CN114470635B - Rehabilitation training system and method based on active feedback - Google Patents
Rehabilitation training system and method based on active feedback Download PDFInfo
- Publication number
- CN114470635B CN114470635B CN202210165125.4A CN202210165125A CN114470635B CN 114470635 B CN114470635 B CN 114470635B CN 202210165125 A CN202210165125 A CN 202210165125A CN 114470635 B CN114470635 B CN 114470635B
- Authority
- CN
- China
- Prior art keywords
- module
- training
- muscle
- fatigue
- user
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B22/00—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
- A63B22/02—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with movable endless bands, e.g. treadmills
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B21/00—Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
- A63B21/00178—Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices for active exercising, the apparatus being also usable for passive exercising
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B24/00—Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
- A63B24/0087—Electric or electronic controls for exercising apparatus of groups A63B21/00 - A63B23/00, e.g. controlling load
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B26/00—Exercising apparatus not covered by groups A63B1/00 - A63B25/00
- A63B26/003—Exercising apparatus not covered by groups A63B1/00 - A63B25/00 for improving balance or equilibrium
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B71/00—Games or sports accessories not covered in groups A63B1/00 - A63B69/00
- A63B71/06—Indicating or scoring devices for games or players, or for other sports activities
- A63B71/0619—Displays, user interfaces and indicating devices, specially adapted for sport equipment, e.g. display mounted on treadmills
Landscapes
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Physical Education & Sports Medicine (AREA)
- Engineering & Computer Science (AREA)
- Human Computer Interaction (AREA)
- Cardiology (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Rehabilitation Tools (AREA)
Abstract
本发明公开了一种基于主动反馈的康复训练系统和方法,所述的康复训练系统包括行走能力训练模块、神经疲劳特征量采集模块、肢体疲劳特征量采集模块和信息处理模块,所述神经疲劳特征量采集模块和肢体疲劳特征量采集模块均与行走能力训练模块连接,并分别用于获取患者使用行走能力训练模块过程中的脑肌电信号、相关肌肉的肌电信号以及步态信息。该康复训练系统基于患者运动过程中的脑肌电信号、相关肌肉的肌电信号以及步态信息,对使用者运动过程进行实时监测,根据系统采集的各项评价指标数据判断使用者的脑疲劳程度和肌肉疲劳程度,并依据判定结果反馈控制运动参数,可以避免使用者出现运动性损伤和运动痉挛的情况。
The invention discloses a rehabilitation training system and method based on active feedback. The rehabilitation training system includes a walking ability training module, a nerve fatigue feature collection module, a limb fatigue feature collection module and an information processing module. The nerve fatigue Both the feature acquisition module and the limb fatigue feature acquisition module are connected to the walking ability training module, and are used to acquire brain electromyographic signals, electromyographic signals of related muscles and gait information during the process of using the walking ability training module. The rehabilitation training system monitors the user's exercise process in real time based on the EEG signals of the patient during exercise, the EMG signals of related muscles, and gait information, and judges the user's brain fatigue based on various evaluation index data collected by the system. The degree of muscle fatigue and the degree of muscle fatigue, and feedback control of sports parameters based on the judgment results, can avoid sports injuries and sports cramps for users.
Description
技术领域technical field
本发明涉及康复器械领域,特别涉及一种基于主动反馈的康复训练系统与方法。The invention relates to the field of rehabilitation equipment, in particular to a rehabilitation training system and method based on active feedback.
背景技术Background technique
“脑卒中”又称“中风”、“脑血管意外”。是一种急性脑血管疾病,是由于脑部血管突然破裂或因血管阻塞导致血液不能流入大脑而引起脑组织损伤的一组疾病,包括缺血性和出血性卒中,随着现代医学的水平不断提高,脑血管疾病的救治能力明显提高,死亡率大大降低,但致残率却相对升高,导致患者在言语、吞咽、认知、运动能力、步行能力等方面的障碍,尤其是肢体运动功能障碍严重影响步行能力及日常生活活动能力的恢复,因此恢复步行能力,对偏瘫患者日常生活活动能力的提高和患者生命质量的改善具有十分重要的意义。"Stroke" is also called "stroke" or "cerebrovascular accident". It is an acute cerebrovascular disease, which is a group of diseases caused by the sudden rupture of blood vessels in the brain or the inability of blood to flow into the brain due to vascular obstruction, including ischemic and hemorrhagic stroke. The ability to treat cerebrovascular diseases has been significantly improved, and the mortality rate has been greatly reduced, but the disability rate has relatively increased, resulting in obstacles in speech, swallowing, cognition, motor ability, walking ability, etc., especially limb motor function. Obstacles seriously affect the recovery of walking ability and activities of daily living. Therefore, the recovery of walking ability is of great significance to the improvement of the activities of daily living and the quality of life of hemiplegic patients.
