断所述预测峰谷值是否达到所述数据峰谷值;The second judging module is used to judge whether the predicted peak-to-valley value reaches the data peak-to-valley value;
第二执行模块,用于若达到,则采集基于所述第二心率数据对应的人体健康指标数据信息;The second execution module is configured to collect the human health index data information corresponding to the second heart rate data if it is achieved;
第一分析模块,用于将所述人体健康指标数据信息输入至所述预测模型中,得到所述人体的数据分析结果,其中,所述数据分析结果包括人体心率波形数据和健康指标报告。The first analysis module is configured to input the data information of the human body health index into the prediction model to obtain the data analysis result of the human body, wherein the data analysis result includes human heart rate waveform data and a health index report.
进一步地,还包括:Further, it also includes:
第一捕捉模块,用于捕捉预置的传感器产生的效能,其中,所述效能包括温度数据和触感数据;The first capture module is configured to capture performance generated by preset sensors, wherein the performance includes temperature data and touch data;
第三判断模块,用于判断所述效能是否符合预设的启用条件;A third judging module, configured to judge whether the performance meets a preset enabling condition;
第三执行模块,用于若是,则采集所述人体的身体数据,其中,所述身体数据包括心电数据、血压数据和血氧数据。The third execution module is configured to, if yes, collect physical data of the human body, wherein the physical data includes electrocardiographic data, blood pressure data and blood oxygen data.
本发明提供了基于智能穿戴设备的动态心率监测方法及系统,具有以下有益效果:The invention provides a dynamic heart rate monitoring method and system based on an intelligent wearable device, which has the following beneficial effects:
本发明通过采集到人体某个时间段的心率数据后,将该心率数据输入至预测模型中进行预测,得到对应时间段的另一心率数据,并将两种不同时间段的心率数据进行比对,以生成人体的心率波形数据和与人体对应的健康指标报告,有效降低了人体可能在某个时间段出现心率指标异常,而智能穿戴设备却未及时发现的几率,且通过预测人体的心率活动能够有效预防突发性疾病的发生。In the present invention, after collecting the heart rate data of a certain time period of the human body, the heart rate data is input into the prediction model for prediction, and another heart rate data corresponding to the time period is obtained, and the heart rate data of two different time periods are compared , to generate the human body's heart rate waveform data and the corresponding health indicator report, which effectively reduces the possibility that the human body may have an abnormal heart rate index in a certain period of time, but the smart wearable device does not detect it in time, and by predicting the human body's heart rate activity It can effectively prevent the occurrence of sudden diseases.
附图说明Description of drawings
图1为本发明基于智能穿戴设备的动态心率监测方法一个实施例的流程示意图;Fig. 1 is the schematic flow chart of an embodiment of the dynamic heart rate monitoring method based on smart wearable device of the present invention;
图2为本发明基于智能穿戴设备的动态心率监测系统一个实施例的结构框图。Fig. 2 is a structural block diagram of an embodiment of the dynamic heart rate monitoring system based on the smart wearable device of the present invention.
具体实施方式Detailed ways
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明,本发明为目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。It should be understood that the specific embodiments described here are only used to explain the present invention, and are not used to limit the present invention. The realization of the purpose, functions and advantages of the present invention will be further explained with reference to the accompanying drawings in combination with the embodiments.
下面将结合本发明的实施例中的附图,对本发明的实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only part of the embodiments of the present invention, not all of them. example. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts fall within the protection scope of the present invention.
参考附图1,为本发明一实施例中的基于智能穿戴设备的动态心率监测方法,包括:With reference to accompanying drawing 1, be the dynamic heart rate monitoring method based on smart wearable device in an embodiment of the present invention, comprise:
S1:采用预置的连续心率传感器,采集人体的第一心率数据,其中,所述第一心率数据包括静息心率数据和运动心率数据;S1: Using a preset continuous heart rate sensor to collect first heart rate data of the human body, wherein the first heart rate data includes resting heart rate data and exercise heart rate data;
S2:判断所述第一心率数据是否达到预置的数据峰谷值,其中,所述数据峰谷值包括数据波峰值和数据波谷值;S2: judging whether the first heart rate data reaches a preset data peak-valley value, wherein the data peak-valley value includes a data peak-valley value and a data valley value;
S3:若达到,则将所述第一心率数据输入至预置的预测模型进行预测,得到对应预测时间段的第二心率数据;S3: If it is reached, input the first heart rate data into a preset prediction model for prediction, and obtain the second heart rate data corresponding to the prediction time period;
S4:获取所述第二心率数据的预测峰谷值;S4: Obtain the predicted peak-to-valley value of the second heart rate data;
S5:判断所述预测峰谷值是否达到所述数据峰谷值;S5: judging whether the predicted peak-to-valley value reaches the data peak-to-valley value;
S6:若达到,则采集基于所述第二心率数据对应的人体健康指标数据信息;S6: If it is achieved, collect the human health index data information corresponding to the second heart rate data;
S7:将所述人体健康指标数据信息输入至所述预测模型中,得到所述人体的数据分析结果,其中,所述数据分析结果包括人体心率波形数据和健康指标报告。S7: Input the data information of the human body health index into the prediction model to obtain the data analysis result of the human body, wherein the data analysis result includes human body heart rate waveform data and a health index report.
