CN114903750A - A lower extremity exoskeleton control system and lower extremity exoskeleton control method for paraplegic patients - Google Patents

A lower extremity exoskeleton control system and lower extremity exoskeleton control method for paraplegic patients Download PDF

Info

Publication number
CN114903750A
CN114903750A CN202210482063.XA CN202210482063A CN114903750A CN 114903750 A CN114903750 A CN 114903750A CN 202210482063 A CN202210482063 A CN 202210482063A CN 114903750 A CN114903750 A CN 114903750A
Authority
CN
China
Prior art keywords
exoskeleton
lower limb
gait
data
patient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210482063.XA
Other languages
Chinese (zh)
Inventor
喻洪流
程铭
李慧
唐心意
郭进
孟巧玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN202210482063.XA priority Critical patent/CN114903750A/en
Publication of CN114903750A publication Critical patent/CN114903750A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H3/00Appliances for aiding patients or disabled persons to walk about
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/1036Measuring load distribution, e.g. podologic studies
    • A61B5/1038Measuring plantar pressure during gait
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb
    • A61B5/1116Determining posture transitions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb
    • A61B5/112Gait analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H3/00Appliances for aiding patients or disabled persons to walk about
    • A61H3/02Crutches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H3/00Appliances for aiding patients or disabled persons to walk about
    • A61H2003/005Appliances for aiding patients or disabled persons to walk about with knee, leg or stump rests
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/12Driving means
    • A61H2201/1207Driving means with electric or magnetic drive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/16Physical interface with patient
    • A61H2201/1602Physical interface with patient kind of interface, e.g. head rest, knee support or lumbar support
    • A61H2201/164Feet or leg, e.g. pedal
    • A61H2201/1642Holding means therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5007Control means thereof computer controlled
    • A61H2201/501Control means thereof computer controlled connected to external computer devices or networks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5058Sensors or detectors
    • A61H2201/5071Pressure sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2230/00Measuring physical parameters of the user
    • A61H2230/62Posture
    • A61H2230/625Posture used as a control parameter for the apparatus

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Dentistry (AREA)
  • Physiology (AREA)
  • Epidemiology (AREA)
  • Pain & Pain Management (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Rehabilitation Therapy (AREA)
  • Rehabilitation Tools (AREA)

Abstract

本发明提出一种用于截瘫患者的下肢外骨骼控制系统及下肢外骨骼控制方法,系统包括:中央控制器、电源模块、传感器模块、人机交互装置、外骨骼动力驱动装置、穿戴式下肢外骨骼;通过传感器模块采集人体髋关节、腿部姿态、背部姿态、踝部压力、拐杖压力信息数据,建立患者步态相位数据集;根据截瘫患者康复训练步态相位,向外骨骼动力驱动模块的摆动相髋关节电机输出前运动方向助力矩,而向支撑相髋关节输出同步的向后伸展方向助力矩;完成对下肢外骨骼的主动训练控制,满足截瘫患者主动肌力康复训练需求。本发明可以队下肢外骨骼进行控制,能够实现截瘫患者前期的被动康复训练,以及中期根据患者姿态变化的主动康复训练,实现主动肌力恢复过程。

Figure 202210482063

The present invention provides a lower limb exoskeleton control system and a lower limb exoskeleton control method for paraplegic patients. The system includes: a central controller, a power supply module, a sensor module, a human-computer interaction device, an exoskeleton power drive device, a wearable lower limb exoskeleton Skeleton; the sensor module collects the information data of human hip joint, leg posture, back posture, ankle pressure, crutch pressure, and establishes a patient gait phase data set; The swing phase hip joint motor outputs the assist torque in the forward motion direction, and outputs the synchronous backward extension direction assist torque to the support phase hip joint; completes the active training control of the lower extremity exoskeleton, and meets the active muscle strength rehabilitation training needs of paraplegic patients. The invention can control the exoskeleton of the lower limbs, and can realize the passive rehabilitation training of the paraplegic patients in the early stage, and the active rehabilitation training according to the posture changes of the patients in the middle stage, so as to realize the active muscle strength recovery process.

Figure 202210482063

Description

一种用于截瘫患者的下肢外骨骼控制系统及下肢外骨骼控制 方法A lower extremity exoskeleton control system and lower extremity exoskeleton control method for paraplegic patients

技术领域technical field

本发明涉及医疗康复工程技术领域,尤其涉及一种用于截瘫患者的下肢外骨骼控制系统及下肢外骨骼控制方法。The invention relates to the technical field of medical rehabilitation engineering, in particular to a lower limb exoskeleton control system and a lower limb exoskeleton control method for paraplegic patients.

背景技术Background technique

全世界因脊髓损伤引起的肢体活动障碍患者每年的发病率在25万至50万之间,脊髓损伤以青壮年为主,年龄在40岁以下的占百分之八十,这对家庭和社会造成了长期而沉重的经济负担。传统的截瘫矫形器是无主动动力的,以双侧髋膝踝足矫形器(HKAFO)或双侧膝踝足矫形器(KAFO)最为常见,主要依靠患者身体重心前倾及骨盆侧倾达到跨步,而进行站立或者行走康复训练时需要是用拐杖。随着科技的进步,将机器人、新型传感技术、机电一体化等工程学与医学、仿生学相结合的产物——下肢康复机器人开始出现。融合机器人技术和康复医学原理的下肢外骨骼机器人可使截瘫患者在行走中达到康复治疗的目的,是解决下肢功能障碍康复难题的新手段,并在医疗康复过程中发挥着重要作用。The annual incidence of limb movement disorders caused by spinal cord injury in the world is between 250,000 and 500,000. Spinal cord injuries are mainly in young adults, and 80% are under the age of 40. caused a long-term and heavy economic burden. Traditional paraplegic orthoses have no active power, and bilateral hip-knee-ankle-foot orthoses (HKAFO) or bilateral knee-ankle-foot orthoses (KAFO) are the most common. walking, while standing or walking rehabilitation training requires the use of crutches. With the advancement of science and technology, the lower limb rehabilitation robot, which combines engineering such as robotics, new sensing technology, and mechatronics with medicine and bionics, has begun to appear. The lower extremity exoskeleton robot, which integrates robotics technology and the principles of rehabilitation medicine, can enable paraplegic patients to achieve the purpose of rehabilitation treatment while walking.

发明内容SUMMARY OF THE INVENTION

本发明的目的在于提出有效应用于截瘫患者下肢康复训练的肢外骨骼控制系统及下肢外骨骼控制方法。The purpose of the present invention is to propose a limb exoskeleton control system and a lower limb exoskeleton control method effectively applied to the lower limb rehabilitation training of paraplegic patients.

为达到上述目的,本发明提出一种用于截瘫患者的下肢外骨骼控制系统,包括穿戴式下肢外骨骼、中央控制器、人机交互装置、电源模块、传感器模块和动力驱动装置;In order to achieve the above object, the present invention proposes a lower limb exoskeleton control system for paraplegic patients, including a wearable lower limb exoskeleton, a central controller, a human-computer interaction device, a power supply module, a sensor module and a power drive device;

所述穿戴式下肢外骨骼以人体下肢结构设计,包括:背部支撑、腿部支撑和足底支撑;The wearable lower extremity exoskeleton is designed with the human lower extremity structure, including: back support, leg support and sole support;

所述中央控制器和所述电源模块固定于所述背部支撑,所述传感器模块包括分别设于腿部支撑相应关节处位置的左/右腿姿态传感器、膝关节角度传感器、背部姿态传感器和髋关节角度传感器,以及包括设于足底支撑的足底压力传感器;The central controller and the power module are fixed on the back support, and the sensor module includes a left/right leg posture sensor, a knee joint angle sensor, a back posture sensor and a hip sensor respectively arranged at the corresponding joints of the leg support. A joint angle sensor, and a plantar pressure sensor including a plantar support;

所述动力驱动装置驱动所述穿戴式下肢外骨骼各个部位活动,所述人机交互装置、电源模块、传感器模块和动力驱动装置均与所述中央控制器信号连接。The power drive device drives each part of the wearable lower limb exoskeleton to move, and the human-computer interaction device, the power supply module, the sensor module and the power drive device are all signal-connected to the central controller.