脑卒中引起患者肢体运动功能障碍的康复需要漫长的周期,因此在康复训练过程中,需要进行科学、系统的指导,目前,针对于脑卒中患者的康复训练系统存在以下问题:一是训练系统的针对性较差,并不能根据患者个体做出针对性的指导,导致患者在训练过程中出现运动过渡或者运动不足的现象,影响患者的康复效果;二是训练系统的智能化程度较低、可调节性较差,往往是系统给出训练方案,患者被动接受,不能根据患者训练过程中的实时状态来进行调节,机械性较强,可调节范围小,不能满足患者系统性训练的需求;三是训练过程中的监管力度不够,由于恢复周期长,训练过程中专业人员的参与度低,导致训练过程中患者多是在独立状态下进行,很容易产生运动性疲劳和损伤,不利于患者的恢复,为此,我们提出一种基于主动反馈的康复训练系统与方法。The rehabilitation of limb motor dysfunction caused by stroke requires a long period. Therefore, scientific and systematic guidance is needed in the rehabilitation training process. At present, the rehabilitation training system for stroke patients has the following problems: First, the training system The pertinence is poor, and targeted guidance cannot be made according to the individual patient, resulting in the phenomenon of transition or insufficient exercise in the training process of the patient, which affects the rehabilitation effect of the patient; second, the intelligence of the training system is low and can be The adjustment is poor, and the training plan is often given by the system, and the patient accepts it passively, and cannot be adjusted according to the real-time status of the patient's training process. It is mechanically strong, and the adjustable range is small, which cannot meet the needs of patients for systematic training; 3. It is because the supervision during the training process is not strong enough. Due to the long recovery period and the low participation of professionals in the training process, the patients are mostly carried out in an independent state during the training process, which is prone to exercise-induced fatigue and injury, which is not conducive to the health of the patients. Recovery, for this reason, we propose a rehabilitation training system and method based on active feedback.
发明内容Contents of the invention
本发明的主要目的在于提供一种基于主动反馈的康复训练系统与方法,可以有效解决背景技术中的问题。The main purpose of the present invention is to provide a rehabilitation training system and method based on active feedback, which can effectively solve the problems in the background technology.
为实现上述目的,本发明采取的技术方案为:一种基于主动反馈的康复训练系统,所述的康复训练系统包括行走能力训练模块、神经疲劳特征量采集模块、肢体疲劳特征量采集模块和信息处理模块,所述行走能力训练模块与信息处理模块之间无线通信,所述神经疲劳特征量采集模块和肢体疲劳特征量采集模块均与行走能力训练模块连接,并分别用于获取患者使用行走能力训练模块过程中的脑肌电信号、相关肌肉的肌电信号以及步态信息,并将获取的信息通过通信电缆发送至信息处理模块。In order to achieve the above object, the technical solution adopted by the present invention is: a rehabilitation training system based on active feedback, the rehabilitation training system includes a walking ability training module, a nerve fatigue feature acquisition module, a limb fatigue feature acquisition module and information Processing module, wireless communication between the walking ability training module and the information processing module, the neural fatigue feature quantity collection module and the limb fatigue feature quantity collection module are all connected to the walking ability training module, and are used to obtain the patient's walking ability respectively During the training module, the electromyographic signals of the brain, the electromyographic signals of the relevant muscles and the gait information are sent to the information processing module through the communication cable.
所述行走能力训练模块包括机体组、身份信息识别模块、步态训练机构、行走训练机构和上肢摆动训练机构,所述身份信息识别模块安装于机体组前侧,用于识别和储存使用者身份信息以及训练数据信息,所述步态训练机构安装于机体组上侧,用于偏瘫步态的矫正,所述行走训练机构安装于机体组内部,用于患者步行能力的训练,所述上肢摆动机构安装于步态训练机构两侧,用于使用者步行过程中上肢的摆动训练。The walking ability training module includes a body group, an identity information identification module, a gait training mechanism, a walking training mechanism and an upper limb swing training mechanism, and the identity information identification module is installed on the front side of the body group for identifying and storing user identity Information and training data information, the gait training mechanism is installed on the upper side of the body group for the correction of hemiplegic gait, the walking training mechanism is installed inside the body group for training the patient's walking ability, the upper limb swing The mechanism is installed on both sides of the gait training mechanism, and is used for swing training of the upper limbs of the user during walking.
所述神经疲劳特征量采集模块为穿戴式脑电信号采集设备,用于获取使用者训练过程中的脑电慢波与脑电快波,并计算采集到的脑电慢波与脑电快波的能量比值。The neural fatigue feature quantity collection module is a wearable EEG signal collection device, which is used to obtain the EEG slow waves and EEG fast waves in the training process of the user, and calculate the collected EEG slow waves and EEG fast waves energy ratio.
所述肢体疲劳特征量采集模块包括患肢侧采样电极、对照组采样电极和肌电信号采集仪,所述患肢侧采样电极用于使用者运动过程中患肢侧相关肌肉的肌电信号采集,所述对照组采样电极用于使用者运动过程中正常一侧肢体相关肌肉的肌电信号采集。The limb fatigue feature collection module includes sampling electrodes on the affected limb side, sampling electrodes on the control group and an electromyographic signal acquisition instrument, and the sampling electrodes on the affected limb side are used for collecting electromyographic signals of relevant muscles on the affected limb side during the user's exercise. , the sampling electrodes of the control group are used for collecting myoelectric signals of relevant muscles of the normal side of the limb during the user's exercise.
进一步的,所述步态训练机构包括安装架、安装板、驱动电机、传动机构、连杆机构、足部固定器和足底压力采集传感器,所述安装架为空心结构,所述安装板与安装架螺栓连接,所述驱动电机安装于安装架内部,并通过传动机构带动连杆机构往复转动,所述足部固定器跟随连杆机构转动,并通过固定在其端部的足底压力采集传感器获取使用者的足底压力值。Further, the gait training mechanism includes a mounting frame, a mounting plate, a drive motor, a transmission mechanism, a linkage mechanism, a foot immobilizer and a plantar pressure acquisition sensor, the mounting frame is a hollow structure, and the mounting plate and The mounting frame is connected by bolts, the drive motor is installed inside the mounting frame, and drives the connecting rod mechanism to rotate reciprocally through the transmission mechanism, and the foot holder rotates with the connecting rod mechanism, and collects the pressure from the sole of the foot fixed at its end The sensor acquires the user's plantar pressure value.