在本实施例中,系统通过采用预先设置在智能穿戴设备中的连续心率传感器,采集人体某一时间段的第一心率数据,包括(静息心率数据和运动心率数据),而后系统判断第一心率数据能否达到预先设置好的心率数据峰谷值,包括(心率数据波峰值和心率数据波谷值),以执行对应的不同步骤;例如,系统判断到第一心率数据并没有达到预先设置好的数据峰谷值,如第一心率数据中最高的心率为78次/分,最低的心率为65次/分,而预先设置好的数据峰谷值为80次/分,最低的心率为62次/分,则此时系统会直接生成与第一心率数据对应的人体健康指标数据信息,并将该人体健康指标数据信息输入至预测模型中,以得到与第一心率数据对应的人体心率波形数据和健康指标报告;例如,系统判断到第一心率数据达到了预先设置好的数据峰谷值,如第一心率数据中最高的心率为81次/分,最低的心率为60次/分,在已知预先设置好的数据峰谷值为80次/分,最低的心率为62次/分的情况下,则此时系统会将第一心率数据输入至预先设置好的预测模型中进行预测,以预测得到与第一心率数据相同时段却不同时刻的第二心率数据;系统通过获取第二心率数据的预测峰谷值,并判断预测峰谷值是否达到心率数据峰谷值,以执行对应的步骤;例如,系统判断到预测峰谷值达到了数据峰谷值,则此时系统会采集预测得到的第二心率数据对应的人体健康指标数据信息,包括(氧耐力、摄氧量和氧耗量),并将这些人体健康指标数据信息输入至预测模型中进行预测,以预测得到该人体的数据分析结果,包括(人体心率波形数据和健康指标报告),将第一心率数据的数据分析结果和第二心率数据的数据分析结果进行比对,可以有效降低了人体可能在某个时间段出现心率指标异常,而智能穿戴设备却未及时发现的几率,且通过预测人体的心率活动能够有效预防突发性疾病的发生。In this embodiment, the system uses the continuous heart rate sensor preset in the smart wearable device to collect the first heart rate data of the human body for a certain period of time, including (resting heart rate data and exercise heart rate data), and then the system judges the first Whether the heart rate data can reach the pre-set heart rate data peak value, including (heart rate data peak value and heart rate data valley value), so as to perform different corresponding steps; for example, the system judges that the first heart rate data has not reached the pre-set value For example, the highest heart rate in the first heart rate data is 78 beats/min, the lowest heart rate is 65 beats/min, while the pre-set data peak-valley value is 80 beats/min, and the lowest heart rate is 62 beats/min. time/minute, then the system will directly generate the human health index data information corresponding to the first heart rate data, and input the human health index data information into the prediction model to obtain the human heart rate waveform corresponding to the first heart rate data Data and health indicator reports; for example, the system judges that the first heart rate data has reached the pre-set data peak and valley values, such as the highest heart rate in the first heart rate data is 81 beats/min, and the lowest heart rate is 60 beats/min, When the pre-set data peak-to-valley value is known to be 80 beats/min and the lowest heart rate is 62 beats/min, the system will input the first heart rate data into the pre-set prediction model for prediction , to predict the second heart rate data at the same time period as the first heart rate data but at a different time; For example, if the system judges that the predicted peak-to-valley value has reached the data peak-to-valley value, then the system will collect the human health index data information corresponding to the predicted second heart rate data, including (oxygen endurance, oxygen uptake and oxygen Consumption), and input these human health index data information into the prediction model for prediction, so as to predict the data analysis results of the human body, including (human heart rate waveform data and health index report), the data analysis of the first heart rate data Comparing the results with the data analysis results of the second heart rate data can effectively reduce the possibility that the human body may have an abnormal heart rate index in a certain period of time, but the smart wearable device does not detect it in time, and by predicting the heart rate activity of the human body, it can effectively Prevent the occurrence of sudden diseases.
在本实施例中,采用预置的连续心率传感器,采集人体的第一心率数据的步骤S1前,包括:In this embodiment, using a preset continuous heart rate sensor, before the step S1 of collecting the first heart rate data of the human body, includes:
S101:捕捉预置的传感器产生的效能,其中,所述效能包括温度数据和触感数据;S101: Capture performance generated by a preset sensor, wherein the performance includes temperature data and touch data;
S102:判断所述效能是否符合预设的启用条件;S102: Determine whether the performance meets a preset enabling condition;
S103:若是,则采集所述人体的身体数据,其中,所述身体数据包括心电数据、血压数据和血氧数据。S103: If yes, collect physical data of the human body, where the physical data includes electrocardiographic data, blood pressure data, and blood oxygen data.
在本实施例中,系统通过捕捉预先设置在智能穿戴设备中的效能,包括(温度数据和触感数据),判断这些效能能否符合预先设置的启用智能穿戴设备功能的条件,以执行对应的不同步骤;例如,系统判断到这些效能符合预先设置好的启用智能穿戴设备的条件,如穿戴智能穿戴设备时,人体温度需要达到30-40℃的区间值,智能穿戴设备的传感器获取到温度且达到这个区间值,即可使该智能穿戴设备启用心率监测的功能;如穿戴智能穿戴设备时,智能穿戴设备的传感器设置的触感范围被人体触碰一段时间后(如智能穿戴戒指戴在人体手指上、智能穿戴手表戴在人体手腕上),此时智能穿戴设备便会启用心率监测的功能,同时还可以监测到人体的身体数据如(心电数据、血压数据和血氧数据),并收录在智能穿戴设备中;例如,系统判断到这些效能不符合预先设置好的启用智能穿戴设备的条件,即此时该智能穿戴设备不会进行工作,即无法对心率进行正常监测。In this embodiment, the system captures the functions preset in the smart wearable device, including (temperature data and touch data), and judges whether these performances meet the preset conditions for enabling the function of the smart wearable device, so as to perform corresponding different functions. Steps; for example, the system judges that these performances meet the pre-set conditions for enabling smart wearable devices. For example, when wearing a smart wearable device, the human body temperature needs to reach the interval value of 30-40°C, and the sensor of the smart wearable device acquires the temperature and reaches This interval value can enable the smart wearable device to enable the heart rate monitoring function; for example, when wearing a smart wearable device, the touch range set by the sensor of the smart wearable device is touched by the human body for a period of time (for example, the smart wearable ring is worn on the finger of the human body) , the smart wearable watch is worn on the human wrist), at this time the smart wearable device will enable the heart rate monitoring function, and can also monitor the human body's physical data such as (ECG data, blood pressure data and blood oxygen data), and included in In the smart wearable device; for example, the system judges that these performances do not meet the pre-set conditions for enabling the smart wearable device, that is, the smart wearable device will not work at this time, that is, it cannot monitor the heart rate normally.
在本实施例中,采用预置的连续心率传感器,采集人体的第一心率数据的步骤S1中,包括:In this embodiment, the step S1 of collecting the first heart rate data of the human body by using a preset continuous heart rate sensor includes:
S11:获取所述人体的静息时间段和运动时间段;S11: Obtain the rest time period and exercise time period of the human body;
S12:基于所述静息时间段和所述运动时间段,对应归类所述第一心率数据中的静息心率数据和运动心率数据;S12: Correspondingly classify resting heart rate data and exercise heart rate data in the first heart rate data based on the rest time period and the exercise time period;
S13:采集所述静息心率数据的心率峰谷值和所述运动心率数据的心率峰谷值。S13: Collect peak-to-valley heart rate values of the resting heart rate data and peak-to-valley heart rate values of the exercise heart rate data.
在本实施例中,系统通过获取到该人体的静息时间段和运动时间段后,根据两个不同时间段所产生的不同心率,对应将第一心率数据中的不同心率归类至静息时间段和运动时间段,以得到静息心率数据和运动心率数据,同时系统会对两个心率数据的峰谷值进行采集,以便与预先设置好的数据峰谷值进行比对。In this embodiment, after acquiring the resting time period and the exercise time period of the human body, the system correspondingly classifies the different heart rates in the first heart rate data as resting Time period and exercise time period to obtain resting heart rate data and exercise heart rate data. At the same time, the system will collect the peak and valley values of the two heart rate data for comparison with the pre-set data peak and valley values.