进一步的,还包括一根拐杖,所述拐杖上设有拐杖压力传感器,所述拐杖压力传感器与所述中央控制器信号连接。Further, it also includes a crutch, the crutch is provided with a crutch pressure sensor, and the crutch pressure sensor is signally connected to the central controller.

进一步的,所述动力驱动装置包括左髋部电机、右髋部电机和两台伺服驱动器;Further, the power drive device includes a left hip motor, a right hip motor and two servo drives;

所述左髋部电机和所述右髋部电机分别设于所述腿部支撑的左右髋部,通过两台所述伺服电机分别驱动。The left hip motor and the right hip motor are respectively arranged on the left and right hips of the leg support, and are respectively driven by the two servo motors.

本发明还提出一种用于截瘫患者的下肢外骨骼步态跟随控制方法,包括对人体姿态数据监测和步态相位分析;The present invention also provides a lower limb exoskeleton gait following control method for paraplegic patients, including monitoring of human body posture data and gait phase analysis;

利用传感器模块获取康复运动实时数据,采用卡尔曼滤波算法处理传感器模块人体姿态数据,结合下肢外骨骼髋关节角度的测量,得到:The sensor module is used to obtain the real-time data of rehabilitation exercise, the Kalman filter algorithm is used to process the human body posture data of the sensor module, and combined with the measurement of the hip joint angle of the lower extremity exoskeleton, we get:

Figure BDA0003627928280000021
Figure BDA0003627928280000021

Figure BDA0003627928280000022
Figure BDA0003627928280000022

K1,K2分别是,Δθ,

Figure BDA0003627928280000023
的增益,
Figure BDA0003627928280000024
Figure BDA0003627928280000025
分别是Δθ的估计值和预测值;
Figure BDA0003627928280000026
作为偏移量的最后时刻的测量值,以此得到较为准确的人体姿态数据。K 1 , K 2 are, respectively, Δθ,
Figure BDA0003627928280000023
gain,
Figure BDA0003627928280000024
and
Figure BDA0003627928280000025
are the estimated and predicted values of Δθ, respectively;
Figure BDA0003627928280000026
As the measurement value at the last moment of the offset, more accurate human posture data can be obtained.

所述步态相位分析方法为:根据足底压力传感器组的4个压力传感器在不同时间段输出的压力值以及外骨骼髋关节处的运动角度值,采用比例算法对所采集的人体姿态数据进行数据融合,识别步态相位。比例算法的总体框图如图2所示。结合不同步态相位,外骨骼髋关节角度变化幅度以及步态相位切换时的阈值角度,分析得出准确的步态相位。The gait phase analysis method is as follows: according to the pressure values output by the four pressure sensors of the plantar pressure sensor group in different time periods and the movement angle value of the exoskeleton hip joint, a proportional algorithm is used to analyze the collected human body posture data. Data fusion to identify gait phases. The overall block diagram of the proportional algorithm is shown in Figure 2. Combined with the different gait phase, the change range of the exoskeleton hip joint angle and the threshold angle when the gait phase is switched, the accurate gait phase is obtained by analysis.

该控制方法主要在于运动数据融合,其过程主要是:先对4个足底压力信号进行求和处理,确定足底所选压力区域的压力总和;P1、P2、P3和P4分别用来代表足底压力传感器FSRA、FSRB、FSRC和FSRD占压力信号总和的比例,FFSRA、FFSRB、FFSRC、和FFSRD分别代表足底压力传感器FSRA、FSRB、FSRC和FSRD在同一时刻所选压力区域检测的足底压力值,Pi(i=1,2,3,4)表示如下:The control method mainly lies in the fusion of motion data. The main process is as follows: firstly, the summation of the four plantar pressure signals is performed to determine the total pressure of the selected pressure area of the plantar; P 1 , P 2 , P 3 and P 4 are respectively It is used to represent the proportion of the plantar pressure sensors FSRA , FSRB , FSRC and FSRD to the total pressure signal. The plantar pressure value detected by the selected pressure area, P i (i=1, 2, 3, 4) is expressed as follows:

Figure BDA0003627928280000031
Figure BDA0003627928280000031

Figure BDA0003627928280000032
Figure BDA0003627928280000032

Figure BDA0003627928280000033
Figure BDA0003627928280000033

Figure BDA0003627928280000034
Figure BDA0003627928280000034

设定比例值阈值pinvFSRA、pinvFSRB、pinvFSRC、pinvFSRD;pinvFSRA、pinvFSRB、pinvFSRC、pinvFSRD分别为Pi(i=1,2,3,4)的阈值;阈值的设定根据Pi(i=1,2,3,4)的值在不同步态相位中占比最大者结合实际数据情况划分识别步态相位的阈值。Set the proportional value thresholds pinv FSRA , pinv FSRB , pinv FSRC , pinv FSRD ; pinv FSRA , pinv FSRB , pinv FSRC , pinv FSRD are the thresholds of Pi ( i =1, 2, 3, 4) respectively; the setting of the thresholds According to the value of P i (i=1, 2, 3, 4), which accounts for the largest proportion of different gait phases, and combined with actual data, the threshold for identifying gait phases is divided.

本发明还提出一种用于截瘫患者的下肢外骨骼控制方法,包括以下步骤:The present invention also provides a lower limb exoskeleton control method for paraplegic patients, comprising the following steps:

步骤1,设置针对不同患者的下肢外骨骼康复训练安全范围,患者穿戴好该下肢外骨骼后,通过中央控制器记录康复运动限制姿态位置;Step 1: Set the lower limb exoskeleton rehabilitation training safety range for different patients. After the patient wears the lower limb exoskeleton, the central controller records the position of the restricted posture of the rehabilitation exercise;

步骤2,启动下肢外骨骼,患者抓握住拐杖后,系统初始化进入站立姿态(零位),进入等待模式选择状态;Step 2, start the lower limb exoskeleton, after the patient grasps the crutches, the system initializes and enters the standing posture (zero position), and enters the waiting mode selection state;

步骤3,模式选择:选择被动康复训练模式,截瘫患者通过拐杖模块操控下肢外骨骼进行行走、坐下、站立训练动作,拐杖模块将指令传入中央控制器;中央控制器将控制指令传入伺服电机驱动器;Step 3, mode selection: select the passive rehabilitation training mode, the paraplegic patient controls the lower limb exoskeleton to perform walking, sitting and standing training actions through the crutch module, and the crutch module transmits the instructions to the central controller; the central controller transmits the control instructions to the servo motor driver;

或者选择选择主动步态训练模式,根据不同患者下肢肌力情况设置相对应的步态助力值;采集人体姿态数据,分析患者步态相位及运动趋势,中央控制器计算出相对应的电机驱动助力矩,发送控制指令传入伺服电机驱动器,控制下肢外骨骼跟随截瘫患者步态趋势运动;Or choose the active gait training mode, and set the corresponding gait assist value according to the lower limb muscle strength of different patients; collect human body posture data, analyze the patient's gait phase and movement trend, and the central controller calculates the corresponding motor drive assist torque, send control commands into the servo motor driver, and control the lower limb exoskeleton to follow the gait trend of the paraplegic patient;

步骤4,实时采集监测下肢外骨骼状态数据、人体姿态数据、足底压力和拐杖模块数据,根据给定的模糊规则进行模糊推理,然后对模糊参数进行解模糊,输出PID控制参数,以此调节控制系统参数;中央控制器发出控制指令控制下肢外骨骼做出相应的姿态动作;Step 4: Collect and monitor the state data of the lower extremity exoskeleton, human body posture data, plantar pressure and crutch module data in real time, carry out fuzzy inference according to the given fuzzy rules, then de-fuzzy the fuzzy parameters, and output the PID control parameters to adjust accordingly. Control system parameters; the central controller issues control commands to control the lower limb exoskeleton to make corresponding posture actions;

步骤6,训练周期结束,通过拐杖模块发送停止训练指令,系统进入站立等待状态;紧急情况通过急停按钮停止当前训练。Step 6: After the training period is over, a stop training instruction is sent through the crutch module, and the system enters a standing waiting state; in an emergency, the current training is stopped through the emergency stop button.