进一步的,所述上肢摆动训练机构包括伸缩杆、扶手、转轴、双向扭簧和转角传感器,所述伸缩杆下端围绕转轴转动,且伸缩杆与双向扭簧连接,所述转角传感器安装于转轴的内侧端面,用于检测转轴的转动角度。Further, the upper limb swing training mechanism includes a telescopic rod, an armrest, a rotating shaft, a two-way torsion spring and a rotation angle sensor. The lower end of the telescopic rod rotates around the rotation shaft, and the telescopic rod is connected to the two-way torsion spring. The inner end face is used to detect the rotation angle of the rotating shaft.
进一步的,所述传动机构为带轮式传动机构,所述连杆机构包括连杆、套筒和缓冲弹簧,所述连杆和缓冲弹簧均对称安装于套筒内部,并与套筒滑动连接,且一侧的连杆与安装板固定连接,另一侧的连杆与足部固定器转动连接。Further, the transmission mechanism is a pulley transmission mechanism, and the link mechanism includes a connecting rod, a sleeve and a buffer spring, and the connecting rod and the buffer spring are symmetrically installed inside the sleeve and are slidably connected with the sleeve , and the connecting rod on one side is fixedly connected to the mounting plate, and the connecting rod on the other side is rotationally connected to the foot holder.
进一步的,所述机体组包括底座、支撑架和限位器,所述支撑架安装于底座上端,且支撑架为伸缩结构,所述限位器用于支撑架的限位,所述身份信息识别模块包括显示器、识别摄像头和内置无线通信模块,所述显示器安装于支撑架的内侧,所述识别摄像头和内置无线通信模块均安装于显示器内部,所述行走训练机构包括对称分布在安装架两侧的履带、转辊、传动器和驱动器。Further, the body group includes a base, a support frame and a limiter, the support frame is installed on the upper end of the base, and the support frame is a telescopic structure, the limiter is used to limit the position of the support frame, and the identity information identification The module includes a display, a recognition camera and a built-in wireless communication module, the display is installed on the inside of the support frame, the recognition camera and the built-in wireless communication module are installed inside the display, and the walking training mechanism includes symmetrically distributed Tracks, rollers, transmissions and drives.
进一步的,所述的脑电慢波频率在4-8赫兹,所述的脑电快波频率在13-40赫兹。Further, the frequency of the EEG slow wave is 4-8 Hz, and the frequency of the EEG fast wave is 13-40 Hz.
进一步的,所述的相关肌肉为臀大肌、髂腰肌、股四头肌、缝匠肌、腘绳肌、胫前肌、小腿三头肌、胸大肌、肱桡肌、肱二头肌和桡侧腕屈伸肌。Further, the relevant muscles are gluteus maximus, iliopsoas, quadriceps, sartorius, hamstring, tibialis anterior, triceps calf, pectoralis major, brachioradialis, biceps brachii Muscle and flexor carpi radialis.
进一步的,该装置的使用方法包括以下步骤:Further, the method of using the device includes the following steps:
步骤一,通过身份信息识别模块的识别摄像头对使用者进行面部识别,根据个人信息读取储存的训练数据,并根据存储的训练数据确定训练方案,并依据训练方案调节行走能力训练模块中驱动电机和驱动器的运行参数;Step 1: Use the recognition camera of the identity information recognition module to recognize the face of the user, read the stored training data according to the personal information, determine the training plan according to the stored training data, and adjust the driving motor in the walking ability training module according to the training plan and the operating parameters of the drive;
步骤二,通过行走能力训练模块的足底压力采集传感器采集使用者训练过程中的足底压力值,通过神经疲劳特征量采集模块获取使用者训练过程中的脑电慢波与脑电快波信号,通过肢体疲劳特征量采集模块获取使用者臀大肌、髂腰肌、股四头肌、缝匠肌、腘绳肌、胫前肌、小腿三头肌、胸大肌、肱桡肌、肱二头肌和桡侧腕屈伸肌等相关肌肉群的肌电信号;Step 2: Collect the plantar pressure value during the user's training process through the plantar pressure acquisition sensor of the walking ability training module, and obtain the EEG slow wave and EEG fast wave signals during the user's training process through the neural fatigue feature acquisition module , obtain the user's gluteus maximus, iliopsoas, quadriceps, sartorius, hamstrings, tibialis anterior, triceps calf, pectoralis major, brachioradialis, brachialis through the limb fatigue feature collection module EMG signals of related muscle groups such as biceps and flexor carpi radialis;
步骤三,通过信息处理模块计算脑电慢波与脑电快波的能量比值判断使用者是否出现精神疲劳,通过对采集的相关肌肉的肌电信号进行分析,判断使用者是否出现肢体疲劳,通过获得的分析结果,信息处理模块发出不同的控制指令至驱动电机和驱动器,调节驱动电机和驱动器的运行参数。Step 3: Calculate the energy ratio of EEG slow waves and EEG fast waves through the information processing module to determine whether the user has mental fatigue, and analyze the collected muscle electrical signals to determine whether the user has physical fatigue. Based on the obtained analysis results, the information processing module sends different control commands to the drive motor and the driver to adjust the operating parameters of the drive motor and the driver.