在本实施例中,则将所述第一心率数据输入至预置的预测模型进行预测,得到对应预测时间段的第二心率数据的步骤S3前,包括:In this embodiment, the first heart rate data is input into a preset prediction model for prediction, and before step S3 of obtaining the second heart rate data corresponding to the prediction time period, it includes:
S301:采集心率的健康数据和健康指标数据,其中,所述健康数据包括心率区间数据和心率变异性区间数据,所述健康指标数据包括氧耐力、摄氧量和氧耗量;S301: Collect heart rate health data and health index data, wherein the health data includes heart rate interval data and heart rate variability interval data, and the health index data includes oxygen endurance, oxygen uptake, and oxygen consumption;
S302:将所述健康数据和所述健康指标数据作为训练样本,输入至训练模型中进行训练,得到训练完成的预测模型。S302: Input the health data and the health index data as training samples into a training model for training to obtain a trained prediction model.
在本实施例中,系统通过在互联网上采集最佳心率的健康数据和健康指标数据,包括(心率区间数据和心率变异性区间数据),并将这些数据输入至空白的训练模型中进行训练,即可得到一个以最佳心率数据作为中心值,能够对下一时间段的心率规律进行预测的预测模型,只需要将某个时间段的心率数据输入至预测模型中,即可通过预测模型得到连接该时间段的下个时间段的心率数据,例如采集到的第一心率数据属于一周内的心率规律数据,而输入至预测模型中进行预测的心率规律数据则属于下一周的心率规律数据;例如采集到的第一心率数据属于三天内的心率规律数据,则输入至预测模型中进行预测的心率规律数据也属于三天后的心率规律数据,即代表预测的心率数据与输入的心率数据时间段成正比。In this embodiment, the system collects optimal heart rate health data and health index data on the Internet, including (heart rate interval data and heart rate variability interval data), and inputs these data into a blank training model for training, You can get a prediction model that takes the best heart rate data as the center value and can predict the heart rate pattern in the next period of time. You only need to input the heart rate data of a certain period of time into the prediction model, and you can get it through the prediction model. The heart rate data of the next time period connected to this time period, for example, the collected first heart rate data belongs to the heart rate law data within a week, and the heart rate law data input into the prediction model for prediction belongs to the heart rate law data of the next week; For example, the collected first heart rate data belongs to the heart rate data within three days, then the heart rate data input to the prediction model for prediction also belongs to the heart rate data after three days, which means the predicted heart rate data and the input heart rate data time period Proportional.
在本实施例中,则将所述第一心率数据输入至预置的预测模型进行预测,得到对应预测时间段的第二心率数据的步骤S3中,包括:In this embodiment, the first heart rate data is input into a preset prediction model for prediction, and the step S3 of obtaining the second heart rate data corresponding to the prediction time period includes:
S31:获取预置时间段的部分第一心率数据;S31: Obtain part of the first heart rate data for a preset time period;
S32:采集所述部分第一心率数据对应的健康数值,其中,所述健康数值包括心率区间数值和心率变异性区间数值;S32: Collect a health value corresponding to the part of the first heart rate data, wherein the health value includes a heart rate interval value and a heart rate variability interval value;
S33:基于所述预置时间段和所述健康数值进行预测,得到与所述预置时间段相同时刻的人体预测心率数据。S33: Predict based on the preset time period and the health value, and obtain predicted heart rate data of the human body at the same time as the preset time period.
在本实施例中,系统通过获取到预先设置好时间段对应的部分第一心率数据,并采集到部分第一心率数据中对应的健康数值,包括(心率区间数值和心率变异性区间数值),即可通过预先训练好的预测模型对预先设置的时间段和健康数值进行预测,以得到与预先设置好时间段相同时段却不同时刻的人体预测心率数据;例如,采集到的部分第一心率数据属于一周内的心率规律数据,而输入至预测模型中进行预测的心率规律数据则属于下一周的心率规律数据;例如,采集到的部分第一心率数据属于三天内的心率规律数据,则输入至预测模型中进行预测的心率规律数据也属于三天后的心率规律数据,即代表预测的心率数据与输入的心率数据时间段成正比。In this embodiment, the system obtains part of the first heart rate data corresponding to the preset time period, and collects the corresponding health values in the part of the first heart rate data, including (heart rate interval value and heart rate variability interval value), The pre-set time period and health value can be predicted through the pre-trained prediction model to obtain the predicted heart rate data of the human body at the same time period as the pre-set time period but at different times; for example, part of the first heart rate data collected It belongs to the heart rate law data within one week, and the heart rate law data input into the prediction model for prediction belongs to the heart rate law data of the next week; The heart rate pattern data predicted in the prediction model also belongs to the heart rate pattern data after three days, which means that the predicted heart rate data is proportional to the time period of the input heart rate data.
在本实施例中,获取所述第二心率数据的预测峰谷值的步骤S4中,包括:In this embodiment, the step S4 of obtaining the predicted peak-to-valley value of the second heart rate data includes:
S41:获取所述预测峰谷值的持续时间;S41: Obtain the duration of the predicted peak-to-valley value;
S42:判断所述持续时间是否小于预设的时间段;S42: judging whether the duration is shorter than a preset time period;
S43:若是,则基于所述预测峰谷值对所述第二心率数据进行归类,得到所述第二心率数据对应的静息心率数据和运动心率数据。S43: If yes, classify the second heart rate data based on the predicted peak-to-valley value, and obtain resting heart rate data and exercise heart rate data corresponding to the second heart rate data.
在本实施例中,系统通过获取第二心率数据对应的预测峰谷值持续时间,判断持续时间是否小于预先设置好的时间段,以执行对应的不同步骤;例如,系统判断到预测峰谷值的持续时间小于预先设置好的时间段,则此时系统会基于预测峰谷值对第二心率数据进行归类统一,以分类得到第二心率数据中的静息心率数据和运动心率数据,即可得知预测峰谷值时静息时的谷值与运动时的峰值;例如,系统判断到预测峰谷值的持续时间并未小于预先设置好的时间段,则此时系统可以得知第二心率数据与第一心率数据具备一样的峰谷值,则代表人体可能会在下一个预测时间段内出现同样的症状,可以给人体提前做好预防措施,如多做有氧运动、保持充足睡眠。In this embodiment, the system obtains the duration of the predicted peak-to-valley value corresponding to the second heart rate data, and judges whether the duration is less than a preset time period, so as to perform corresponding different steps; for example, the system judges that the predicted peak-to-valley value If the duration is less than the preset time period, the system will classify and unify the second heart rate data based on the predicted peak and valley values at this time, so as to obtain the resting heart rate data and exercise heart rate data in the second heart rate data by classification, namely The valley value at rest and the peak value during exercise can be known when the peak-valley value is predicted; for example, if the system judges that the duration of the predicted peak-valley value is not less than the preset time period, The second heart rate data has the same peak-valley value as the first heart rate data, which means that the human body may have the same symptoms in the next predicted time period, and preventive measures can be taken for the human body in advance, such as doing more aerobic exercise and maintaining adequate sleep .