进一步的,所述被动康复训练模式包括以下步骤:Further, the passive rehabilitation training mode includes the following steps:

步骤A1,模式选择为被动康复训练模式,系统处于站立初始状态,中央控制器根据不同患者所设定的内环限制位置,设定相应的指定站立、左/右侧行走、坐下动作数据集;等待接收拐杖模块控制意图指令;Step A1, the mode is selected as passive rehabilitation training mode, the system is in the initial state of standing, and the central controller sets the corresponding designated standing, left/right walking, and sitting motion data sets according to the inner ring limit positions set by different patients. ;Wait to receive the crutch module control intent command;

步骤A2,电机内置编码器、左/右腿姿态传感器和背部姿态传感器进入状态数据采集状态,将下肢外骨骼实时状态传入中央控制器;Step A2, the built-in encoder of the motor, the left/right leg attitude sensor and the back attitude sensor enter the state data collection state, and the real-time state of the lower limb exoskeleton is transmitted to the central controller;

步骤A3,患者移动左侧拐杖模块,带动下肢外骨骼右侧作为摆动相向前移动,下肢外骨骼左侧作为支撑相稳定患者身体平衡;相反的,患者移动右侧拐杖模块,带动下肢外骨骼左侧作为摆动相向前移动,下肢外骨骼右侧作为支撑相稳定患者身体平衡;In step A3, the patient moves the left crutch module to drive the right side of the lower limb exoskeleton to move forward as a swing phase, and the left side of the lower limb exoskeleton acts as a support phase to stabilize the patient's body balance; on the contrary, the patient moves the right crutch module to drive the lower limb exoskeleton to the left side. The side moves forward as the swing phase, and the right side of the lower extremity exoskeleton acts as the support phase to stabilize the patient's body balance;

步骤A4,移动两侧拐杖模块于两侧,按下站立指令按钮,设备进入站立初始状态;Step A4, move the crutch modules on both sides to both sides, press the standing command button, and the device enters the initial standing state;

步骤A5,同时操作两侧拐杖模块,发送坐下动作指令,下肢外骨骼调节姿态,膝关节向内屈曲,髋关节向外伸展,执行坐下动作指令;Step A5, operate the crutch modules on both sides at the same time, send a sitting action command, adjust the posture of the lower limb exoskeleton, flex the knee joint inward, extend the hip joint outward, and execute the sitting action command;

步骤A6,根据被动训练过程姿态、电机力矩等数据变化调整模糊PID控制参数,输出对应的电机控制信号;Step A6, adjusting the fuzzy PID control parameters according to data changes such as attitude and motor torque in the passive training process, and outputting the corresponding motor control signal;

步骤A7,被动康复训练结束,设备进入站立初始状态。Step A7, the passive rehabilitation training ends, and the device enters the initial standing state.

进一步的,所述主动步态训练模式包括以下步骤:Further, the active gait training mode includes the following steps:

步骤B1:模式选择为主动步态训练模式,根据不同患者下肢肌力情况设置相对应的步态助力值,并设置步态训练内环限位;下肢外骨骼处于站立初始化状态;Step B1: The mode is selected as the active gait training mode, the corresponding gait assist value is set according to the lower limb muscle strength of different patients, and the limit of the gait training inner ring is set; the lower limb exoskeleton is in the standing initialization state;

步骤B2:开启主动步态训练模式,传感器模块采集患者与下肢外骨骼人机数据,包括患者姿态数据、足底压力数据及其变化趋势、髋关节扭矩、角速度和拐杖模块压力值及其变化趋势;Step B2: Turn on the active gait training mode, and the sensor module collects the human-machine data of the patient and the lower limb exoskeleton, including the patient's posture data, plantar pressure data and its change trend, hip joint torque, angular velocity, and crutch module pressure value and its change trend ;

步骤B3:采用卡尔曼滤波算法处理传感器模块人体姿态数据,结合髋关节角度、力矩和足底压力传感器组数据集,进行数据融合,分析患者步态相位以及步态相位趋势;Step B3: use the Kalman filter algorithm to process the human body posture data of the sensor module, and combine the data sets of the hip joint angle, torque and plantar pressure sensor group to perform data fusion, and analyze the patient's gait phase and gait phase trend;

步骤B4:根据主动训练过程姿态、电机力矩等数据变化调整模糊PID控制参数,中央控制器输出对应的控制信号调整伺服驱动器控制参数;Step B4: adjust the fuzzy PID control parameters according to the data changes such as attitude and motor torque in the active training process, and the central controller outputs the corresponding control signal to adjust the control parameters of the servo driver;

步骤B5:跟随患者步态意图进行辅助康复训练,进行主动行走、站立动作;Step B5: follow the patient's gait intention to carry out auxiliary rehabilitation training, and perform active walking and standing actions;

步骤B6:结束主动步态训练,下肢外骨骼进入站立等待状态。Step B6: End the active gait training, and the lower limb exoskeleton enters the standing waiting state.

与现有技术相比,本发明的优势之处在于:本发明的用于截瘫患者的下肢外骨骼主动康复训练模式能够跟随患者步态变化趋势给予一定助力矩辅助患者进行康复训练,并对患者髋膝关节状态、足底区域压力、拐杖区域压力进行实时监测,同时对下肢外骨骼控制参数进行实时调控以适应不同情况下的扰动变化,实现对患者的步态跟随主动康复训练效果。Compared with the prior art, the advantage of the present invention lies in that the active rehabilitation training mode of the lower limb exoskeleton for paraplegic patients of the present invention can follow the changing trend of the patient's gait and give a certain torque assisting the patient to perform rehabilitation training, and provide the patient with a certain amount of assistance for rehabilitation training. The state of the hip and knee joints, the pressure in the sole area and the pressure in the crutch area are monitored in real time. At the same time, the control parameters of the lower limb exoskeleton are adjusted in real time to adapt to the disturbance changes in different situations, so as to achieve the effect of active rehabilitation training for the patient's gait.

附图说明Description of drawings

图1为本发明实施例中用于截瘫患者的下肢外骨骼控制系统的结构示意图;1 is a schematic structural diagram of a lower limb exoskeleton control system for a paraplegic patient in an embodiment of the present invention;

图2为本发明实施例中同时包括步态相位分析方法中比例算法总体框图;2 is an overall block diagram of a proportional algorithm in the gait phase analysis method simultaneously included in the embodiment of the present invention;

图3为本发明实施例中用于截瘫患者的下肢外骨骼控制系统的系统框图;3 is a system block diagram of a lower limb exoskeleton control system for a paraplegic patient in an embodiment of the present invention;

图4为本发明实施例中CANopen网络通信架构图;Fig. 4 is the CANopen network communication architecture diagram in the embodiment of the present invention;

图5为本发明实施例中PID闭环控制框图的结构框图;5 is a structural block diagram of a PID closed-loop control block diagram in an embodiment of the present invention;

图6为本发明实施例中足底压力传感器组示意图。6 is a schematic diagram of a plantar pressure sensor group in an embodiment of the present invention.

具体实施方式Detailed ways

为使本发明的目的、技术方案和优点更加清楚,下面将对本发明的技术方案作进一步地说明。In order to make the objectives, technical solutions and advantages of the present invention clearer, the technical solutions of the present invention will be further described below.

如图1所示,本发明提出一种用于截瘫患者的下肢外骨骼控制系统,包括穿戴式下肢外骨骼、中央控制器100、人机交互装置、电源模块200、传感器模块和动力驱动装置;As shown in FIG. 1 , the present invention proposes a lower extremity exoskeleton control system for paraplegic patients, including a wearable lower extremity exoskeleton, a central controller 100, a human-computer interaction device, a power module 200, a sensor module and a power drive device;

穿戴式下肢外骨骼以人体下肢结构设计,包括:背部支撑、腿部支撑和足底支撑;The wearable lower extremity exoskeleton is designed with human lower extremity structure, including: back support, leg support and foot support;

中央控制器100和电源模块200固定于背部支撑,传感器模块包括分别设于腿部支撑相应关节处位置的左/右腿姿态传感器310、膝关节角度传感器320、背部姿态传感器350和髋关节角度传感器360,以及包括设于足底支撑的足底压力传感器340和膝关节角度传感器320。The central controller 100 and the power module 200 are fixed on the back support, and the sensor module includes a left/right leg posture sensor 310, a knee joint angle sensor 320, a back posture sensor 350 and a hip joint angle sensor, which are respectively arranged at the corresponding joints of the leg support. 360, and includes a plantar pressure sensor 340 and a knee joint angle sensor 320 provided on the sole support.