与现有技术相比,本发明具有如下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
1)该康复训练系统基于患者运动过程中的脑肌电信号、相关肌肉的肌电信号以及步态信息,对使用者运动过程进行实时监测,根据系统采集的各项评价指标数据判断使用者的脑疲劳程度和肌肉疲劳程度,并依据判定结果反馈控制运动参数,智能化程度较高,同时可以避免使用者出现运动性损伤和运动痉挛的情况;1) The rehabilitation training system monitors the user's exercise process in real time based on the EEG signals of the patient during exercise, the EMG signals of related muscles, and gait information, and judges the user's physical fitness based on various evaluation index data collected by the system. The degree of brain fatigue and muscle fatigue, and feedback control of motion parameters according to the judgment results, has a high degree of intelligence, and can avoid sports injuries and sports convulsions of users at the same time;
2)该系统可以存储不同使用者的训练数据,并针对使用者的给出合理的、科学的运动指导,使患者保持适度适量的运动量,且可以通过对运动数据的采集实现对整个运动过程中进行实时监管,可调节性强,可以满足不同患者系统性训练的需求,有利于患者的康复;2) The system can store the training data of different users, and give reasonable and scientific exercise guidance for users, so that patients can maintain a moderate amount of exercise, and can realize the monitoring of the entire exercise process through the collection of exercise data. Real-time supervision, strong adjustability, can meet the needs of different patients for systematic training, and is conducive to the rehabilitation of patients;
3)通过设置的行走能力训练模块,可以在不同模式下对患者的行走能力和肢体平衡能力进行训练,同时在患者运动过程中,通过足底压力采集传感器采集患者足底的压力值,通过安装于转轴的内侧端面的转角传感器,获取患者上肢摆动的角度值,结合患者的肌电信号,可以对患者的行走能力和行走步态进行评定,便于对患者的偏瘫步态进行针对性的纠正,帮助患者恢复行走能力。3) By setting the walking ability training module, the patient's walking ability and limb balance ability can be trained in different modes. The rotation angle sensor on the inner end surface of the rotating shaft can obtain the angle value of the patient's upper limb swing, combined with the patient's electromyography signal, can evaluate the patient's walking ability and walking gait, and facilitate targeted correction of the patient's hemiplegic gait. Help the patient regain the ability to walk.
附图说明Description of drawings
图1为本发明的系统框图;Fig. 1 is a system block diagram of the present invention;
图2为本发明行走能力训练模块的整体结构示意图;Fig. 2 is the overall structural representation of walking ability training module of the present invention;
图3为本发明行走能力训练模块的爆炸图;Fig. 3 is the exploded view of the walking ability training module of the present invention;
图4为本发明步态训练机构的爆炸图;Fig. 4 is the explosion diagram of gait training mechanism of the present invention;
图5为本发明连杆机构的爆炸图。Fig. 5 is an exploded view of the linkage mechanism of the present invention.
图中:1、行走能力训练模块;11、机体组;111、底座;112、支撑架;113、限位器;12、身份信息识别模块;121、显示器;122、识别摄像头;123、内置无线通信模块;13、步态训练机构;131、安装架;132、安装板;133、驱动电机;134、传动机构;135、连杆机构;135a、连杆;135b、套筒;135c、缓冲弹簧;136、足部固定器;137、足底压力采集传感器;14、行走训练机构;141、履带;142、转辊;143、传动器;144、驱动器;15、上肢摆动训练机构;151、伸缩杆;152、扶手;153、转轴;154、双向扭簧;155、转角传感器;2、神经疲劳特征量采集模块;3、肢体疲劳特征量采集模块;31、患肢侧采样电极;32、对照组采样电极;33、肌电信号采集仪;4、信息处理模块。In the figure: 1. walking ability training module; 11. body group; 111. base; 112. support frame; 113. limiter; 12. identity information identification module; 121. display; 122. identification camera; Communication module; 13, gait training mechanism; 131, installation frame; 132, installation plate; 133, drive motor; 134, transmission mechanism; 135, linkage mechanism; 135a, connecting rod; 135b, sleeve; 135c, buffer spring ; 136, foot immobilizer; 137, plantar pressure acquisition sensor; 14, walking training mechanism; 141, crawler belt; 142, rotating roller; 143, transmission device; 144, driver; Rod; 152, armrest; 153, rotating shaft; 154, two-way torsion spring; 155, rotation angle sensor; 2, nerve fatigue feature quantity collection module; 3, limb fatigue feature quantity collection module; 31, affected limb side sampling electrode; 32, control Group sampling electrodes; 33. Myoelectric signal acquisition instrument; 4. Information processing module.
具体实施方式Detailed ways
下面结合具体实施方式对本发明作进一步的说明,其中,附图仅用于示例性说明,表示的仅是示意图,而非实物图,不能理解为对本发明的限制,为了更好地说明本发明的具体实施方式,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸。The present invention will be further described below in conjunction with specific embodiments, wherein, the accompanying drawings are only for exemplary illustrations, and what represent is only a schematic diagram, rather than a physical map, and cannot be interpreted as a limitation of the present invention. In order to better illustrate the present invention For specific embodiments, certain components in the drawings may be omitted, enlarged or reduced, and do not represent the size of the actual product.