在本实施例中,将所述人体健康指标数据信息输入至所述预测模型中,得到所述人体的数据分析结果的步骤S7中,包括:In this embodiment, the step S7 of inputting the data information of the human body health index into the prediction model and obtaining the data analysis result of the human body includes:
S71:获取所述人体健康指标数据信息中的综合风险评估分数;S71: Obtain the comprehensive risk assessment score in the human health index data information;
S72:判断所述综合风险评估分数是否大于预置的分数评判区间;S72: Judging whether the comprehensive risk assessment score is greater than a preset score evaluation interval;
S73:若是,则基于所述人体健康指标数据信息设立对应的风险评估报告。S73: If yes, create a corresponding risk assessment report based on the human health index data information.
在本实施例中,系统基于预先设置好的分数评判表,获取到人体健康指标数据信息中对应的综合风险评估分数,并判断该综合风险评估分数是否大于预先设置的分数评判区间,以执行对应的不同步骤;例如,系统判断到综合风险评估分数为66分,而预先设置好的分数评判区间设定为60分,此时系统会判断到综合风险评估分数大于预先设置的分数评判区间,则会基于人体健康指标数据信息设立对应的风险评估报告,风险评估报告的内容包括提醒人体需要保持心率规律平衡,因为综合风险评估分数在分数评判区间的边缘,需要做好预防措施,如多做有氧运动、保持充足睡眠等;例如,系统判断到综合风险评估分数为45分,在已知预先设置好的分数评判区间设定为60分的情况下,此时系统会判断到综合风险评估分数小于预先设置的分数评判区间,则会基于人体健康指标数据信息设立对应的警告报告,提醒用户某个时间段的心率不正常,以警示用户需要改变自己的心率规律,注意自己的饮食习惯和生活习惯。In this embodiment, the system obtains the corresponding comprehensive risk assessment score in the human health index data information based on the preset score evaluation table, and judges whether the comprehensive risk assessment score is greater than the preset score evaluation interval, so as to perform corresponding different steps; for example, if the system judges that the comprehensive risk assessment score is 66 points, and the pre-set score evaluation interval is set to 60 points, then the system will judge that the comprehensive risk assessment score is greater than the preset score evaluation interval, then A corresponding risk assessment report will be established based on the data information of human health indicators. The content of the risk assessment report includes reminding the human body to maintain a balanced heart rate, because the comprehensive risk assessment score is on the edge of the score evaluation range, and preventive measures need to be taken. Aerobic exercise, maintaining adequate sleep, etc.; for example, the system judges that the comprehensive risk assessment score is 45 points, and if the pre-set score evaluation interval is set to 60 points, the system will judge the comprehensive risk assessment score at this time If it is less than the preset score evaluation interval, a corresponding warning report will be set up based on the data information of human health indicators to remind the user that the heart rate of a certain period of time is abnormal, so as to warn the user that they need to change their heart rate and pay attention to their eating habits and life. Habit.
在本实施例中,将所述人体健康指标数据信息输入至所述预测模型中,得到所述人体的数据分析结果的步骤S7后,包括:In this embodiment, after step S7 of inputting the data information of the human body health index into the prediction model and obtaining the data analysis result of the human body, it includes:
S701:获取所述第二心率数据对应的心率区间数据;S701: Obtain heart rate interval data corresponding to the second heart rate data;
S702:判断所述心率区间数据是否符合预置的心率规律;S702: Judging whether the heart rate interval data conforms to a preset heart rate law;
S703:若是,则将所述第二心率数据与所述第一心率数据进行比对,形成不同时间段的人体心率波形数据对比。S703: If yes, compare the second heart rate data with the first heart rate data to form a comparison of human heart rate waveform data in different time periods.
在本实施例中,系统通过获取到第二心率数据对应的心率区间数据后,判断心率区间数据能否符合预先设置好的心率规律,以执行对应的不同步骤;例如,系统获取到心率区间数据为68-76次/分,而预先设置好的心率规律为65-78次/分,则此时系统会判断到心率区间数据能够符合预先设置好的心率规律,即系统会将预测模型预测得到的第二心率数据与刚开始监测得到的第一心率数据进行比对,形成不同时间段但却属于相同时刻的人体心率波形数据对比,即可得知人体在下一时间段会不会出现异常心率状况,有效预防人体心率疾病的发生;例如,系统获取到心率区间数据为65-80次/分,在已知预先设置好的心率规律为65-78次/分的情况下,即此时系统会判断到心率区间数据无法符合预先设置好的心率规律,即系统会基于人体健康指标数据信息设立对应的警告报告,提醒用户某个时间段的心率不正常,以警示用户需要改变自己的心率规律,注意自己的饮食习惯和生活习惯。In this embodiment, after obtaining the heart rate interval data corresponding to the second heart rate data, the system judges whether the heart rate interval data conforms to the preset heart rate pattern, so as to perform corresponding different steps; for example, the system obtains the heart rate interval data is 68-76 beats/min, and the pre-set heart rate pattern is 65-78 beats/min, then the system will judge that the heart rate interval data can meet the pre-set heart rate pattern, that is, the system will predict the prediction model to get The second heart rate data of the human body is compared with the first heart rate data obtained at the beginning of monitoring to form a comparison of human heart rate waveform data of different time periods but belonging to the same time, so as to know whether the human body will have abnormal heart rate in the next time period conditions, effectively preventing the occurrence of human heart rate diseases; It will be judged that the heart rate interval data cannot meet the preset heart rate pattern, that is, the system will set up a corresponding warning report based on the data information of human health indicators to remind the user that the heart rate is abnormal in a certain period of time, so as to warn the user that he needs to change his heart rate pattern , Pay attention to your eating habits and living habits.