动力驱动装置驱动穿戴式下肢外骨骼各个部位活动,人机交互装置、电源模块200、传感器模块和动力驱动装置均与中央控制器信号连接。The power drive device drives the activities of various parts of the wearable lower limb exoskeleton, and the human-computer interaction device, the power supply module 200 , the sensor module and the power drive device are all signal-connected to the central controller.

还包括一根拐杖,拐杖上设有拐杖压力传感器,拐杖压力传感器与中央控制器信号连接,放置在拐杖肘托和手柄处的贴片薄膜压力传感器,其作用是通过人体在行走时施加在左右拐杖上的力的变化,判断左右两侧的压力值改变;并通过数据处理提前预知行走者的行走意图,在人体想要迈步时,髋关节电机能够自主运动,实现外骨骼的感知功能。It also includes a crutch, a crutch pressure sensor is provided on the crutch, the crutch pressure sensor is connected with the signal of the central controller, and the patch film pressure sensor is placed at the crutch elbow support and handle, and its function is to apply it to the left and right through the human body when walking. The change of the force on the crutches is used to judge the change of the pressure value on the left and right sides; and the walking intention of the walker is predicted in advance through data processing. When the human body wants to take a step, the hip motor can move autonomously, realizing the perception function of the exoskeleton.

动力驱动装置包括左髋部电机520、右髋部电机和两台伺服驱动器510;左髋部电机和右髋部电机分别设于腿部支撑的左右髋部,通过两台伺服电机分别驱动。外骨骼动力驱动模块包括左右髋关节处的三相永磁同步交流伺服电机、伺服驱动器和减速器,为下肢外骨骼提供动力;电源模块经过电压转换供给中央控制器和外骨骼动力驱动装置。电源系统包括12V和5V DC-DC降压电路,3.3V稳压电路,电源模块硬件电路还包括电压检测和过流保护部分。The power driving device includes a left hip motor 520, a right hip motor and two servo drivers 510; the left hip motor and the right hip motor are respectively arranged on the left and right hips of the leg support, and are driven by two servo motors respectively. The exoskeleton power drive module includes three-phase permanent magnet synchronous AC servo motor, servo driver and reducer at the left and right hip joints to provide power for the lower limb exoskeleton; the power module supplies the central controller and the exoskeleton power drive device through voltage conversion. The power supply system includes 12V and 5V DC-DC step-down circuit, 3.3V voltage regulator circuit, and the power module hardware circuit also includes voltage detection and overcurrent protection parts.

左右足底压力力传感器组,如图6所示,每一组为四个压力传感器组成;其作用是在外骨骼行走时,判断人体行走的步态相位,即处于支撑相或者处于摆动相。The left and right plantar pressure sensor groups, as shown in Figure 6, each group is composed of four pressure sensors; its function is to judge the gait phase of human walking when the exoskeleton is walking, that is, in the support phase or in the swing phase.

人机交互模块主要包括上位机和拐杖模块,是用户使用外骨骼的主要交互手段。上位机通过发送数据包将控制信息发送到中央控制器,中央控制器接收数据并执行。拐杖的人机交互是通过嵌在拐杖内部的电路实现的,主要通过无线传输将控制信息传到中央控制器,中央控制器再通过CAN通信将控制数据传到各部分。The human-computer interaction module mainly includes the host computer and the crutch module, which is the main interaction method for the user to use the exoskeleton. The upper computer sends the control information to the central controller by sending data packets, and the central controller receives the data and executes it. The human-computer interaction of the crutches is realized through the circuit embedded in the crutches. The control information is mainly transmitted to the central controller through wireless transmission, and the central controller transmits the control data to each part through CAN communication.

本发明还提出提供了一种用于截瘫患者的下肢外骨骼步态跟随控制方法,包括传感器模块获取康复运动实时数据,其中采用卡尔曼滤波算法处理传感器模块人体姿态数据,结合下肢外骨骼髋关节角度的测量,可以得到:The present invention also proposes and provides a lower limb exoskeleton gait following control method for paraplegic patients, which includes a sensor module to obtain real-time rehabilitation exercise data, wherein Kalman filtering algorithm is used to process the sensor module's human body posture data, combined with the lower limb exoskeleton hip joint To measure the angle, we can get:

Figure BDA0003627928280000081
Figure BDA0003627928280000081

Figure BDA0003627928280000082
Figure BDA0003627928280000082

K1,K2分别是,Δθ,

Figure BDA0003627928280000083
的增益,
Figure BDA0003627928280000084
Figure BDA0003627928280000085
分别是Δθ的估计值和预测值。
Figure BDA0003627928280000086
作为偏移量的最后时刻的测量值,以此得到较为准确的人体姿态数据。K 1 , K 2 are, respectively, Δθ,
Figure BDA0003627928280000083
gain,
Figure BDA0003627928280000084
and
Figure BDA0003627928280000085
are the estimated and predicted values of Δθ, respectively.
Figure BDA0003627928280000086
As the measurement value at the last moment of the offset, more accurate human posture data can be obtained.

同时包括步态相位分析方法:根据足底压力传感器组的4个压力传感器在不同时间段输出的压力值以及外骨骼髋关节处的运动角度值,采用比例算法对所采集的人体姿态数据进行数据融合,识别步态相位。比例算法的总体框图如图2所示。结合不同步态相位,外骨骼髋关节角度变化幅度以及步态相位切换时的阈值角度,分析得出准确的步态相位。At the same time, the gait phase analysis method is included: according to the pressure values output by the 4 pressure sensors of the plantar pressure sensor group in different time periods and the movement angle value of the exoskeleton hip joint, a proportional algorithm is used to analyze the collected human body posture data. Fusion to identify gait phases. The overall block diagram of the proportional algorithm is shown in Figure 2. Combined with the different gait phase, the change range of the exoskeleton hip joint angle and the threshold angle when the gait phase is switched, the accurate gait phase is obtained by analysis.

该控制方法主要在于运动数据融合,其过程主要是:先对4个足底压力信号进行求和处理,确定足底所选压力区域的压力总和。P1、P2、P3和P4分别用来代表足底压力传感器FSRA、FSRB、FSRC和FSRD占压力信号总和的比例,FFSRA、FFSRB、FFSRC、和FFSRD分别代表足底压力传感器(图6)FSRA、FSRB、FSRC和FSRD在同一时刻所选压力区域检测的足底压力值,Pi(i=1,2,3,4)表示如下:The control method mainly lies in the fusion of motion data, and the process is mainly as follows: firstly, the summation of the four plantar pressure signals is performed to determine the total pressure of the selected pressure area of the plantar. P 1 , P 2 , P 3 and P 4 are used to represent the proportion of the plantar pressure sensors FSRA, FSRB, FSRC and FSRD to the total pressure signal, respectively, and F FSRA , F FSRB , F FSRC , and F FSRD represent the plantar pressure, respectively The plantar pressure values detected by the sensors (Fig. 6) FSRA, FSRB, FSRC and FSRD in the selected pressure area at the same time, P i (i=1, 2, 3, 4) are expressed as follows:

Figure BDA0003627928280000087
Figure BDA0003627928280000087

Figure BDA0003627928280000088
Figure BDA0003627928280000088

Figure BDA0003627928280000089
Figure BDA0003627928280000089

Figure BDA00036279282800000810
Figure BDA00036279282800000810

设定比例值阈值pinvFSRA、pinvFSRB、pinvFSRC、pinvFSRD;pinvFSRA、pinvFSRB、pinvFSRC、pinvFSRD分别为Pi(i=1,2,3,4)的阈值。阈值的设定根据Pi(i=1,2,3,4)的值在不同步态相位中占比最大者结合实际数据情况划分识别步态相位的阈值。Set the proportional value thresholds pinv FSRA , pinv FSRB , pinv FSRC , pinv FSRD ; pinv FSRA , pinv FSRB , pinv FSRC , and pinv FSRD are the thresholds of P i (i=1, 2, 3, 4) respectively. The threshold is set according to the value of P i (i=1, 2, 3, 4) which accounts for the largest proportion of the different gait phases, and the threshold for identifying the gait phase is divided according to the actual data situation.