实施例1Example 1
如图1、图2所示,一种基于主动反馈的康复训练系统与方法,康复训练系统包括行走能力训练模块1、神经疲劳特征量采集模块2、肢体疲劳特征量采集模块3和信息处理模块4,行走能力训练模块1与信息处理模块4之间无线通信,神经疲劳特征量采集模块2和肢体疲劳特征量采集模块3均与行走能力训练模块1连接,并分别用于获取患者使用行走能力训练模块1过程中的脑肌电信号、相关肌肉的肌电信号以及步态信息,并将获取的信息通过通信电缆发送至信息处理模块4。As shown in Figure 1 and Figure 2, a rehabilitation training system and method based on active feedback, the rehabilitation training system includes a walking ability training module 1, a neural fatigue feature collection module 2, a limb fatigue feature collection module 3 and an information processing module 4. Wireless communication between the walking ability training module 1 and the information processing module 4, the nerve fatigue feature collection module 2 and the limb fatigue feature collection module 3 are connected to the walking ability training module 1, and are used to obtain the patient's walking ability respectively The brain electromyographic signal, the electromyographic signal of relevant muscles and the gait information during the training module 1, and the acquired information is sent to the information processing module 4 through the communication cable.
行走能力训练模块1包括机体组11、身份信息识别模块12、步态训练机构13、行走训练机构14和上肢摆动训练机构15,身份信息识别模块12安装于机体组11前侧,用于识别和储存使用者身份信息以及训练数据信息,步态训练机构13安装于机体组11上侧,用于偏瘫步态的矫正,行走训练机构14安装于机体组11内部,用于患者步行能力的训练,上肢摆动机构15安装于步态训练机构13两侧,用于使用者步行过程中上肢的摆动训练。Walking ability training module 1 comprises body group 11, identity
神经疲劳特征量采集模块2为穿戴式脑电信号采集设备,用于获取使用者训练过程中的脑电慢波与脑电快波,并计算采集到的脑电慢波与脑电快波的能量比值。The neural fatigue feature collection module 2 is a wearable EEG signal collection device, which is used to obtain the EEG slow waves and EEG fast waves in the training process of the user, and calculate the ratio of the collected EEG slow waves and EEG fast waves. energy ratio.
肢体疲劳特征量采集模块3包括患肢侧采样电极31、对照组采样电极32和肌电信号采集仪33,患肢侧采样电极31用于使用者运动过程中患肢侧相关肌肉的肌电信号采集,对照组采样电极32用于使用者运动过程中正常一侧肢体相关肌肉的肌电信号采集。The limb fatigue feature quantity collection module 3 includes the sampling electrode 31 on the affected limb side, the sampling electrode 32 of the control group and the electromyographic signal acquisition instrument 33, and the sampling electrode 31 on the affected limb side is used for the electromyographic signal of the relevant muscles on the affected limb side during the user's exercise. Acquisition, the sampling electrode 32 of the control group is used for the collection of myoelectric signals of the relevant muscles of the normal side of the limb during the user's exercise.
脑电慢波频率在4-8赫兹,脑电快波频率在13-40赫兹。The EEG slow wave frequency is 4-8 Hz, and the EEG fast wave frequency is 13-40 Hz.
相关肌肉为臀大肌、髂腰肌、股四头肌、缝匠肌、腘绳肌、胫前肌、小腿三头肌、胸大肌、肱桡肌、肱二头肌和桡侧腕屈伸肌。Associated muscles are gluteus maximus, iliopsoas, quadriceps, sartorius, hamstrings, tibialis anterior, triceps calf, pectoralis major, brachioradialis, biceps, and carpi radialis muscle.
通过采用上述技术方案:在肢体运动中,肌纤维激活将产生微伏级的生物电压,并在皮肤表面叠加形成微弱的电信号,即表面肌电信号,作为肢体对神经运动控制的实时客观响应,表面肌电信号常被用来实现对人体主动运动意图的解析,积分肌电值是表面肌电信号经整流滤波后单位时间内曲线下面积的总和,可以反映出肌电信号活动性的强弱,研究表明,随着肌肉疲劳程度的加深,代谢性酸化引起肌细胞内H +积累,使得肌纤维动作电位传导速度下降,导致表面肌电信号频谱向低频转移,因此,可利用表面肌电信号信号功率曲线中心位置频率值,反映肌肉的疲劳程度,随着运动疲劳的加深,表面肌电信号信号功率曲线中心位置频率值呈下降趋势,另一方面,在康复运动中,随运动疲劳程度加深,脑电慢波( 4~8 Hz波) 逐渐增加,快波( 13~40 Hz波) 逐渐减少,因此,可通过计算脑电信号的慢波和快波的能量比,即脑疲劳指数,反映大脑的疲劳程度,在电极安放前,头皮须吹洗干净,皮肤表面须用酒精擦拭干净,采样频率设为1000Hz,并进行50Hz陷波处理,同时滤除基线漂移的噪声干扰,对原始脑电信号进行4~40Hz带通滤波,对肌电信号进行10~200Hz的带通滤波,以提取脑电信号和肌电信号的有效频段,通过设置的神经疲劳特征量采集模块2获取使用者训练过程中的脑电慢波与脑电快波信号,并将获取的脑电波信号发送至信息处理模块4处,计算出脑疲劳指数,通过肢体疲劳特征量采集模块3获取使用者臀大肌、髂腰肌、股四头肌、缝匠肌、腘绳肌、胫前肌、小腿三头肌、胸大肌、肱桡肌、肱二头肌和桡侧腕屈伸肌等相关肌肉群的肌电信号,并通过数据线发送至信息处理模块4处,信息处理模块4通过计算出的脑疲劳指数和表面肌电信号信号功率曲线中心位置频率值来判断使用者运动过程中的脑疲劳程度和肌肉疲劳程度,当使用者出现脑疲劳程度增加但肌肉疲劳程度未增加时,说明该使用者肌肉状态处于优良状态,但精神状态出现懈怠情况,此时应保持驱动电机133和驱动器144的运行参数,并通过显示器121播放鼓励性的短片,以帮助使用者克服内心的不良感受,保持积极的运动状态。当使用者出现脑疲劳程度未增加但肌肉疲劳程度增加时,说明该使用者的肢体已处于超负荷状态,此时,信息处理模块4发出控制指令至驱动电机133和驱动器144,减小驱动电机133和驱动器144的转动速度,以降低使用者的肌肉符合程度,避免使用者出现运动损伤或者肌肉痉挛的情况,同时设置有患肢侧采样电极31和对照组采样电极32,分别采集使用者运动过程中患肢侧相关肌肉的肌电信号和正常一侧肢体相关肌肉的肌电信号,可以形成对比,分析使用者运动过程中正常侧肌肉与患肢侧肌肉之间的差异,对于指导患者良肢位的摆放、日常生活肢体姿态的保持和辅助性矫正设备的设计均有着实际意义。