参考附图2,为本发明一实施例中基于智能穿戴设备的动态心率监测系统,包括:With reference to accompanying drawing 2, be the dynamic heart rate monitoring system based on smart wearable device in an embodiment of the present invention, comprise:
第一采集模块10,用于采用预置的连续心率传感器,采集人体的第一心率数据,其中,所述第一心率数据包括静息心率数据和运动心率数据;The
第一判断模块20,用于判断所述第一心率数据是否达到预置的数据峰谷值,其中,所述数据峰谷值包括数据波峰值和数据波谷值;The first judging
第一执行模块30,用于若达到,则将所述第一心率数据输入至预置的预测模型进行预测,得到对应预测时间段的第二心率数据;The
第一获取模块40,用于获取所述第二心率数据的预测峰谷值;A
第二判断模块50,用于判断所述预测峰谷值是否达到所述数据峰谷值;The
第二执行模块60,用于若达到,则采集基于所述第二心率数据对应的人体健康指标数据信息;The
第一分析模块70,用于将所述人体健康指标数据信息输入至所述预测模型中,得到所述人体的数据分析结果,其中,所述数据分析结果包括人体心率波形数据和健康指标报告。The
在本实施例中,第一采集模块10通过采用预先设置在智能穿戴设备中的连续心率传感器,采集人体某一时间段的第一心率数据,包括(静息心率数据和运动心率数据),而后第一判断模块20判断第一心率数据能否达到预先设置好的心率数据峰谷值,包括(心率数据波峰值和心率数据波谷值),以执行对应的不同步骤;例如,系统判断到第一心率数据并没有达到预先设置好的数据峰谷值,如第一心率数据中最高的心率为78次/分,最低的心率为65次/分,而预先设置好的数据峰谷值为80次/分,最低的心率为62次/分,则此时系统会直接生成与第一心率数据对应的人体健康指标数据信息,并将该人体健康指标数据信息输入至预测模型中,以得到与第一心率数据对应的人体心率波形数据和健康指标报告;例如,系统判断到第一心率数据达到了预先设置好的数据峰谷值,如第一心率数据中最高的心率为81次/分,最低的心率为60次/分,在已知预先设置好的数据峰谷值为80次/分,最低的心率为62次/分的情况下,则此时第一执行模块30会将第一心率数据输入至预先设置好的预测模型中进行预测,以预测得到与第一心率数据相同时段却不同时刻的第二心率数据;第一获取模块40通过获取第二心率数据的预测峰谷值,第二判断模块50判断预测峰谷值是否达到心率数据峰谷值,以执行对应的步骤;例如,系统判断到预测峰谷值达到了数据峰谷值,则此时第二执行模块60会采集预测得到的第二心率数据对应的人体健康指标数据信息,包括(氧耐力、摄氧量和氧耗量),第一分析模块70将这些人体健康指标数据信息输入至预测模型中进行预测,以预测得到该人体的数据分析结果,包括(人体心率波形数据和健康指标报告),将第一心率数据的数据分析结果和第二心率数据的数据分析结果进行比对,可以有效降低了人体可能在某个时间段出现心率指标异常,而智能穿戴设备却未及时发现的几率,且通过预测人体的心率活动能够有效预防突发性疾病的发生。In this embodiment, the first collection module 10 collects the first heart rate data of the human body for a certain period of time by using the continuous heart rate sensor preset in the smart wearable device, including (resting heart rate data and exercise heart rate data), and then The first judging module 20 judges whether the first heart rate data can reach the preset heart rate data peak-valley value, including (heart rate data peak value and heart rate data valley value), so as to perform corresponding different steps; for example, the system judges that the first The heart rate data does not reach the pre-set data peak and valley value, such as the highest heart rate in the first heart rate data is 78 beats/min, the lowest heart rate is 65 beats/min, and the pre-set data peak and valley value is 80 beats /min, and the lowest heart rate is 62 beats/min, then the system will directly generate the human health index data information corresponding to the first heart rate data, and input the human health index data information into the prediction model to obtain the Human heart rate waveform data and health index reports corresponding to the first heart rate data; heart rate is 60 beats/min, and the pre-set data peak-to-valley value is 80 beats/min, and the lowest heart rate is 62 beats/min, then the first execution module 30 will set the first heart rate The data is input into a pre-set prediction model for prediction, so as to predict the second heart rate data at the same time period as the first heart rate data but at a different time; the first acquisition module 40 acquires the predicted peak and valley values of the second heart rate data, The second judging module 50 judges whether the predicted peak-to-valley value reaches the peak-to-valley value of the heart rate data to perform corresponding steps; The obtained human health index data information corresponding to the second heart rate data includes (oxygen endurance, oxygen uptake and oxygen consumption), and the first analysis module 70 inputs these human health index data information into the prediction model for prediction, so as to predict Obtain the data analysis results of the human body, including (human heart rate waveform data and health index reports), and compare the data analysis results of the first heart rate data with the data analysis results of the second heart rate data, which can effectively reduce the possibility that the human body may be in a certain There is an abnormal heart rate index in a period of time, but the intelligent wearable device does not detect the probability in time, and by predicting the heart rate activity of the human body, the occurrence of sudden diseases can be effectively prevented.
在本实施例中,还包括:In this embodiment, it also includes:
第一捕捉模块,用于捕捉预置的传感器产生的效能,其中,所述效能包括温度数据和触感数据;The first capture module is configured to capture performance generated by preset sensors, wherein the performance includes temperature data and touch data;
第三判断模块,用于判断所述效能是否符合预设的启用条件;A third judging module, configured to judge whether the performance meets a preset enabling condition;
第三执行模块,用于若是,则采集所述人体的身体数据,其中,所述身体数据包括心电数据、血压数据和血氧数据。The third execution module is configured to, if yes, collect physical data of the human body, wherein the physical data includes electrocardiographic data, blood pressure data and blood oxygen data.
在本实施例中,系统通过捕捉预先设置在智能穿戴设备中的效能,包括(温度数据和触感数据),判断这些效能能否符合预先设置的启用智能穿戴设备功能的条件,以执行对应的不同步骤;例如,系统判断到这些效能符合预先设置好的启用智能穿戴设备的条件,如穿戴智能穿戴设备时,人体温度需要达到30-40℃的区间值,智能穿戴设备的传感器获取到温度且达到这个区间值,即可使该智能穿戴设备启用心率监测的功能;如穿戴智能穿戴设备时,智能穿戴设备的传感器设置的触感范围被人体触碰一段时间后(如智能穿戴戒指戴在人体手指上、智能穿戴手表戴在人体手腕上),此时智能穿戴设备便会启用心率监测的功能,同时还可以监测到人体的身体数据如(心电数据、血压数据和血氧数据),并收录在智能穿戴设备中;例如,系统判断到这些效能不符合预先设置好的启用智能穿戴设备的条件,即此时该智能穿戴设备不会进行工作,即无法对心率进行正常监测。In this embodiment, the system captures the functions preset in the smart wearable device, including (temperature data and touch data), and judges whether these performances meet the preset conditions for enabling the function of the smart wearable device, so as to perform corresponding different functions. Steps; for example, the system judges that these performances meet the pre-set conditions for enabling smart wearable devices. For example, when wearing a smart wearable device, the human body temperature needs to reach the interval value of 30-40°C, and the sensor of the smart wearable device acquires the temperature and reaches This interval value can enable the smart wearable device to enable the heart rate monitoring function; for example, when wearing a smart wearable device, the touch range set by the sensor of the smart wearable device is touched by the human body for a period of time (for example, the smart wearable ring is worn on the finger of the human body) , the smart wearable watch is worn on the human wrist), at this time the smart wearable device will enable the heart rate monitoring function, and can also monitor the human body's physical data such as (ECG data, blood pressure data and blood oxygen data), and included in In the smart wearable device; for example, the system judges that these performances do not meet the pre-set conditions for enabling the smart wearable device, that is, the smart wearable device will not work at this time, that is, it cannot monitor the heart rate normally.
在本实施例中,第一采集模块还包括:In this embodiment, the first collection module also includes:
第一获取单元,用于获取所述人体的静息时间段和运动时间段;a first acquiring unit, configured to acquire the rest time period and the exercise time period of the human body;
第一归类单元,用于基于所述静息时间段和所述运动时间段,对应归类所述第一心率数据中的静息心率数据和运动心率数据;A first classification unit, configured to correspondingly classify resting heart rate data and exercise heart rate data in the first heart rate data based on the resting time period and the exercise time period;
第一采集单元,用于采集所述静息心率数据的心率峰谷值和所述运动心率数据的心率峰谷值。The first collection unit is configured to collect peak-to-valley heart rate values of the resting heart rate data and peak-to-valley heart rate values of the exercise heart rate data.