所述用于截瘫患者的下肢外骨骼控制系统,控制系统框图如图3所示,获得康复训练数据,根据患者肢体运动趋势与主动训练运动需求,调节目标运动轨迹,实现截瘫患者步态跟随;运动位置范围分为外环和内环,外环为穿戴式下肢外骨骼的机械限位,内环为根据不同患者的下肢屈伸安全范围设置的内环位置限位;预设运动助力值,根据主动康复训练参数实时变化的控制特点采用模糊PID控制算法对下肢外骨骼控制参数进行优化调节;具体控制流程框图如图5;For the lower limb exoskeleton control system for paraplegic patients, the block diagram of the control system is shown in Figure 3. Rehabilitation training data is obtained, and the target movement trajectory is adjusted according to the patient's limb movement trend and active training movement requirements, so as to realize the paraplegic patient's gait following; The movement position range is divided into an outer ring and an inner ring. The outer ring is the mechanical limit of the wearable lower extremity exoskeleton, and the inner ring is the inner ring position limit set according to the lower limb flexion and extension safety range of different patients. The control characteristics of real-time change of active rehabilitation training parameters The fuzzy PID control algorithm is used to optimize and adjust the control parameters of the lower extremity exoskeleton; the specific control flow diagram is shown in Figure 5;

根据本发明的一方面,一种用于截瘫患者的下肢外骨骼控制方法,包括如下步骤:According to one aspect of the present invention, a lower limb exoskeleton control method for paraplegic patients, comprising the following steps:

步骤1,设置针对不同患者的下肢外骨骼康复训练安全范围,患者穿戴好该下肢外骨骼后,通过中央控制器记录康复运动限制姿态位置;Step 1: Set the lower limb exoskeleton rehabilitation training safety range for different patients. After the patient wears the lower limb exoskeleton, the central controller records the position of the restricted posture of the rehabilitation exercise;

步骤2,启动下肢外骨骼,患者抓握住拐杖后,系统初始化进入站立姿态(零位),进入等待模式选择状态;Step 2, start the lower limb exoskeleton, after the patient grasps the crutches, the system initializes and enters the standing posture (zero position), and enters the waiting mode selection state;

步骤3,模式选择:选择被动康复训练模式,截瘫患者通过拐杖模块操控下肢外骨骼进行行走、坐下、站立训练动作,拐杖模块通过2.4G无线模块将指令传入中央控制器;中央控制器将控制指令通过CAN总线传入伺服电机驱动器;Step 3, mode selection: select the passive rehabilitation training mode, the paraplegic patient controls the lower limb exoskeleton to walk, sit and stand through the crutch module, and the crutch module transmits the instructions to the central controller through the 2.4G wireless module; the central controller will The control command is transmitted to the servo motor driver through the CAN bus;

步骤4,模式选择:选择主动步态训练模式,根据不同患者下肢肌力情况设置相对应的步态助力值;采集人体姿态数据,分析患者步态相位及运动趋势,中央控制器计算出相对应的电机驱动助力矩,通过CAN总线发送控制指令传入伺服电机驱动器,控制下肢外骨骼跟随截瘫患者步态趋势运动;达到下肢外骨骼步态跟随,患者主动康复训练的效果;Step 4, mode selection: select the active gait training mode, set the corresponding gait assist value according to the lower limb muscle strength of different patients; collect human body posture data, analyze the patient's gait phase and movement trend, and the central controller calculates the corresponding gait assist value. The motor drives the assist torque, and sends control commands to the servo motor driver through the CAN bus to control the lower limb exoskeleton to follow the gait trend of the paraplegic patient; achieve the effect of the lower limb exoskeleton gait following and the patient's active rehabilitation training;

步骤5,实时采集监测下肢外骨骼状态数据、人体姿态数据、足底压力和拐杖模块数据,根据给定的模糊规则进行模糊推理,然后对模糊参数进行解模糊,输出PID控制参数,以此调节控制系统参数;中央控制器发出控制指令控制下肢外骨骼做出相应的姿态动作;Step 5: Collect and monitor the state data of the lower extremity exoskeleton, human body posture data, plantar pressure and crutch module data in real time, carry out fuzzy inference according to the given fuzzy rules, then de-fuzzy the fuzzy parameters, and output the PID control parameters to adjust accordingly. Control system parameters; the central controller issues control commands to control the lower limb exoskeleton to make corresponding posture actions;

步骤6,训练周期结束,通过拐杖模块发送停止训练指令,系统进入站立等待状态;紧急情况通过急停按钮停止当前训练;Step 6, when the training period is over, a stop training instruction is sent through the crutch module, and the system enters a standing waiting state; in an emergency, the current training is stopped through the emergency stop button;

具体地,选择下肢外骨骼被动康复训练模式,患者通过拐杖模块向中央控制器传输控制意图指令,中央控制器根据患者意图向伺服电机驱动器发送控制指令,根据不同患者所设定的内环限制位置,对患者下肢进行指定动作的被动康复运动训练,。包括如下步骤:Specifically, the passive rehabilitation training mode of the lower extremity exoskeleton is selected, and the patient transmits the control intention command to the central controller through the crutch module, and the central controller sends the control command to the servo motor driver according to the patient's intention, according to the inner ring limit position set by different patients. , passive rehabilitation exercise training for the patient's lower limbs with specified movements. It includes the following steps:

步骤A1,模式选择为被动康复训练模式,系统处于站立初始状态,中央控制器根据不同患者所设定的内环限制位置,设定相应的指定站立、左/右侧行走、坐下动作数据集;等待接收拐杖模块控制意图指令;Step A1, the mode is selected as passive rehabilitation training mode, the system is in the initial state of standing, and the central controller sets the corresponding designated standing, left/right walking, and sitting motion data sets according to the inner ring limit positions set by different patients. ;Wait to receive the crutch module control intent command;

步骤A2,电机内置编码器、左/右腿姿态传感器和背部姿态传感器进入状态数据采集状态,将下肢外骨骼实时状态传入中央控制器;Step A2, the built-in encoder of the motor, the left/right leg attitude sensor and the back attitude sensor enter the state data collection state, and the real-time state of the lower limb exoskeleton is transmitted to the central controller;

步骤A3,患者移动左侧拐杖模块,带动下肢外骨骼右侧作为摆动相向前移动,下肢外骨骼左侧作为支撑相稳定患者身体平衡;相反的,患者移动右侧拐杖模块,带动下肢外骨骼左侧作为摆动相向前移动,下肢外骨骼右侧作为支撑相稳定患者身体平衡;In step A3, the patient moves the left crutch module to drive the right side of the lower limb exoskeleton to move forward as a swing phase, and the left side of the lower limb exoskeleton acts as a support phase to stabilize the patient's body balance; on the contrary, the patient moves the right crutch module to drive the lower limb exoskeleton to the left side. The side moves forward as the swing phase, and the right side of the lower extremity exoskeleton acts as the support phase to stabilize the patient's body balance;

步骤A4,移动两侧拐杖模块于两侧,按下站立指令按钮,设备进入站立初始状态;Step A4, move the crutch modules on both sides to both sides, press the standing command button, and the device enters the initial standing state;

步骤A5,同时操作两侧拐杖模块,发送坐下动作指令,下肢外骨骼调节姿态,膝关节向内屈曲,髋关节向外伸展,执行坐下动作指令;Step A5, operate the crutch modules on both sides at the same time, send a sitting action command, adjust the posture of the lower limb exoskeleton, flex the knee joint inward, extend the hip joint outward, and execute the sitting action command;

步骤A6,根据被动训练过程姿态、电机力矩等数据变化调整模糊PID控制参数,输出对应的电机控制信号;Step A6, adjusting the fuzzy PID control parameters according to data changes such as attitude and motor torque in the passive training process, and outputting the corresponding motor control signal;

步骤A7,被动康复训练结束,设备进入站立初始状态;Step A7, the passive rehabilitation training ends, and the equipment enters the initial standing state;

具体地,选择下肢外骨骼主动步态训练模式,开启主动步态训练模式后,传感器模块采集患者姿态数据、足底压力数据、髋关节扭矩和拐杖模块压力值;经过数据融合后下肢外骨骼设备将对患者步态相位进行识别,同时对患者步态变化趋势进行判断,跟随患者步态变化移动,并对患者下肢给予一定的助力矩,辅助患者完成相应的康复训练;主动康复训练可以很大的提高患者进行康复训练的积极性和康复效果。具体包括如下步骤:Specifically, the active gait training mode of the lower limb exoskeleton is selected, and after the active gait training mode is turned on, the sensor module collects the patient's posture data, plantar pressure data, hip joint torque and crutch module pressure value; after data fusion, the lower limb exoskeleton equipment The gait phase of the patient will be identified, and at the same time, the change trend of the patient's gait will be judged, followed by the movement of the patient's gait change, and a certain assist torque will be given to the patient's lower limbs to assist the patient to complete the corresponding rehabilitation training; active rehabilitation training can greatly It can improve the enthusiasm and rehabilitation effect of patients for rehabilitation training. Specifically include the following steps:

步骤B1:模式选择为主动步态训练模式,根据不同患者下肢肌力情况设置相对应的步态助力值,并设置步态训练内环限位;下肢外骨骼处于站立初始化状态;Step B1: The mode is selected as the active gait training mode, the corresponding gait assist value is set according to the lower limb muscle strength of different patients, and the limit of the gait training inner ring is set; the lower limb exoskeleton is in the standing initialization state;

步骤B2:开启主动步态训练模式,传感器模块采集患者与下肢外骨骼人机数据,包括患者姿态数据、足底压力数据及其变化趋势、髋关节扭矩、角速度和拐杖模块压力值及其变化趋势;Step B2: Turn on the active gait training mode, and the sensor module collects the human-machine data of the patient and the lower limb exoskeleton, including the patient's posture data, plantar pressure data and its change trend, hip joint torque, angular velocity, and crutch module pressure value and its change trend ;

步骤B3:采用卡尔曼滤波算法处理传感器模块人体姿态数据,结合髋关节角度、力矩和足底压力传感器组数据集,进行数据融合,分析患者步态相位以及步态相位趋势;Step B3: use the Kalman filter algorithm to process the human body posture data of the sensor module, and combine the data sets of the hip joint angle, torque and plantar pressure sensor group to perform data fusion, and analyze the patient's gait phase and gait phase trend;

步骤B4:根据主动训练过程姿态、电机力矩等数据变化调整模糊PID控制参数,中央控制器输出对应的控制信号调整伺服驱动器控制参数;Step B4: adjust the fuzzy PID control parameters according to the data changes such as attitude and motor torque in the active training process, and the central controller outputs the corresponding control signal to adjust the control parameters of the servo driver;

步骤B5:跟随患者步态意图进行辅助康复训练,进行主动行走、站立动作;Step B5: follow the patient's gait intention to carry out auxiliary rehabilitation training, and perform active walking and standing actions;

步骤B6:结束主动步态训练,下肢外骨骼进入站立等待状态;Step B6: End the active gait training, and the lower limb exoskeleton enters the standing waiting state;

另一方面,本发明对比常见的通信方式优缺点以及下肢外骨骼硬件平台的硬件资源的使用情况,确定本发明模块间的底层为CAN通信,采用CANopen通信协议;用于实现数据整合与解析的功能,整个控制系统的CANopen网络通信架构如图4所示;中央控制器为主机,髋关节的两个伺服驱动器、传感器模块系统、电源模块作为从机,每个从机均有相应的CAN网络接口。On the other hand, the present invention compares the advantages and disadvantages of common communication methods and the use of hardware resources of the lower limb exoskeleton hardware platform, and determines that the bottom layer between the modules of the present invention is CAN communication, and adopts CANopen communication protocol; Function, the CANopen network communication architecture of the entire control system is shown in Figure 4; the central controller is the master, the two servo drives of the hip joint, the sensor module system, and the power module are used as slaves, and each slave has a corresponding CAN network interface.

上述仅为本发明的优选实施例而已,并不对本发明起到任何限制作用。任何所属技术领域的技术人员,在不脱离本发明的技术方案的范围内,对本发明揭露的技术方案和技术内容做任何形式的等同替换或修改等变动,均属未脱离本发明的技术方案的内容,仍属于本发明的保护范围之内。The above are only preferred embodiments of the present invention, and do not have any limiting effect on the present invention. Any person skilled in the art, within the scope of not departing from the technical solution of the present invention, makes any form of equivalent replacement or modification to the technical solution and technical content disclosed in the present invention, all belong to the technical solution of the present invention. content still falls within the protection scope of the present invention.

Claims (7)