By adopting the above technical scheme: during limb movement, muscle fiber activation will generate microvolt-level biological voltage, and superimposed on the skin surface to form a weak electrical signal, that is, surface electromyography signal, as a real-time objective response of the limb to nerve movement control, The surface EMG signal is often used to analyze the intention of the human body’s active movement. The integral EMG value is the sum of the area under the curve per unit time after the surface EMG signal is rectified and filtered, which can reflect the activity of the EMG signal. , studies have shown that with the deepening of muscle fatigue, metabolic acidification causes the accumulation of H + in muscle cells, which reduces the conduction velocity of muscle fiber action potentials and causes the surface EMG spectrum to shift to low frequency. Therefore, the surface EMG signal can be used The frequency value of the center position of the power curve reflects the degree of muscle fatigue. With the deepening of exercise fatigue, the frequency value of the center position of the surface EMG signal power curve shows a downward trend. On the other hand, in rehabilitation exercises, as the degree of exercise fatigue deepens, EEG slow waves (4-8 Hz waves) gradually increase, and fast waves (13-40 Hz waves) gradually decrease. Therefore, the energy ratio of slow waves and fast waves of EEG signals can be calculated, that is, the brain fatigue index. For the degree of brain fatigue, before the electrode is placed, the scalp must be blown clean, the skin surface must be wiped clean with alcohol, the sampling frequency is set to 1000Hz, and 50Hz notch wave processing is performed, and the noise interference of baseline drift is filtered out. The signal is band-pass filtered at 4-40 Hz, and the EMG signal is band-pass-filtered at 10-200 Hz to extract the effective frequency bands of the EEG signal and the EMG signal, and the user training process is obtained through the set nerve fatigue feature acquisition module 2 EEG slow wave and EEG fast wave signals, and send the acquired EEG signals to the information processing module 4 to calculate the brain fatigue index, and obtain the user's gluteus maximus, iliac Psoas, quadriceps, sartorius, hamstrings, tibialis anterior, triceps calf, pectoralis major, brachioradialis, biceps, and flexor and extensor carpi radialis muscles The signal is sent to the information processing module 4 through the data line, and the information processing module 4 judges the degree of brain fatigue and muscle fatigue during the user's exercise process through the calculated brain fatigue index and the center position frequency value of the surface electromyography signal power curve. Fatigue degree, when the user's brain fatigue degree increases but the muscle fatigue degree does not increase, it means that the user's muscle condition is in a good state, but the mental state appears slack. At this time, the operating parameters of the
实施例2Example 2
如图1-5所示,一种基于主动反馈的康复训练系统与方法,康复训练系统包括行走能力训练模块1、神经疲劳特征量采集模块2、肢体疲劳特征量采集模块3和信息处理模块4,行走能力训练模块1与信息处理模块4之间无线通信,神经疲劳特征量采集模块2和肢体疲劳特征量采集模块3均与行走能力训练模块1连接,并分别用于获取患者使用行走能力训练模块1过程中的脑肌电信号、相关肌肉的肌电信号以及步态信息,并将获取的信息通过通信电缆发送至信息处理模块4。As shown in Figures 1-5, a rehabilitation training system and method based on active feedback, the rehabilitation training system includes a walking ability training module 1, a neural fatigue feature collection module 2, a limb fatigue feature collection module 3 and an information processing module 4 , the wireless communication between the walking ability training module 1 and the information processing module 4, the nerve fatigue feature quantity collection module 2 and the limb fatigue feature quantity collection module 3 are all connected with the walking ability training module 1, and are respectively used to obtain the patient's walking ability training During the process of module 1, the electromyographic signals of the brain, the electromyographic signals of the relevant muscles and the gait information are sent to the information processing module 4 through the communication cable.