在本实施例中,系统通过获取到该人体的静息时间段和运动时间段后,根据两个不同时间段所产生的不同心率,对应将第一心率数据中的不同心率归类至静息时间段和运动时间段,以得到静息心率数据和运动心率数据,同时系统会对两个心率数据的峰谷值进行采集,以便与预先设置好的数据峰谷值进行比对。In this embodiment, after acquiring the resting time period and the exercise time period of the human body, the system correspondingly classifies the different heart rates in the first heart rate data as resting Time period and exercise time period to obtain resting heart rate data and exercise heart rate data. At the same time, the system will collect the peak and valley values of the two heart rate data for comparison with the pre-set data peak and valley values.
在本实施例中,还包括:In this embodiment, it also includes:
第二采集模块,用于采集心率的健康数据和健康指标数据,其中,所述健康数据包括心率区间数据和心率变异性区间数据,所述健康指标数据包括氧耐力、摄氧量和氧耗量;The second collection module is used to collect heart rate health data and health index data, wherein the health data includes heart rate interval data and heart rate variability interval data, and the health index data includes oxygen endurance, oxygen uptake, and oxygen consumption ;
第一训练模块,用于将所述健康数据和所述健康指标数据作为训练样本,输入至训练模型中进行训练,得到训练完成的预测模型。The first training module is configured to input the health data and the health index data as training samples into a training model for training to obtain a trained prediction model.
在本实施例中,系统通过在互联网上采集最佳心率的健康数据和健康指标数据,包括(心率区间数据和心率变异性区间数据),并将这些数据输入至空白的训练模型中进行训练,即可得到一个以最佳心率数据作为中心值,能够对下一时间段的心率规律进行预测的预测模型,只需要将某个时间段的心率数据输入至预测模型中,即可通过预测模型得到连接该时间段的下个时间段的心率数据,例如采集到的第一心率数据属于一周内的心率规律数据,而输入至预测模型中进行预测的心率规律数据则属于下一周的心率规律数据;例如采集到的第一心率数据属于三天内的心率规律数据,则输入至预测模型中进行预测的心率规律数据也属于三天后的心率规律数据,即代表预测的心率数据与输入的心率数据时间段成正比。In this embodiment, the system collects optimal heart rate health data and health index data on the Internet, including (heart rate interval data and heart rate variability interval data), and inputs these data into a blank training model for training, You can get a prediction model that takes the best heart rate data as the center value and can predict the heart rate pattern in the next period of time. You only need to input the heart rate data of a certain period of time into the prediction model, and you can get it through the prediction model. The heart rate data of the next time period connected to this time period, for example, the collected first heart rate data belongs to the heart rate law data within a week, and the heart rate law data input into the prediction model for prediction belongs to the heart rate law data of the next week; For example, the collected first heart rate data belongs to the heart rate data within three days, then the heart rate data input to the prediction model for prediction also belongs to the heart rate data after three days, which means the predicted heart rate data and the input heart rate data time period Proportional.
在本实施例中,第一执行模块还包括:In this embodiment, the first execution module further includes:
第二获取单元,用于获取预置时间段的部分第一心率数据;a second acquisition unit, configured to acquire part of the first heart rate data for a preset time period;
第二采集单元,用于采集所述部分第一心率数据对应的健康数值,其中,所述健康数值包括心率区间数值和心率变异性区间数值;The second acquisition unit is configured to acquire health values corresponding to the part of the first heart rate data, wherein the health values include heart rate interval values and heart rate variability interval values;
第一预测单元,用于基于所述预置时间段和所述健康数值进行预测,得到与所述预置时间段相同时刻的人体预测心率数据。The first prediction unit is configured to perform prediction based on the preset time period and the health value, and obtain predicted heart rate data of the human body at the same time as the preset time period.
在本实施例中,系统通过获取到预先设置好时间段对应的部分第一心率数据,并采集到部分第一心率数据中对应的健康数值,包括(心率区间数值和心率变异性区间数值),即可通过预先训练好的预测模型对预先设置的时间段和健康数值进行预测,以得到与预先设置好时间段相同时段却不同时刻的人体预测心率数据;例如,采集到的部分第一心率数据属于一周内的心率规律数据,而输入至预测模型中进行预测的心率规律数据则属于下一周的心率规律数据;例如,采集到的部分第一心率数据属于三天内的心率规律数据,则输入至预测模型中进行预测的心率规律数据也属于三天后的心率规律数据,即代表预测的心率数据与输入的心率数据时间段成正比。In this embodiment, the system obtains part of the first heart rate data corresponding to the preset time period, and collects the corresponding health values in the part of the first heart rate data, including (heart rate interval value and heart rate variability interval value), The pre-set time period and health value can be predicted through the pre-trained prediction model to obtain the predicted heart rate data of the human body at the same time period as the pre-set time period but at different times; for example, part of the first heart rate data collected It belongs to the heart rate law data within one week, and the heart rate law data input into the prediction model for prediction belongs to the heart rate law data of the next week; The heart rate pattern data predicted in the prediction model also belongs to the heart rate pattern data after three days, which means that the predicted heart rate data is proportional to the time period of the input heart rate data.
在本实施例中,第一获取模块还包括:In this embodiment, the first acquisition module also includes:
第三获取单元,用于获取所述预测峰谷值的持续时间;A third acquisition unit, configured to acquire the duration of the predicted peak-to-valley value;
第一判断单元,用于判断所述持续时间是否小于预设的时间段;a first judging unit, configured to judge whether the duration is shorter than a preset time period;
第一执行单元,用于若是,则基于所述预测峰谷值对所述第二心率数据进行归类,得到所述第二心率数据对应的静息心率数据和运动心率数据。The first execution unit is configured to, if yes, classify the second heart rate data based on the predicted peak-to-valley value, and obtain resting heart rate data and exercise heart rate data corresponding to the second heart rate data.