1.一种用于截瘫患者的下肢外骨骼控制系统,其特征在于,包括穿戴式下肢外骨骼、中央控制器、人机交互装置、电源模块、传感器模块和动力驱动装置;1. a lower extremity exoskeleton control system for paraplegic patients, is characterized in that, comprises wearable lower extremity exoskeleton, central controller, human-computer interaction device, power supply module, sensor module and power drive device; 所述穿戴式下肢外骨骼以人体下肢结构设计,包括:背部支撑、腿部支撑和足底支撑;The wearable lower extremity exoskeleton is designed with the human lower extremity structure, including: back support, leg support and sole support; 所述中央控制器和所述电源模块固定于所述背部支撑,所述传感器模块包括分别设于腿部支撑相应关节处位置的左/右腿姿态传感器、膝关节角度传感器、背部姿态传感器和髋关节角度传感器,以及包括设于足底支撑的足底压力传感器;The central controller and the power module are fixed on the back support, and the sensor module includes a left/right leg posture sensor, a knee joint angle sensor, a back posture sensor and a hip sensor respectively arranged at the corresponding joints of the leg support. A joint angle sensor, and a plantar pressure sensor including a plantar support; 所述动力驱动装置驱动所述穿戴式下肢外骨骼各个部位活动,所述人机交互装置、电源模块、传感器模块和动力驱动装置均与所述中央控制器信号连接。The power drive device drives each part of the wearable lower limb exoskeleton to move, and the human-computer interaction device, the power supply module, the sensor module and the power drive device are all signal-connected to the central controller. 2.根据权利要求1所述的用于截瘫患者的下肢外骨骼控制系统,其特征在于,还包括一根拐杖,所述拐杖上设有拐杖压力传感器,所述拐杖压力传感器与所述中央控制器信号连接。2 . The lower limb exoskeleton control system for paraplegic patients according to claim 1 , further comprising a crutch, a crutch pressure sensor is provided on the crutch, and the crutch pressure sensor is connected to the central control system. 3 . signal connection. 3.根据权利要求1所述的用于截瘫患者的下肢外骨骼控制系统,其特征在于,所述动力驱动装置包括左髋部电机、右髋部电机和两台伺服驱动器;3. The lower limb exoskeleton control system for paraplegic patients according to claim 1, wherein the power drive device comprises a left hip motor, a right hip motor and two servo drives; 所述左髋部电机和所述右髋部电机分别设于所述腿部支撑的左右髋部,通过两台所述伺服电机分别驱动。The left hip motor and the right hip motor are respectively arranged on the left and right hips of the leg support, and are respectively driven by the two servo motors. 4.一种用于截瘫患者的下肢外骨骼步态跟随控制方法,使用如权利要求1-3中所述的下肢外骨骼控制系统实现,包括对人体姿态数据监测和步态相位分析;4. A lower extremity exoskeleton gait following control method for paraplegic patients, realized using the lower extremity exoskeleton control system as described in claims 1-3, including monitoring of human body posture data and gait phase analysis; 利用传感器模块获取康复运动实时数据,采用卡尔曼滤波算法处理传感器模块人体姿态数据,结合下肢外骨骼髋关节角度的测量,得到:The sensor module is used to obtain the real-time data of rehabilitation exercise, the Kalman filter algorithm is used to process the human body posture data of the sensor module, and combined with the measurement of the hip joint angle of the lower extremity exoskeleton, we get:
Figure FDA0003627928270000021
Figure FDA0003627928270000021
Figure FDA0003627928270000022
Figure FDA0003627928270000022
K1,K2分别是,Δθ,
Figure FDA0003627928270000023
的增益,
Figure FDA0003627928270000024
Figure FDA0003627928270000025
分别是Δθ的估计值和预测值;
Figure FDA0003627928270000026
作为偏移量的最后时刻的测量值,以此得到较为准确的人体姿态数据;
K 1 , K 2 are, respectively, Δθ,
Figure FDA0003627928270000023
gain,
Figure FDA0003627928270000024
and
Figure FDA0003627928270000025
are the estimated and predicted values of Δθ, respectively;
Figure FDA0003627928270000026
As the measurement value of the last moment of the offset, more accurate human body posture data can be obtained;
所述步态相位分析方法为:根据足底压力传感器组的4个压力传感器在不同时间段输出的压力值以及外骨骼髋关节处的运动角度值,采用比例算法对所采集的人体姿态数据进行数据融合,识别步态相位。比例算法的总体框图如图2所示。结合不同步态相位,外骨骼髋关节角度变化幅度以及步态相位切换时的阈值角度,分析得出准确的步态相位。The gait phase analysis method is as follows: according to the pressure values output by the four pressure sensors of the plantar pressure sensor group in different time periods and the movement angle value of the exoskeleton hip joint, a proportional algorithm is used to analyze the collected human body posture data. Data fusion to identify gait phases. The overall block diagram of the proportional algorithm is shown in Figure 2. Combined with the different gait phase, the change range of the exoskeleton hip joint angle and the threshold angle when the gait phase is switched, the accurate gait phase is obtained by analysis. 该控制方法主要在于运动数据融合,其过程主要是:先对4个足底压力信号进行求和处理,确定足底所选压力区域的压力总和;P1、P2、P3和P4分别用来代表足底压力传感器FSRA、FSRB、FSRC和FSRD占压力信号总和的比例,FFSRA、FFSRB、FFSRC、和FFSRD分别代表足底压力传感器FSRA、FSRB、FSRC和FSRD在同一时刻所选压力区域检测的足底压力值,Pi(i=1,2,3,4)表示如下:The control method mainly lies in the fusion of motion data. The main process is as follows: firstly, the summation of the four plantar pressure signals is performed to determine the total pressure of the selected pressure area of the plantar; P 1 , P 2 , P 3 and P 4 are respectively It is used to represent the proportion of the plantar pressure sensors FSRA , FSRB , FSRC and FSRD to the total pressure signal. The plantar pressure value detected by the selected pressure area, P i (i=1, 2, 3, 4) is expressed as follows:
Figure FDA0003627928270000027
Figure FDA0003627928270000027
Figure FDA0003627928270000028
Figure FDA0003627928270000028
Figure FDA0003627928270000029
Figure FDA0003627928270000029
Figure FDA00036279282700000210
Figure FDA00036279282700000210
设定比例值阈值pinvFSRA、pinvFSRB、pinvFSRC、pinvFSRD;pinvFSRA、pinvFSRB、pinvFSRC、pinvFSRD分别为Pi(i=1,2,3,4)的阈值;阈值的设定根据Pi(i=1,2,3,4)的值在不同步态相位中占比最大者结合实际数据情况划分识别步态相位的阈值。Set the proportional value thresholds pinv FSRA , pinv FSRB , pinv FSRC , pinv FSRD ; pinv FSRA , pinv FSRB , pinv FSRC , pinv FSRD are the thresholds of Pi ( i =1, 2, 3, 4) respectively; the setting of the thresholds According to the value of P i (i=1, 2, 3, 4), which accounts for the largest proportion of different gait phases, and combined with actual data, the threshold for identifying gait phases is divided.
5.一种用于截瘫患者的下肢外骨骼控制方法,使用如权利要求1-3中任意一项所述的的下肢外骨骼控制系统,以及权利要求4中的下肢外骨骼步态跟随控制方法,其特征在于,包括以下步骤:5. A lower extremity exoskeleton control method for paraplegic patients, using the lower extremity exoskeleton control system according to any one of claims 1-3, and the lower extremity exoskeleton gait following control method in claim 4 , is characterized in that, comprises the following steps: 步骤1,设置针对不同患者的下肢外骨骼康复训练安全范围,患者穿戴好该下肢外骨骼后,通过中央控制器记录康复运动限制姿态位置;Step 1: Set the lower limb exoskeleton rehabilitation training safety range for different patients. After the patient wears the lower limb exoskeleton, the central controller records the position of the restricted posture of the rehabilitation exercise; 步骤2,启动下肢外骨骼,患者抓握住拐杖后,系统初始化进入站立姿态(零位),进入等待模式选择状态;Step 2, start the lower limb exoskeleton, after the patient grasps the crutches, the system initializes and enters the standing posture (zero position), and enters the waiting mode selection state; 步骤3,模式选择:选择被动康复训练模式,截瘫患者通过拐杖模块操控下肢外骨骼进行行走、坐下、站立训练动作,拐杖模块将指令传入中央控制器;中央控制器将控制指令传入伺服电机驱动器;Step 3, mode selection: select the passive rehabilitation training mode, the paraplegic patient controls the lower limb exoskeleton to perform walking, sitting and standing training actions through the crutch module, and the crutch module transmits the instructions to the central controller; the central controller transmits the control instructions to the servo motor driver; 或者选择选择主动步态训练模式,根据不同患者下肢肌力情况设置相对应的步态助力值;采集人体姿态数据,分析患者步态相位及运动趋势,中央控制器计算出相对应的电机驱动助力矩,发送控制指令传入伺服电机驱动器,控制下肢外骨骼跟随截瘫患者步态趋势运动;Or choose the active gait training mode, and set the corresponding gait assist value according to the lower limb muscle strength of different patients; collect human body posture data, analyze the patient's gait phase and movement trend, and the central controller calculates the corresponding motor drive assist torque, send control commands into the servo motor driver, and control the lower limb exoskeleton to follow the gait trend of the paraplegic patient; 步骤4,实时采集监测下肢外骨骼状态数据、人体姿态数据、足底压力和拐杖模块数据,根据给定的模糊规则进行模糊推理,然后对模糊参数进行解模糊,输出PID控制参数,以此调节控制系统参数;中央控制器发出控制指令控制下肢外骨骼做出相应的姿态动作;Step 4: Collect and monitor the state data of the lower extremity exoskeleton, human body posture data, plantar pressure and crutch module data in real time, carry out fuzzy inference according to the given fuzzy rules, then de-fuzzy the fuzzy parameters, and output the PID control parameters to adjust accordingly. Control system parameters; the central controller issues control commands to control the lower limb exoskeleton to make corresponding posture actions; 步骤6,训练周期结束,通过拐杖模块发送停止训练指令,系统进入站立等待状态;紧急情况通过急停按钮停止当前训练。Step 6: After the training period is over, a stop training instruction is sent through the crutch module, and the system enters a standing waiting state; in an emergency, the current training is stopped through the emergency stop button. 6.根据权利要求5所述的用于截瘫患者的下肢外骨骼控制方法,其特征在于,所述被动康复训练模式包括以下步骤:6. The lower limb exoskeleton control method for paraplegic patients according to claim 5, wherein the passive rehabilitation training mode comprises the following steps: 步骤A1,模式选择为被动康复训练模式,系统处于站立初始状态,中央控制器根据不同患者所设定的内环限制位置,设定相应的指定站立、左/右侧行走、坐下动作数据集;等待接收拐杖模块控制意图指令;Step A1, the mode is selected as passive rehabilitation training mode, the system is in the initial state of standing, and the central controller sets the corresponding designated standing, left/right walking, and sitting motion data sets according to the inner ring limit positions set by different patients. ;Wait to receive the crutch module control intent command; 步骤A2,电机内置编码器、左/右腿姿态传感器和背部姿态传感器进入状态数据采集状态,将下肢外骨骼实时状态传入中央控制器;Step A2, the built-in encoder of the motor, the left/right leg attitude sensor and the back attitude sensor enter the state data collection state, and the real-time state of the lower limb exoskeleton is transmitted to the central controller; 步骤A3,患者移动左侧拐杖模块,带动下肢外骨骼右侧作为摆动相向前移动,下肢外骨骼左侧作为支撑相稳定患者身体平衡;相反的,患者移动右侧拐杖模块,带动下肢外骨骼左侧作为摆动相向前移动,下肢外骨骼右侧作为支撑相稳定患者身体平衡;In step A3, the patient moves the left crutch module to drive the right side of the lower limb exoskeleton to move forward as a swing phase, and the left side of the lower limb exoskeleton acts as a support phase to stabilize the patient's body balance; on the contrary, the patient moves the right crutch module to drive the lower limb exoskeleton to the left side. The side moves forward as the swing phase, and the right side of the lower extremity exoskeleton acts as the support phase to stabilize the patient's body balance; 步骤A4,移动两侧拐杖模块于两侧,按下站立指令按钮,设备进入站立初始状态;Step A4, move the crutch modules on both sides to both sides, press the standing command button, and the device enters the initial standing state; 步骤A5,同时操作两侧拐杖模块,发送坐下动作指令,下肢外骨骼调节姿态,膝关节向内屈曲,髋关节向外伸展,执行坐下动作指令;Step A5, operate the crutch modules on both sides at the same time, send a sitting action command, adjust the posture of the lower limb exoskeleton, flex the knee joint inward, extend the hip joint outward, and execute the sitting action command; 步骤A6,根据被动训练过程姿态、电机力矩等数据变化调整模糊PID控制参数,输出对应的电机控制信号;Step A6, adjusting the fuzzy PID control parameters according to data changes such as attitude and motor torque in the passive training process, and outputting the corresponding motor control signal; 步骤A7,被动康复训练结束,设备进入站立初始状态。Step A7, the passive rehabilitation training ends, and the device enters the initial standing state. 7.根据权利要求5所述的用于截瘫患者的下肢外骨骼控制方法,其特征在于,所述主动步态训练模式包括以下步骤:7. The lower limb exoskeleton control method for paraplegic patients according to claim 5, wherein the active gait training mode comprises the following steps: 步骤B1:模式选择为主动步态训练模式,根据不同患者下肢肌力情况设置相对应的步态助力值,并设置步态训练内环限位;下肢外骨骼处于站立初始化状态;Step B1: The mode is selected as the active gait training mode, the corresponding gait assist value is set according to the lower limb muscle strength of different patients, and the limit of the gait training inner ring is set; the lower limb exoskeleton is in the standing initialization state; 步骤B2:开启主动步态训练模式,传感器模块采集患者与下肢外骨骼人机数据,包括患者姿态数据、足底压力数据及其变化趋势、髋关节扭矩、角速度和拐杖模块压力值及其变化趋势;Step B2: Turn on the active gait training mode, and the sensor module collects the human-machine data of the patient and the lower limb exoskeleton, including the patient's posture data, plantar pressure data and its change trend, hip joint torque, angular velocity, and crutch module pressure value and its change trend ; 步骤B3:采用卡尔曼滤波算法处理传感器模块人体姿态数据,结合髋关节角度、力矩和足底压力传感器组数据集,进行数据融合,分析患者步态相位以及步态相位趋势;Step B3: use the Kalman filter algorithm to process the human body posture data of the sensor module, and combine the data sets of the hip joint angle, torque and plantar pressure sensor group to perform data fusion, and analyze the patient's gait phase and gait phase trend; 步骤B4:根据主动训练过程姿态、电机力矩等数据变化调整模糊PID控制参数,中央控制器输出对应的控制信号调整伺服驱动器控制参数;Step B4: adjust the fuzzy PID control parameters according to the data changes such as attitude and motor torque in the active training process, and the central controller outputs the corresponding control signal to adjust the control parameters of the servo driver; 步骤B5:跟随患者步态意图进行辅助康复训练,进行主动行走、站立动作;Step B5: follow the patient's gait intention to carry out auxiliary rehabilitation training, and perform active walking and standing actions; 步骤B6:结束主动步态训练,下肢外骨骼进入站立等待状态。Step B6: End the active gait training, and the lower limb exoskeleton enters the standing waiting state.
CN202210482063.XA 2022-05-05 2022-05-05 A lower extremity exoskeleton control system and lower extremity exoskeleton control method for paraplegic patients Pending CN114903750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210482063.XA CN114903750A (en) 2022-05-05 2022-05-05 A lower extremity exoskeleton control system and lower extremity exoskeleton control method for paraplegic patients