行走能力训练模块1包括机体组11、身份信息识别模块12、步态训练机构13、行走训练机构14和上肢摆动训练机构15,身份信息识别模块12安装于机体组11前侧,用于识别和储存使用者身份信息以及训练数据信息,步态训练机构13安装于机体组11上侧,用于偏瘫步态的矫正,行走训练机构14安装于机体组11内部,用于患者步行能力的训练,上肢摆动机构15安装于步态训练机构13两侧,用于使用者步行过程中上肢的摆动训练。Walking ability training module 1 comprises body group 11, identity
步态训练机构13包括安装架131、安装板132、驱动电机133、传动机构134、连杆机构135、足部固定器136和足底压力采集传感器137,安装架131为空心结构,安装板132与安装架131螺栓连接,驱动电机133安装于安装架131内部,并通过传动机构134带动连杆机构135往复转动,足部固定器136跟随连杆机构135转动,并通过固定在其端部的足底压力采集传感器137获取使用者的足底压力值。
上肢摆动训练机构15包括伸缩杆151、扶手152、转轴153、双向扭簧154和转角传感器155,伸缩杆151下端围绕转轴153转动,且伸缩杆151与双向扭簧154连接,转角传感器155安装于转轴153的内侧端面,用于检测转轴153的转动角度。Upper limb
传动机构134为带轮式传动机构,连杆机构135包括连杆135a、套筒135b和缓冲弹簧135c,连杆135a和缓冲弹簧135c均对称安装于套筒135b内部,并与套筒135b滑动连接,且一侧的连杆135a与安装板132固定连接,另一侧的连杆135a与足部固定器136转动连接。The
机体组11包括底座111、支撑架112和限位器113,支撑架112安装于底座111上端,且支撑架112为伸缩结构,限位器113用于支撑架112的限位,身份信息识别模块12包括显示器121、识别摄像头122和内置无线通信模块123,显示器121安装于支撑架112的内侧,识别摄像头122和内置无线通信模块123均安装于显示器121内部,行走训练机构14包括对称分布在安装架131两侧的履带141、转辊142、传动器143和驱动器144。The body group 11 includes a
通过采用上述技术方案:行走能力训练模块1在使用时有以下几种训练模式:一是主动训练模式:患者双足固定在足部固定器136内部,由患者主动发力带动足部固定器136运动,患者的双手可以握住机体组11的扶手,也可以握住上肢摆动训练机构15的扶手152做同步摆动;二是被动训练模式:患者双足固定在足部固定器136内部,驱动电机133通电运行,并通过传动机构134带动东连杆机构135往复转动,此时患者下肢跟随足部固定器136运动,做被动性训练;三是步行训练模式,患者的双足分别站立在履带141上端,驱动器144运行带动传动器143转动,传动器143通过转辊142带动履带144转动,通过控制履带144的转动速度实现患者步行速度的调控,帮助患者进行行走能力的训练。在患者运动过程中通过足底压力采集传感器137采集患者足底的压力值,通过安装于转轴153的内侧端面的转角传感器155,检测转轴153的转动角度,以获取患者上肢摆动的角度值,结合患者的肌电信号,可以对患者的行走能力和行走步态进行评定,便于对患者的偏瘫步态进行针对性的纠正,帮助患者恢复行走能力。By adopting the above-mentioned technical scheme: the walking ability training module 1 has the following training modes when in use: the first is the active training mode: the patient's feet are fixed inside the
需要说明的是,本发明为一种基于主动反馈的康复训练系统与方法,在使用时,通过身份信息识别模块12的识别摄像头122对使用者进行面部识别,根据个人信息读取储存的训练数据,并根据存储的训练数据确定训练方案,并依据训练方案调节行走能力训练模块1中驱动电机133和驱动器144的运行参数,通过行走能力训练模块1的足底压力采集传感器137采集使用者训练过程中的足底压力值,通过神经疲劳特征量采集模块2获取使用者训练过程中的脑电慢波与脑电快波信号,通过肢体疲劳特征量采集模块3获取使用者臀大肌、髂腰肌、股四头肌、缝匠肌、腘绳肌、胫前肌、小腿三头肌、胸大肌、肱桡肌、肱二头肌和桡侧腕屈伸肌等相关肌肉群的肌电信号,通过信息处理模块4计算脑电慢波与脑电快波的能量比值判断使用者是否出现精神疲劳,通过对采集的相关肌肉的肌电信号进行分析,判断使用者是否出现肢体疲劳,通过获得的分析结果,信息处理模块4发出不同的控制指令至驱动电机133和驱动器144,调节驱动电机133和驱动器144的运行参数。It should be noted that the present invention is a rehabilitation training system and method based on active feedback. When in use, the
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。The basic principles and main features of the present invention and the advantages of the present invention have been shown and described above. Those skilled in the industry should understand that the present invention is not limited by the above-mentioned embodiments. What are described in the above-mentioned embodiments and the description only illustrate the principle of the present invention. Without departing from the spirit and scope of the present invention, the present invention will also have Variations and improvements are possible, which fall within the scope of the claimed invention. The protection scope of the present invention is defined by the appended claims and their equivalents.
Claims (6)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210165125.4A CN114470635B (en) | 2022-02-23 | 2022-02-23 | Rehabilitation training system and method based on active feedback |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210165125.4A CN114470635B (en) | 2022-02-23 | 2022-02-23 | Rehabilitation training system and method based on active feedback |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN114470635A CN114470635A (en) | 2022-05-13 |
| CN114470635B true CN114470635B (en) | 2023-02-28 |
Family
ID=81482979
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202210165125.4A Expired - Fee Related CN114470635B (en) | 2022-02-23 | 2022-02-23 | Rehabilitation training system and method based on active feedback |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN114470635B (en) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN116020107B (en) * | 2023-02-09 | 2024-10-15 | 广东工业大学 | Intelligent mirror system for correcting eight-character gait of child and preventing humpback |
| CN117064380B (en) * | 2023-10-17 | 2023-12-19 | 四川大学华西医院 | Anti-fall early warning system and method for myoelectricity detection on lower limb surface and related products |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104000586A (en) * | 2014-05-12 | 2014-08-27 | 燕山大学 | Stroke patient rehabilitation training system and method based on brain myoelectricity and virtual scene |
| CN106176141A (en) * | 2016-08-31 | 2016-12-07 | 河南优德医疗设备股份有限公司 | A kind of gait walk help training devices |
| CN109528203A (en) * | 2019-01-21 | 2019-03-29 | 郑州大学 | A kind of interactive patients with cerebral apoplexy gait training and evaluating system based on Multi-source Information Fusion |
| CN109793644A (en) * | 2017-11-17 | 2019-05-24 | 丰田自动车株式会社 | Gait evaluation device, gait training system and gait evaluation method |
| RU2703838C1 (en) * | 2019-06-18 | 2019-10-22 | Виталий Юрьевич Цыганков | Method for recovering motor function of limb |
| CN111544854A (en) * | 2020-04-30 | 2020-08-18 | 天津大学 | Cerebral apoplexy motor rehabilitation method based on brain myoelectric signal deep learning fusion |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1229969A4 (en) * | 1999-08-20 | 2003-04-16 | Univ California | METHOD, DEVICE AND SYSTEM FOR THE AUTOMATION OF BODY WEIGHT-ASSISTED TRAINING (BWST) WITH TWO-legged PROMOTION ON A TREADMILL USING A FIXED POINT OPERATOR AND AS EXOSKELETARY OPERATOR (PSE) |
-
2022
- 2022-02-23 CN CN202210165125.4A patent/CN114470635B/en not_active Expired - Fee Related
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104000586A (en) * | 2014-05-12 | 2014-08-27 | 燕山大学 | Stroke patient rehabilitation training system and method based on brain myoelectricity and virtual scene |
| CN106176141A (en) * | 2016-08-31 | 2016-12-07 | 河南优德医疗设备股份有限公司 | A kind of gait walk help training devices |
| CN109793644A (en) * | 2017-11-17 | 2019-05-24 | 丰田自动车株式会社 | Gait evaluation device, gait training system and gait evaluation method |
| CN109528203A (en) * | 2019-01-21 | 2019-03-29 | 郑州大学 | A kind of interactive patients with cerebral apoplexy gait training and evaluating system based on Multi-source Information Fusion |
| RU2703838C1 (en) * | 2019-06-18 | 2019-10-22 | Виталий Юрьевич Цыганков | Method for recovering motor function of limb |
| CN111544854A (en) * | 2020-04-30 | 2020-08-18 | 天津大学 | Cerebral apoplexy motor rehabilitation method based on brain myoelectric signal deep learning fusion |
Also Published As
| Publication number | Publication date |
|---|---|
| CN114470635A (en) | 2022-05-13 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Masumoto et al. | Electromyographic analysis of walking in water in healthy humans | |
| Belda-Lois et al. | Rehabilitation of gait after stroke: a review towards a top-down approach | |
| Veeger et al. | The effect of rear wheel camber in manual wheelchair propulsion | |
| Bigland-Ritchie et al. | Conduction velocity and EMG power spectrum changes in fatigue of sustained maximal efforts | |
| CN112494054B (en) | Evaluation method for lower extremity motor rehabilitation after stroke based on multiconductor electromyography and EEG coherence | |
| CN108785997A (en) | A kind of lower limb rehabilitation robot Shared control method based on change admittance | |
| CN116312951B (en) | Exercise function assessment method and system based on multi-modal coupling analysis | |
| CN114470635B (en) | Rehabilitation training system and method based on active feedback | |
| CN113940856A (en) | Hand rehabilitation training device and method based on myoelectricity-inertia information | |
| CN108814597A (en) | A kind of rehabilitation training evaluating method interacted based on motion information with myoelectricity and system | |
| CN113058157B (en) | Feedback type functional electrical stimulation system with multi-signal fusion | |
| Valadão et al. | Exercise intervention protocol in children and young adults with cerebral palsy: the effects of strength, flexibility and gait training on physical performance, neuromuscular mechanisms and cardiometabolic risk factors (EXECP) | |
| CN116270150A (en) | Control method suitable for variable-rigidity knee joint rehabilitation exoskeleton | |
| RU2622206C2 (en) | Method for patients rehabilitation after stroke or injury by a robotic complex comprising human limb exoskeleton controlled by brain-computer interface using motion imaging | |
| CN115227542B (en) | Wrist and hand comprehensive rehabilitation system | |
| CN113332101B (en) | Control method and device of rehabilitation training device based on brain-computer interface | |
| CN113713333A (en) | Dynamic virtual induction method and system for lower limb rehabilitation full training process | |
| Harburn et al. | Muscle Activity in the Spinal Cord–Injured During Wheelchair Ambulation | |
| Schmitz et al. | Examination of coordination and balance | |
| CN116763321A (en) | Myoelectricity-electroencephalogram information acquisition feedback method and device | |
| CN110731782A (en) | rehabilitation robot for patients with balance disorder | |
| CN112545536B (en) | Brain plasticity-based motion assistance device and its control method and circuit | |
| CN120053268A (en) | Upper limb rehabilitation training system based on electromyographic signal feedback | |
| Wang et al. | Research progress of rehabilitation exoskeletal robot and evaluation methodologies based on bioelectrical signals | |
| CN212490661U (en) | Intelligent medical robot for lower limb rehabilitation |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| CB03 | Change of inventor or designer information | ||
| CB03 | Change of inventor or designer information |
Inventor after: Dong Chan Inventor after: Xu Ling Inventor after: Chang Yanling Inventor after: Lu Jing Inventor after: Lu Tiantian Inventor after: Mao Jie Inventor after: Lin Yuanting Inventor after: Lu Xin Inventor before: Wang Xuefang Inventor before: Dong Chan Inventor before: Xu Ling Inventor before: Chang Yanling Inventor before: Lu Jing Inventor before: Lu Tian Inventor before: Mao Jie Inventor before: Lin Yuanting Inventor before: Lu Xin |
|
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20230228 |