在本实施例中,系统通过获取第二心率数据对应的预测峰谷值持续时间,判断持续时间是否小于预先设置好的时间段,以执行对应的不同步骤;例如,系统判断到预测峰谷值的持续时间小于预先设置好的时间段,则此时系统会基于预测峰谷值对第二心率数据进行归类统一,以分类得到第二心率数据中的静息心率数据和运动心率数据,即可得知预测峰谷值时静息时的谷值与运动时的峰值;例如,系统判断到预测峰谷值的持续时间并未小于预先设置好的时间段,则此时系统可以得知第二心率数据与第一心率数据具备一样的峰谷值,则代表人体可能会在下一个预测时间段内出现同样的症状,可以给人体提前做好预防措施,如多做有氧运动、保持充足睡眠。In this embodiment, the system obtains the duration of the predicted peak-to-valley value corresponding to the second heart rate data, and judges whether the duration is less than a preset time period, so as to perform corresponding different steps; for example, the system judges that the predicted peak-to-valley value If the duration is less than the preset time period, the system will classify and unify the second heart rate data based on the predicted peak and valley values at this time, so as to obtain the resting heart rate data and exercise heart rate data in the second heart rate data by classification, namely The valley value at rest and the peak value during exercise can be known when the peak-valley value is predicted; for example, if the system judges that the duration of the predicted peak-valley value is not less than the preset time period, The second heart rate data has the same peak-valley value as the first heart rate data, which means that the human body may have the same symptoms in the next predicted time period, and preventive measures can be taken for the human body in advance, such as doing more aerobic exercise and maintaining adequate sleep .
在本实施例中,第一分析模块还包括:In this embodiment, the first analysis module also includes:
第四获取单元,用于获取所述人体健康指标数据信息中的综合风险评估分数;A fourth obtaining unit, configured to obtain the comprehensive risk assessment score in the human health index data information;
第二判断单元,用于判断所述综合风险评估分数是否大于预置的分数评判区间;The second judging unit is used to judge whether the comprehensive risk assessment score is greater than a preset score judging interval;
第二执行单元,用于若是,则基于所述人体健康指标数据信息设立对应的风险评估报告。The second execution unit is configured to, if yes, create a corresponding risk assessment report based on the human health index data information.
在本实施例中,系统基于预先设置好的分数评判表,获取到人体健康指标数据信息中对应的综合风险评估分数,并判断该综合风险评估分数是否大于预先设置的分数评判区间,以执行对应的不同步骤;例如,系统判断到综合风险评估分数为66分,而预先设置好的分数评判区间设定为60分,此时系统会判断到综合风险评估分数大于预先设置的分数评判区间,则会基于人体健康指标数据信息设立对应的风险评估报告,风险评估报告的内容包括提醒人体需要保持心率规律平衡,因为综合风险评估分数在分数评判区间的边缘,需要做好预防措施,如多做有氧运动、保持充足睡眠等;例如,系统判断到综合风险评估分数为45分,在已知预先设置好的分数评判区间设定为60分的情况下,此时系统会判断到综合风险评估分数小于预先设置的分数评判区间,则会基于人体健康指标数据信息设立对应的警告报告,提醒用户某个时间段的心率不正常,以警示用户需要改变自己的心率规律,注意自己的饮食习惯和生活习惯。In this embodiment, the system obtains the corresponding comprehensive risk assessment score in the human health index data information based on the preset score evaluation table, and judges whether the comprehensive risk assessment score is greater than the preset score evaluation interval, so as to perform corresponding different steps; for example, if the system judges that the comprehensive risk assessment score is 66 points, and the pre-set score evaluation interval is set to 60 points, then the system will judge that the comprehensive risk assessment score is greater than the preset score evaluation interval, then A corresponding risk assessment report will be established based on the data information of human health indicators. The content of the risk assessment report includes reminding the human body to maintain a balanced heart rate, because the comprehensive risk assessment score is on the edge of the score evaluation range, and preventive measures need to be taken. Aerobic exercise, maintaining adequate sleep, etc.; for example, the system judges that the comprehensive risk assessment score is 45 points, and if the pre-set score evaluation interval is set to 60 points, the system will judge the comprehensive risk assessment score at this time If it is less than the preset score evaluation interval, a corresponding warning report will be set up based on the data information of human health indicators to remind the user that the heart rate of a certain period of time is abnormal, so as to warn the user that they need to change their heart rate and pay attention to their eating habits and life. Habit.
在本实施例中,还包括:In this embodiment, it also includes:
第二获取模块,用于获取所述第二心率数据对应的心率区间数据;A second acquiring module, configured to acquire heart rate interval data corresponding to the second heart rate data;
第四判断模块,用于判断所述心率区间数据是否符合预置的心率规律;The fourth judging module is used to judge whether the heart rate interval data conforms to the preset heart rate rule;
第四执行模块,用于若是,则将所述第二心率数据与所述第一心率数据进行比对,形成不同时间段的人体心率波形数据对比。The fourth execution module is configured to compare the second heart rate data with the first heart rate data if yes, to form a comparison of human heart rate waveform data in different time periods.
在本实施例中,系统通过获取到第二心率数据对应的心率区间数据后,判断心率区间数据能否符合预先设置好的心率规律,以执行对应的不同步骤;例如,系统获取到心率区间数据为68-76次/分,而预先设置好的心率规律为65-78次/分,则此时系统会判断到心率区间数据能够符合预先设置好的心率规律,即系统会将预测模型预测得到的第二心率数据与刚开始监测得到的第一心率数据进行比对,形成不同时间段但却属于相同时刻的人体心率波形数据对比,即可得知人体在下一时间段会不会出现异常心率状况,有效预防人体心率疾病的发生;例如,系统获取到心率区间数据为65-80次/分,在已知预先设置好的心率规律为65-78次/分的情况下,即此时系统会判断到心率区间数据无法符合预先设置好的心率规律,即系统会基于人体健康指标数据信息设立对应的警告报告,提醒用户某个时间段的心率不正常,以警示用户需要改变自己的心率规律,注意自己的饮食习惯和生活习惯。In this embodiment, after obtaining the heart rate interval data corresponding to the second heart rate data, the system judges whether the heart rate interval data conforms to the preset heart rate pattern, so as to perform corresponding different steps; for example, the system obtains the heart rate interval data is 68-76 beats/min, and the pre-set heart rate pattern is 65-78 beats/min, then the system will judge that the heart rate interval data can meet the pre-set heart rate pattern, that is, the system will predict the prediction model to get The second heart rate data of the human body is compared with the first heart rate data obtained at the beginning of monitoring to form a comparison of human heart rate waveform data of different time periods but belonging to the same time, so as to know whether the human body will have abnormal heart rate in the next time period conditions, effectively preventing the occurrence of human heart rate diseases; It will be judged that the heart rate interval data cannot meet the preset heart rate pattern, that is, the system will set up a corresponding warning report based on the data information of human health indicators to remind the user that the heart rate is abnormal in a certain period of time, so as to warn the user that he needs to change his heart rate pattern , Pay attention to your eating habits and living habits.
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。Although the embodiments of the present invention have been shown and described, those skilled in the art can understand that various changes, modifications and substitutions can be made to these embodiments without departing from the principle and spirit of the present invention. and modifications, the scope of the invention is defined by the appended claims and their equivalents.
Claims (8)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202211233533.5A CN115281646B (en) | 2022-10-10 | 2022-10-10 | Dynamic heart rate monitoring method and system based on intelligent wearable device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202211233533.5A CN115281646B (en) | 2022-10-10 | 2022-10-10 | Dynamic heart rate monitoring method and system based on intelligent wearable device |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN115281646A CN115281646A (en) | 2022-11-04 |
| CN115281646B true CN115281646B (en) | 2023-03-14 |
Family
ID=83819366
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202211233533.5A Active CN115281646B (en) | 2022-10-10 | 2022-10-10 | Dynamic heart rate monitoring method and system based on intelligent wearable device |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN115281646B (en) |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104161505A (en) * | 2014-08-13 | 2014-11-26 | 北京邮电大学 | Motion noise interference eliminating method suitable for wearable heart rate monitoring device |
| WO2015107891A1 (en) * | 2014-01-15 | 2015-07-23 | Seiko Epson Corporation | Biological information processing system, electronic apparatus, server system and biological information processing method |
| CN107320093A (en) * | 2017-08-16 | 2017-11-07 | 深圳市微克科技有限公司 | Device, Intelligent bracelet and heart rate measurement system with continuous heart rate measurement algorithm |
| US10582862B1 (en) * | 2015-04-22 | 2020-03-10 | Vital Connect, Inc. | Determination and monitoring of basal heart rate |
| CN113168908A (en) * | 2018-10-05 | 2021-07-23 | 阿利弗克公司 | Continuous monitoring of user health using mobile devices |
| CN113893516A (en) * | 2021-10-19 | 2022-01-07 | 成都拟合未来科技有限公司 | Mirror surface display method and system based on fitness information acquisition |
Family Cites Families (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9017265B2 (en) * | 2012-08-03 | 2015-04-28 | Polar Electro Oy | Transfer of measurement data related to physical exercise |
| JP6370209B2 (en) * | 2014-12-24 | 2018-08-08 | 日本光電工業株式会社 | Biological information prediction apparatus, biological information prediction method, and program |
| WO2019133491A1 (en) * | 2017-12-29 | 2019-07-04 | Valencell, Inc. | Methods of determining physiological information based on bayesian peak selection and monitoring devices incorporating the same |
| CN110710965B (en) * | 2018-07-13 | 2023-06-09 | 烟台淼盾物联技术有限公司 | Heart rate monitoring method and equipment |
| CN111870793B (en) * | 2020-07-08 | 2021-09-14 | 珠海格力电器股份有限公司 | Temperature pre-adjusting method and device, electronic equipment and readable storage medium |
| CN114098673B (en) * | 2021-10-27 | 2023-10-27 | 国网浙江省电力有限公司培训中心 | A sports health supervision method based on smart bracelets |
-
2022
- 2022-10-10 CN CN202211233533.5A patent/CN115281646B/en active Active
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2015107891A1 (en) * | 2014-01-15 | 2015-07-23 | Seiko Epson Corporation | Biological information processing system, electronic apparatus, server system and biological information processing method |
| CN104161505A (en) * | 2014-08-13 | 2014-11-26 | 北京邮电大学 | Motion noise interference eliminating method suitable for wearable heart rate monitoring device |
| US10582862B1 (en) * | 2015-04-22 | 2020-03-10 | Vital Connect, Inc. | Determination and monitoring of basal heart rate |
| CN107320093A (en) * | 2017-08-16 | 2017-11-07 | 深圳市微克科技有限公司 | Device, Intelligent bracelet and heart rate measurement system with continuous heart rate measurement algorithm |
| CN113168908A (en) * | 2018-10-05 | 2021-07-23 | 阿利弗克公司 | Continuous monitoring of user health using mobile devices |
| CN113893516A (en) * | 2021-10-19 | 2022-01-07 | 成都拟合未来科技有限公司 | Mirror surface display method and system based on fitness information acquisition |
Also Published As
| Publication number | Publication date |
|---|---|
| CN115281646A (en) | 2022-11-04 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN105118236B (en) | Paralysis falls to monitor and preventing mean and its processing method | |
| CN110780600B (en) | Sleep-assisting mattress with alarm function | |
| JP2023548642A (en) | Disease detection based on nervous system metrics | |
| US20170319063A1 (en) | Apparatus and method for recording and analysing lapses in memory and function | |
| US20160038061A1 (en) | Method for detecting falls and a fall detector | |
| JP2008011865A (en) | Health management device and program for functioning the same | |
| CN101972141A (en) | Primary care oriented heart cerebrovascular characteristic signal real-time sensing and monitoring system | |
| CN113520343A (en) | Sleep risk prediction method and device and terminal equipment | |
| CN106344034A (en) | Sleep quality evaluation system and method | |
| CN115670444A (en) | Motion monitoring method and device, wearable device and storage medium | |
| CN118629644A (en) | A fall risk assessment method and system | |
| CN115517653A (en) | Respiration monitoring method, respiration monitor and storage medium | |
| CN111904400B (en) | Electronic wrist strap | |
| CN116269266B (en) | AI-based health monitoring method and system for the elderly | |
| CN115281646B (en) | Dynamic heart rate monitoring method and system based on intelligent wearable device | |
| CN113261929B (en) | Mobile phone bad use behavior risk early warning system based on heart rate variability index | |
| CN114903247B (en) | Intelligent helmet system based on EEG-NIRS and MHGAT | |
| CN115568852A (en) | A depression risk assessment system and method based on a multi-sign bracelet | |
| CN117084646B (en) | Training injury monitoring and early warning method and system based on electronic sensing | |
| CN119108071A (en) | An interactive popular science method and device for cardiac rehabilitation of chronic diseases in the elderly | |
| CN118592907A (en) | Method and system for user health monitoring based on smart ring | |
| CN115590483B (en) | Smart phone with health measurement system | |
| CN112120715A (en) | Pressure monitoring and relieving system | |
| CN119257545B (en) | Sleep state detection method and wearable device | |
| CN110786827A (en) | A method of human health analysis based on intelligent insole |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| CP03 | Change of name, title or address | ||
| CP03 | Change of name, title or address |
Address after: 4208, Tower A, Hongrongyuan North Station Center, Minzhi Street North Station Community, Longhua District, Shenzhen City, Guangdong Province, 518000 Patentee after: Shenzhen Weike Technology Co.,Ltd. Country or region after: China Address before: 518131 1501, building e, phase II, Xinghe world, Minle community, Minzhi street, Longhua District, Shenzhen, Guangdong Province Patentee before: SHENZHEN WAKE UP TECHNOLOGY CO.,LTD. Country or region before: China |
|
| CP03 | Change of name, title or address | ||
| CP03 | Change of name, title or address |
Address after: 4208, Tower A, Hongrongyuan North Station Center, Minzhi Street North Station Community, Longhua District, Shenzhen City, Guangdong Province, 518000 Patentee after: SHENZHEN WAKE UP TECHNOLOGY CO.,LTD. Country or region after: China Address before: 4208, Tower A, Hongrongyuan North Station Center, Minzhi Street North Station Community, Longhua District, Shenzhen City, Guangdong Province, 518000 Patentee before: Shenzhen Weike Technology Co.,Ltd. Country or region before: China |