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210482063.XA CN114903750A (en) 2022-05-05 2022-05-05 A lower extremity exoskeleton control system and lower extremity exoskeleton control method for paraplegic patients

Publications (1)

Publication Number Publication Date
CN114903750A true CN114903750A (en) 2022-08-16

Family

ID=82767169

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210482063.XA Pending CN114903750A (en) 2022-05-05 2022-05-05 A lower extremity exoskeleton control system and lower extremity exoskeleton control method for paraplegic patients

Country Status (1)

Country Link
CN (1) CN114903750A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116237929A (en) * 2022-12-16 2023-06-09 燕山大学 A bio-fusion parallel hip joint rehabilitation exoskeleton control system and method
CN117159336A (en) * 2023-11-03 2023-12-05 首都医科大学宣武医院 Rehabilitation training method, device and electronic equipment
CN120382467A (en) * 2025-06-27 2025-07-29 中国医学科学院北京协和医院 An intelligent wearable exoskeleton adaptive auxiliary control method and exoskeleton system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1595091A (en) * 2004-06-29 2005-03-16 华中科技大学 Automobile electric power-assisted steering system simulation testing arrangement
CN107811805A (en) * 2017-11-16 2018-03-20 上海理工大学 Wearable lower limb exoskeleton rehabilitation robot
CN111604890A (en) * 2019-12-30 2020-09-01 合肥工业大学 A motion control method suitable for exoskeleton robot

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1595091A (en) * 2004-06-29 2005-03-16 华中科技大学 Automobile electric power-assisted steering system simulation testing arrangement
CN107811805A (en) * 2017-11-16 2018-03-20 上海理工大学 Wearable lower limb exoskeleton rehabilitation robot
CN111604890A (en) * 2019-12-30 2020-09-01 合肥工业大学 A motion control method suitable for exoskeleton robot

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116237929A (en) * 2022-12-16 2023-06-09 燕山大学 A bio-fusion parallel hip joint rehabilitation exoskeleton control system and method
CN116237929B (en) * 2022-12-16 2025-09-12 燕山大学 A bio-integrated parallel hip joint rehabilitation exoskeleton control system and method
CN117159336A (en) * 2023-11-03 2023-12-05 首都医科大学宣武医院 Rehabilitation training method, device and electronic equipment
CN117159336B (en) * 2023-11-03 2024-02-02 首都医科大学宣武医院 Rehabilitation training method, device and electronic equipment
CN120382467A (en) * 2025-06-27 2025-07-29 中国医学科学院北京协和医院 An intelligent wearable exoskeleton adaptive auxiliary control method and exoskeleton system

Similar Documents

Publication Publication Date Title
CN107296718B (en) Pneumatic muscle-driven exoskeleton device with functions of upper limb assistance and rehabilitation training
CN106510985B (en) A kind of rehabilitation based on master slave control and exoskeleton robot of riding instead of walk
CN105796286B (en) Use the lower limb exoskeleton robot control method of air bag sensor
US10123932B2 (en) Motion assist device and motion assist method
Bortole et al. A robotic exoskeleton for overground gait rehabilitation
CN111604890A (en) A motion control method suitable for exoskeleton robot
CN112370305B (en) Exoskeleton robot for lower limb rehabilitation training
CN114903750A (en) A lower extremity exoskeleton control system and lower extremity exoskeleton control method for paraplegic patients
Tsukahara et al. Gait support for complete spinal cord injury patient by synchronized leg-swing with HAL
CN107874984A (en) Improved structure of multifunctional lower limb gait rehabilitation and walking assisting machine
TW201639533A (en) Interactive exoskeleton robotic knee system
KR100802533B1 (en) Apparatus for determining the walking mode of the lower limbs of the human body, and an auxiliary muscular muscle robot for the lower limbs having the same
CN104688486A (en) Lower limbs rehabilitation robot motion control system
CN105476822A (en) Myoelectricity-controlled exoskeleton assistant robot
WO2016146960A1 (en) A modular universal joint with harmonised control method for an assistive exoskeleton
CN113397918B (en) A wearable elbow exoskeleton rehabilitation control system
TWI555555B (en) Multifunction lower limb gait rehabilitation and walking assist machine
CN210205291U (en) Follow-up lower limb gait training rehabilitation robot system
Chen et al. Design of a lower extremity exoskeleton for motion assistance in paralyzed individuals
CN115463008A (en) A lower limb exoskeleton control device and method based on IMU
CN116617054A (en) A lower limb exoskeleton intelligent compliance control system and method
CN118615584A (en) Walking assistance rehabilitation training system based on functional electrical stimulation
CN110292509A (en) A kind of exoskeleton rehabilitation robot control system
Ady et al. Development and control of a one-wheel telescopic active cane
Ye et al. An adaptive shared control of a novel robotic walker for gait rehabilitation of stroke patients

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination