CN114305996B - Speed control system and method for lower limb robot - Google Patents
Speed control system and method for lower limb robot Download PDFInfo
- Publication number
- CN114305996B CN114305996B CN202210010896.6A CN202210010896A CN114305996B CN 114305996 B CN114305996 B CN 114305996B CN 202210010896 A CN202210010896 A CN 202210010896A CN 114305996 B CN114305996 B CN 114305996B
- Authority
- CN
- China
- Prior art keywords
- speed
- lower limb
- doppler
- limb robot
- laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Manipulator (AREA)
Abstract
Description
技术领域technical field
本发明涉及下肢康复机器人的控制领域,具体地,涉及一种下肢机器人速度控制系统与方法。The invention relates to the control field of lower limb rehabilitation robots, in particular to a lower limb robot speed control system and method.
背景技术Background technique
由于疾病和安全意外等原因,步行功能障碍患者一直在增多,由于某些地区医疗水平的落后和医疗费用昂贵等问题,许多患者错失了最佳的康复时机,为了让更多的患者能够自己在家中恢复步行能力又不用承担高额的医疗费用,发展下肢康复机器人就显得尤为迫切。Due to diseases and safety accidents, the number of patients with walking dysfunction has been increasing. Due to the backward medical level and high medical expenses in some areas, many patients have missed the best opportunity for rehabilitation. It is particularly urgent to develop lower limb rehabilitation robots to restore walking ability at home without having to bear high medical expenses.
传统的下肢康复训练机器人鲜有速度调节功能,在使用下肢机器人进行康复训练时,不能控制步行过程中的速度以及步伐大小,速度太快超出患者的承受能力,会对患者造成二次伤害,而速度太慢又达不到康复训练的效果。现有的带速度调节系统的下肢机器人利用模式识别技术采集运动信息,但此类方式的实现难度较大,研发成本较高。因此,一款成本和技术难度较低的下肢机器人速度调节系统可以为不同的步行功能障碍患者提供适合自己的训练模式。Traditional lower limb rehabilitation training robots rarely have speed adjustment functions. When using lower limb robots for rehabilitation training, the speed and pace of the walking process cannot be controlled. The speed is too slow to achieve the effect of rehabilitation training. Existing lower-limb robots with speed adjustment systems use pattern recognition technology to collect motion information, but this method is difficult to implement and requires high research and development costs. Therefore, a lower-limb robot speed adjustment system with low cost and technical difficulty can provide different training modes for patients with different walking dysfunctions.
专利文献CN113325720A公开了一种具有运动速度决策的康复训练机器人自适应跟踪控制方法,其特征在于:比较康复训练机器人的当前运动速度和训练者的当前步行速度,并将比较结果的速度值大小作为速度决策的状态变量,以康复训练机器人加速、减速、匀速运动作为速度决策的动作,依据比较的速度值之差设计决策过程的奖惩值函数,实现康复训练机器人运动速度决策;利用决策的运动速度及康复训练机器人动力学模型建立跟踪误差系统,提出机器人适应训练者步行速度的跟踪控制方法,使误差系统实现稳定并确保人机系统运动速度协调。此方案在实现上难度较大,且成本较高。Patent literature CN113325720A discloses a rehabilitation training robot adaptive tracking control method with motion speed decision-making, which is characterized in that: compare the current motion speed of the rehabilitation training robot with the current walking speed of the trainer, and use the speed value of the comparison result as The state variable of the speed decision-making takes the acceleration, deceleration, and uniform motion of the rehabilitation training robot as the action of the speed decision-making, and designs the reward and punishment value function of the decision-making process according to the difference between the compared speed values to realize the motion speed decision-making of the rehabilitation training robot; use the decision-making motion speed The tracking error system is established based on the dynamics model of the rehabilitation training robot, and a tracking control method for the robot to adapt to the trainer's walking speed is proposed, so as to stabilize the error system and ensure the coordination of the human-machine system's movement speed. This solution is more difficult to implement, and the cost is higher.
综上所述,本发明提出的下肢机器人速度控制系统与方法旨在降低生产成本和实现难度。To sum up, the lower limb robot speed control system and method proposed by the present invention aim to reduce production cost and implementation difficulty.
发明内容Contents of the invention
针对现有技术中的缺陷,本发明的目的是提供一种下肢机器人速度控制系统与方法。In view of the defects in the prior art, the object of the present invention is to provide a speed control system and method for a lower limb robot.
根据本发明提供的一种下肢机器人速度控制系统,包括:A lower limb robot speed control system provided according to the present invention includes:
激光多普勒传感器模块:固定在下肢机器人上,向地面发射激光,通过采集地面的散射光得到运动过程中产生的多普勒信号;Laser Doppler sensor module: fixed on the lower limb robot, emits laser light to the ground, and obtains the Doppler signal generated during the movement by collecting the scattered light on the ground;
信号处理模块:测算多普勒信号中的特征频率,进而测定运动过程中的速度;Signal processing module: measure and calculate the characteristic frequency in the Doppler signal, and then measure the speed during the movement;
速度调节模块:根据测得的数据实时调节下肢机器人下一次运动的速度;Speed adjustment module: adjust the speed of the next movement of the lower limb robot in real time according to the measured data;
结构件:所述激光多普勒传感器模块、信号处理模块以及速度调节模块通过结构件固定在下肢机器人上。Structural parts: the laser Doppler sensor module, signal processing module and speed adjustment module are fixed on the lower limb robot through structural parts.
优选的,所述激光多普勒传感器模块包括电源、光学元件以及外壳,所述光学元件包括激光光源、透射光栅、光阑、会聚透镜、反射镜以及滤波片,所述激光光源与电源连接;Preferably, the laser Doppler sensor module includes a power supply, an optical element and a housing, the optical element includes a laser light source, a transmission grating, a diaphragm, a converging lens, a mirror, and a filter, and the laser light source is connected to a power supply;
所述外壳分成两个空间,第一空间布置所述光学元件,所述光学元件以双光束型光路进行排布,所述第二空间放置电源。The housing is divided into two spaces. The optical elements are arranged in the first space, and the optical elements are arranged in a double-beam optical path, and the power supply is placed in the second space.
优选的,所述信号处理模块包括光电探测器和数据处理模块,所述数据处理模块包括数字示波器、计算机以及数据处理程序;Preferably, the signal processing module includes a photodetector and a data processing module, and the data processing module includes a digital oscilloscope, a computer and a data processing program;
所述光电探测器布置在外壳的第一空间中,采集地面的散射光信号,并与所述数据处理模块中的示波器相连,进行A/D转换,所述计算机与示波器相连,读取A/D转换后的二进制数字信号,所述数据处理程序对数字信号进行处理。The photodetector is arranged in the first space of the shell, collects the scattered light signal on the ground, and is connected with the oscilloscope in the data processing module to perform A/D conversion, and the computer is connected with the oscilloscope to read the A/D D converted binary digital signal, the data processing program processes the digital signal.
优选的,所述数据处理程序包含以下步骤:Preferably, the data processing program includes the following steps:
步骤S1:建立多普勒频移模型,采集多普勒传感器信号;Step S1: establish a Doppler frequency shift model, and collect Doppler sensor signals;
步骤S2:对采集到的信号进行快速傅里叶变换、带通滤波;Step S2: performing fast Fourier transform and bandpass filtering on the collected signal;
步骤S3:用高斯函数对频谱中的特征频率进行拟合,取拟合后的均值作为多普勒频移的测定值。Step S3: Fit the characteristic frequency in the frequency spectrum with a Gaussian function, and take the mean value after fitting as the measured value of Doppler frequency shift.
优选的,所述速度调节模块包括驱动器、腰带以及伺服电机;Preferably, the speed adjustment module includes a driver, a belt and a servo motor;
所述驱动器的输入端与数据处理模块相连,输出端与所述伺服电机相连,所述腰带用于放置所述驱动器,所述腰带用于固定速度调节模块。The input end of the driver is connected to the data processing module, the output end is connected to the servo motor, the belt is used to place the driver, and the belt is used to fix the speed adjustment module.
优选的,所述驱动器对运动速度的控制步骤包括:Preferably, the step of controlling the movement speed by the driver includes:
步骤S1:确定一个最适合患者的步行速度V,作为训练过程中需要保持的速度;Step S1: Determine a walking speed V that is most suitable for the patient as the speed that needs to be maintained during the training process;
步骤S2:将患者训练过程中传感器检测的速度vt与V进行比较,生成下肢机器人的速度变化量;Step S2: Comparing the velocity vt detected by the sensor during the patient training process with V to generate the velocity variation of the lower limb robot;
步骤S3:计算机根据速度变化量计算伺服电机的控制量,并将控制量传给驱动器,所述伺服电机根据驱动器的指令动作。Step S3: The computer calculates the control amount of the servo motor according to the speed variation, and transmits the control amount to the driver, and the servo motor acts according to the instruction of the driver.
优选的,所述结构件包括内六角沉头螺钉、挠性管、万向轮以及支架;Preferably, the structural member includes a hexagon socket head cap screw, a flexible tube, a universal wheel and a bracket;
所述内六角沉头螺钉用于固定激光多普勒传感器模块和速度调节模块,所述挠性管用于放置导线,所述万向轮固定在支架上,所述支架用于固定所述数字示波器和计算机。The inner hexagon countersunk head screw is used to fix the laser Doppler sensor module and the speed adjustment module, the flexible tube is used to place the wire, the universal wheel is fixed on the bracket, and the bracket is used to fix the digital oscilloscope and computer.
优选的,当患者在平整路面上训练时,所述多普勒频移模型为:Preferably, when the patient is training on a smooth road, the Doppler frequency shift model is:
其中,fD1和fD2是两个激光多普勒传感器所测得的多普勒频移,vx是训练时的速度,且传感器测定的速度vt≈vx,θ是入射到地面上的激光束与传感器外壳的夹角,λ是激光束的波长。Among them, f D1 and f D2 are the Doppler frequency shift measured by the two laser Doppler sensors, v x is the speed during training, and the speed measured by the sensor is v t ≈ v x , θ is incident on the ground The angle between the laser beam and the sensor housing, λ is the wavelength of the laser beam.
优选的,当患者在不平整路面上训练时,所述的多普勒频移模型为:Preferably, when the patient is training on an uneven road surface, the Doppler frequency shift model is:
vx为下肢机器人在水平方向上的速度分量,vy为下肢机器人在竖直方向上的速度分量,Δθ为外壳与水平方向的倾角;根据在步行过程中vy<<vx,对倾角变化进行简化:v x is the velocity component of the lower-limb robot in the horizontal direction, v y is the velocity component of the lower-limb robot in the vertical direction, and Δθ is the inclination angle between the shell and the horizontal direction; according to v y << v x in the walking process, the inclination angle Change to simplify:
下肢机器人的运动速度为:The movement speed of the lower limb robot is:
根据本发明提供的一种下肢机器人速度控制方法,包括以下步骤:A method for controlling the speed of a lower limb robot according to the present invention comprises the following steps:
步骤A1:通过激光多普勒传感器模块,向地面发射激光,采集地面的散射光得到运动过程中产生的多普勒信号;Step A1: Through the laser Doppler sensor module, emit laser light to the ground, collect the scattered light on the ground to obtain the Doppler signal generated during the movement;
步骤A2:测算多普勒信号中的特征频率,进而测定运动过程中的速度;Step A2: measure and calculate the characteristic frequency in the Doppler signal, and then measure the speed during the movement;
步骤A3:根据测得的数据实时调节下肢机器人下一次运动的速度。Step A3: Adjust the speed of the next movement of the lower limb robot in real time according to the measured data.
与现有技术相比,本发明具有如下的有益效果:Compared with the prior art, the present invention has the following beneficial effects:
1、本发明创新性地将激光多普勒传感器应用于可穿戴机器人速度测量系统中,可通过传感器直接测定出机器人的步行速度,这种传感器精度高、空间分辨率高,工作时不会受运动的振动带来的影响,而且光路稳定,光源热稳定性好,使用寿命长,适合长时间工作;整体结构上高度集成,结构紧凑;1. The present invention innovatively applies the laser Doppler sensor to the wearable robot speed measurement system, which can directly measure the walking speed of the robot through the sensor. This sensor has high precision and high spatial resolution, and will not be affected by The impact caused by the vibration of the movement, and the optical path is stable, the thermal stability of the light source is good, the service life is long, and it is suitable for long-term work; the overall structure is highly integrated and compact;
2、本发明工作原理简单,实现起来的技术难度较低,只需将测得的速度与目标速度进行比较,即可进行速度调节;2. The working principle of the present invention is simple, and the technical difficulty in realizing it is relatively low. Only by comparing the measured speed with the target speed, can the speed be adjusted;
3、本发明交互性较好,患者可以在康复训练时自主调节训练速度;3. The present invention has better interactivity, and patients can independently adjust the training speed during rehabilitation training;
4、本发明中采用的传感器可以实现非接触式测量,响应速度快,不必采集大量数据,成本较低。4. The sensor used in the present invention can realize non-contact measurement, has fast response speed, does not need to collect a large amount of data, and has low cost.
附图说明Description of drawings
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:Other characteristics, objects and advantages of the present invention will become more apparent by reading the detailed description of non-limiting embodiments made with reference to the following drawings:
图1为下肢机器人速度控制系统整体示意图;Figure 1 is an overall schematic diagram of the lower limb robot speed control system;
图2为激光多普勒传感器模块结构示意图;Fig. 2 is a schematic structural diagram of a laser Doppler sensor module;
图3为激光多普勒传感器模块双光束型光路结构示意图。Fig. 3 is a schematic diagram of the structure of the dual-beam optical path of the laser Doppler sensor module.
附图标记说明:Explanation of reference signs:
电源1 光电探测器9
外壳2 数字示波器10
激光光源3 计算机11Laser
透射光栅4 驱动器12Transmission Grating 4
光阑5 腰带13
会聚透镜6 伺服电机14Converging
反射镜7 万向轮15
滤波片8 支架16
具体实施方式detailed description
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变化和改进。这些都属于本发明的保护范围。The present invention will be described in detail below in conjunction with specific embodiments. The following examples will help those skilled in the art to further understand the present invention, but do not limit the present invention in any form. It should be noted that those skilled in the art can make several changes and improvements without departing from the concept of the present invention. These all belong to the protection scope of the present invention.
本发明提供了一种下肢机器人速度控制系统,参照图1,包括激光多普勒传感器模块、信号处理模块、速度调节模块以及结构件,所述激光多普勒传感器模块固定在下肢机器人上,向地面发射激光,通过采集地面的散射光来得到运动过程中产生的多普勒信号;所述信号处理模块测算多普勒信号中的特征频率,进而测定运动过程中的速度;所述速度调节模块根据测得的速度实时调节下肢机器人下一次运动的速度;所述激光多普勒传感器模块、信号处理模块、速度调节模块通过结构件固定于下肢机器人上。The present invention provides a speed control system for a lower limb robot. Referring to FIG. 1, it includes a laser Doppler sensor module, a signal processing module, a speed adjustment module and structural parts. The laser Doppler sensor module is fixed on the lower limb robot and The laser is emitted from the ground, and the Doppler signal generated during the movement is obtained by collecting the scattered light on the ground; the signal processing module measures the characteristic frequency in the Doppler signal, and then measures the speed during the movement; the speed adjustment module The speed of the next movement of the lower limb robot is adjusted in real time according to the measured speed; the laser Doppler sensor module, the signal processing module and the speed adjustment module are fixed on the lower limb robot through structural components.
具体地,参照图2,所述激光多普勒传感器模块包括电源1、光学元件以及外壳2;所述光学元件包括激光光源3、透射光栅4、光阑5、会聚透镜6、反射镜7、滤波片8,所述激光光源3与电源1相连,所述的电源1是蓄电池,可以充电。Specifically, referring to Fig. 2, the laser Doppler sensor module includes a
进一步地,所述的外壳2分成两个空间,第一空间布置所述光学元件,所述光学元件以双光束型光路进行排布,参照图3,所述第二空间放置电源1。Further, the
更进一步地,在所述双光束型光路中,激光光源3发出一束光,经过透射光栅4后被散射成多束光强相等的衍射光,收集零阶和正负一阶衍射光,这三束光经过第一个会聚透镜6后成为三束平行光,在会聚透镜6后用光阑5阻挡零阶光,只让正负一阶衍射光通过,剩下两束光经过第二个会聚透镜6后聚焦于地面,此时两束光会在地面上产生干涉条纹,此干涉条纹是一椭球形测量体,可以用此测量体测量多普勒频移。然后在光的后向传播方向上放置一块反射镜7,用以接收来自地面的散射光,反射镜7摆放角度为45度,将散射光的传播方向改变90度,再在侧面放置一个滤波片8来阻断其他波长的光进入,最后在滤波片8后放置第三个会聚透镜6来聚焦散射光。所述第一空间中布置两个相同的双光束型光路,让入射光线与外壳2的夹角均为θ。Further, in the double-beam optical path, the
具体地,所述信号处理模块包括光电探测器9、数据处理模块,所述数据处理模块包括数字示波器10、计算机11以及数据处理程序。Specifically, the signal processing module includes a
进一步地,所述光电探测器9采用雪崩二极管,用以接收来自地面的散射光,将光电探测器9放在第三个会聚透镜6后方的焦点位置,使其接收到的散射光光强最大,从而使信号的强度最大。光电探测器9接收到信号并进行光电转换后仍然是模拟信号,计算机11无法处理,故先将光电探测器9与数字示波器10的两个通道相连,在示波器10中进行A/D转换后,再传入计算机11中由数据处理程序进行处理。所述数字示波器10也具有调节功能,可以根据示波器上电平来调节光电探测器9与第三个会聚透镜6的距离,电平越高说明信号越集中,采集到的信号质量越好。Further, the
更进一步地,所述数据处理程序包含以下步骤:Further, the data processing program includes the following steps:
步骤S1:建立多普勒频移模型,患者在平整地面上进行康复训练时,固定于下肢机器人外骨骼上的多普勒传感器测得的多普勒频移为Step S1: Establish the Doppler frequency shift model. When the patient performs rehabilitation training on a flat ground, the Doppler frequency shift measured by the Doppler sensor fixed on the lower extremity robot exoskeleton is
其中:fD1和fD2是两个激光多普勒传感器所测得的多普勒频移,vx是训练时的速度,可认为传感器测定的速度vt≈vx,θ是入射到地面上的激光束与传感器外壳2的夹角,λ是激光束的波长;Among them: f D1 and f D2 are the Doppler frequency shift measured by two laser Doppler sensors, v x is the speed during training, it can be considered that the speed measured by the sensor is v t ≈ v x , θ is incident to the ground The angle between the laser beam on the surface and the
当患者在不平整的路面上进行康复训练时,传感器外壳2与水平方向就会有一个倾角Δθ,那么一个多普勒传感器的入射光方向与水平方向的夹角就变为θ+Δθ,另一多普勒传感器的入射光方向与水平方向的夹角就变成θ-Δθ,此时的下肢机器人不仅有水平方向上的速度分量vx,也有一个竖直方向上的速度分量vy,此时两个多普勒传感器的多普勒频移分别为When the patient performs rehabilitation training on an uneven road surface, there will be an inclination angle Δθ between the
在步行过程中有:vy<<vx,倾角变化可以简化为In the process of walking: v y << v x , the change of inclination angle can be simplified as
可以得到下肢机器人的运动速度为The movement speed of the lower limb robot can be obtained as
步骤S2:对采集到的信号进行快速傅里叶变换、带通滤波;Step S2: performing fast Fourier transform and bandpass filtering on the collected signal;
步骤S3:用高斯函数对频谱中的特征频率进行拟合,高斯函数的一般形式为Step S3: Fit the characteristic frequency in the spectrum with a Gaussian function, the general form of the Gaussian function is
取拟合后的均值μ作为多普勒频移的测定值,对两个传感器的多普勒信号进行拟合,可得多普勒频移测定值分别为μ1和μ2,利用式(5)可以得到下肢机器人的实时运动速度。Take the fitted mean value μ as the measured value of Doppler frequency shift, and fit the Doppler signals of the two sensors. The measured values of Doppler frequency shift are respectively μ 1 and μ 2 , using the formula ( 5) The real-time movement speed of the lower limb robot can be obtained.
数据处理程序包括滤波、快速傅里叶变换、高斯拟合。首先对信号进行滤波,滤除底噪和高频噪声,本发明中选取FIR型数字滤波器,选取海明窗作为窗函数。滤波之后进行快速傅里叶变换,得到散射光信号的频谱,频谱中存在一个特征峰值,其对应的横坐标即为多普勒频移。最后,为准确估算多普勒频移,并根据频谱波形与高斯函数的相似性,决定采用高斯拟合技术,即使用高斯函数对频谱中的特征频率进行拟合,高斯函数的一般表达式如(6)式,取拟合后的均值μ作为多普勒频移的测定值。对两个多普勒信号的频谱分别进行拟合,可以得到μ1和μ2,用这两个估算值作为两个多普勒频移的估计值。根据(5)式,可以计算出步行速度是Data processing procedures include filtering, fast Fourier transform, and Gaussian fitting. Firstly, the signal is filtered to remove background noise and high-frequency noise. In the present invention, an FIR digital filter is selected, and a Hamming window is selected as a window function. Fast Fourier transform is performed after filtering to obtain the spectrum of the scattered light signal. There is a characteristic peak in the spectrum, and its corresponding abscissa is the Doppler frequency shift. Finally, in order to accurately estimate the Doppler frequency shift, and according to the similarity between the spectrum waveform and the Gaussian function, it is decided to use the Gaussian fitting technique, that is, to use the Gaussian function to fit the characteristic frequency in the spectrum. The general expression of the Gaussian function is as follows In formula (6), the mean value μ after fitting is taken as the measured value of Doppler frequency shift. Fitting the frequency spectrum of the two Doppler signals respectively can obtain μ 1 and μ 2 , and use these two estimated values as the estimated values of the two Doppler frequency shifts. According to (5), the walking speed can be calculated as
vx=λ(μ1+μ2)/4cosθcosΔθ。v x =λ(μ 1 +μ 2 )/4cosθcosΔθ.
具体地,所述速度调节模块包括驱动器12、腰带13以及伺服电机14。所述驱动器12的输入端与数据处理模块中的计算机11相连,输出端与所述伺服电机14相连接,所述伺服电机14安装在髋关节处,所述电源1给各部件供电,所述腰带13用于放置所述驱动器12,速度调节模块通过腰带13系在患者的腰上。Specifically, the speed adjustment module includes a
进一步地,所述驱动器12选取Elmo公司的伺服驱动器12,其输入端与计算机11相连,传入数据处理程序中测定的速度信息vt,将其与预先在计算机11中输入预期的训练速度V进行比较,然后做出决策。决策过程如下:测定的速度vt与预期速度V比较的结果有三种,分别是vt<V、vt=V、vt>V,分别对应加速、匀速及减速三种控制状态,用ΔV表示前一个步行周期结束系统需要调整的一个速度变化量,即为ΔV=vt-V,用vt+1表示下一个步行周期的速度,三种控制状态可以描述为:对于加速运动有vt+1=vt+|ΔV|,对于匀速运动有vt++=vt,对于减速运动有vt+1=vt-|ΔV|。计算机11根据调整量ΔV计算伺服电机14的控制量,所述驱动器12与计算机11相连,传入电机控制量,所述伺服电机14按驱动器12的指令控制下肢的摆动频率,以达到速度调整的目的。Further, the
具体地,所述结构件包括内六角沉头螺钉、挠性管、万向轮15、支架16。Specifically, the structural components include hexagon socket head screws, flexible tubes,
进一步地,所述沉头螺钉用于固定集成于外壳2内的激光多普勒传感器模块,所述挠性管用于包裹导线,所述万向轮15固定在支架16底部,患者可以朝任意方向进行步行训练,所述支架16用于固定所述数字示波器10以及计算机11,也可为患者提供支撑,让其在训练间隔可以短暂休息,患者还可以实时观察到训练时的步行速度,以便做出调整。Further, the countersunk screw is used to fix the laser Doppler sensor module integrated in the
本发明还介绍了一种下肢机器人速度控制方法,包括以下步骤:The present invention also introduces a method for controlling the speed of a lower limb robot, comprising the following steps:
步骤A1:通过激光多普勒传感器模块,向地面发射激光,采集地面的散射光得到运动过程中产生的多普勒信号;Step A1: Through the laser Doppler sensor module, emit laser light to the ground, collect the scattered light on the ground to obtain the Doppler signal generated during the movement;
步骤A2:测算多普勒信号中的特征频率,进而测定运动过程中的速度;Step A2: measure and calculate the characteristic frequency in the Doppler signal, and then measure the speed during the movement;
步骤A3:根据测得的数据实时调节下肢机器人下一次运动的速度。。Step A3: Adjust the speed of the next movement of the lower limb robot in real time according to the measured data. .
本发明的工作原理如下:The working principle of the present invention is as follows:
患者在进行步行康复训练时,可以通过支架(16)上的计算机(11)输入适合自己的训练速度。患者开始训练时,多普勒传感器中的光源(3)向地面发射一束光,经过地面的散射后,散射光会被光电探测器(9)重新接收,光信号被数字示波器(10)转为数字信号后传入计算机(11)。由于多普勒效应,该数字信号就含有多普勒频移信息,计算机(11)通过估算此频移,再根据相应的公式,就能够得到此刻的速度信息,然后将此速度与预先输入的理想速度进行比较,再由驱动器(12)进行决策控制,使得电机的转速发生改变,从而改变下一个训练周期的速度,整个系统也就起到了速度控制功能。When the patient is performing walking rehabilitation training, he can input his own training speed through the computer (11) on the bracket (16). When the patient starts training, the light source (3) in the Doppler sensor emits a beam of light to the ground. After being scattered by the ground, the scattered light will be re-received by the photodetector (9), and the light signal will be converted by the digital oscilloscope (10). Pass into computer (11) after being the digital signal. Because of Doppler effect, this digital signal just contains Doppler frequency shift information, and computer (11) just can obtain the speed information at this moment by estimating this frequency shift, then according to corresponding formula, then this speed and input in advance The ideal speed is compared, and then the driver (12) performs decision-making control, so that the rotational speed of the motor changes, thereby changing the speed of the next training cycle, and the whole system also functions as a speed control.
本领域技术人员知道,除了以纯计算机可读程序代码方式实现本发明提供的系统及其各个装置、模块、单元以外,完全可以通过将方法步骤进行逻辑编程来使得本发明提供的系统及其各个装置、模块、单元以逻辑门、开关、专用集成电路、可编程逻辑控制器以及嵌入式微控制器等的形式来实现相同功能。所以,本发明提供的系统及其各项装置、模块、单元可以被认为是一种硬件部件,而对其内包括的用于实现各种功能的装置、模块、单元也可以视为硬件部件内的结构;也可以将用于实现各种功能的装置、模块、单元视为既可以是实现方法的软件模块又可以是硬件部件内的结构。Those skilled in the art know that, in addition to realizing the system provided by the present invention and its various devices, modules, and units in a purely computer-readable program code mode, the system provided by the present invention and its various devices can be completely programmed by logically programming the method steps. , modules, and units implement the same functions in the form of logic gates, switches, ASICs, programmable logic controllers, and embedded microcontrollers. Therefore, the system and its various devices, modules, and units provided by the present invention can be regarded as a hardware component, and the devices, modules, and units included in it for realizing various functions can also be regarded as hardware components. The structure; the devices, modules, and units for realizing various functions can also be regarded as not only the software modules for realizing the method, but also the structures in the hardware components.
在本申请的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。In the description of this application, it should be understood that the terms "upper", "lower", "front", "rear", "left", "right", "vertical", "horizontal", "top", The orientation or positional relationship indicated by "bottom", "inner", "outer", etc. is based on the orientation or positional relationship shown in the drawings, and is only for the convenience of describing the application and simplifying the description, rather than indicating or implying the referred device Or elements must have a certain orientation, be constructed and operate in a certain orientation, and thus should not be construed as limiting the application.
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本发明的实质内容。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。Specific embodiments of the present invention have been described above. It should be understood that the present invention is not limited to the specific embodiments described above, and those skilled in the art may make various changes or modifications within the scope of the claims, which do not affect the essence of the present invention. In the case of no conflict, the embodiments of the present application and the features in the embodiments can be combined with each other arbitrarily.
Claims (5)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210010896.6A CN114305996B (en) | 2022-01-05 | 2022-01-05 | Speed control system and method for lower limb robot |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210010896.6A CN114305996B (en) | 2022-01-05 | 2022-01-05 | Speed control system and method for lower limb robot |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN114305996A CN114305996A (en) | 2022-04-12 |
| CN114305996B true CN114305996B (en) | 2022-12-30 |
Family
ID=81025433
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202210010896.6A Active CN114305996B (en) | 2022-01-05 | 2022-01-05 | Speed control system and method for lower limb robot |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN114305996B (en) |
Citations (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101803988A (en) * | 2010-04-14 | 2010-08-18 | 华中科技大学 | Multifunctional intelligent rehabilitation robot for assisting stand and walk |
| WO2012044621A1 (en) * | 2010-09-27 | 2012-04-05 | Vanderbilt University | Movement assistance device |
| KR20130001663A (en) * | 2011-06-27 | 2013-01-04 | 엘지전자 주식회사 | Walking assistance device and method of controlling operation of the device |
| CN103841942A (en) * | 2011-08-31 | 2014-06-04 | 美迪卡医学有限公司 | Therapeutic walking trainer |
| WO2015137877A1 (en) * | 2014-03-14 | 2015-09-17 | National University Of Singapore | Gait rehabilitation apparatus |
| CN105748264A (en) * | 2015-12-16 | 2016-07-13 | 北京理工大学 | Human body lower limb motion rehabilitation training robot |
| CN106618979A (en) * | 2017-03-03 | 2017-05-10 | 杭州福祉医疗器械有限公司 | Gait rehabilitation robot and method for controlling gait rehabilitation robot |
| CN106859928A (en) * | 2017-04-19 | 2017-06-20 | 杭州福祉医疗器械有限公司 | Gait rehabilitation training robot and the force-feedback control method for the robot |
| CN110946742A (en) * | 2019-12-02 | 2020-04-03 | 南京伟思医疗科技股份有限公司 | Device and method for assisting lower limb robot to transfer gravity center by aid of weight reduction vehicle |
| CN112754868A (en) * | 2021-01-21 | 2021-05-07 | 芜湖航科恒益自动化科技有限责任公司 | Mobile accompanying type human lower limb rehabilitation training robot |
| CN112999026A (en) * | 2019-12-19 | 2021-06-22 | 沈阳新松机器人自动化股份有限公司 | Self-adaptive control method applied to rehabilitation walking-aid robot |
| CN216136294U (en) * | 2021-06-15 | 2022-03-29 | 松下家电(中国)有限公司 | Walking robot |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9682006B2 (en) * | 2010-09-27 | 2017-06-20 | Vanderbilt University | Movement assistance devices |
| TWI684442B (en) * | 2018-07-27 | 2020-02-11 | 國立陽明大學 | Gait learning auxiliary system and its application method |
-
2022
- 2022-01-05 CN CN202210010896.6A patent/CN114305996B/en active Active
Patent Citations (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101803988A (en) * | 2010-04-14 | 2010-08-18 | 华中科技大学 | Multifunctional intelligent rehabilitation robot for assisting stand and walk |
| WO2012044621A1 (en) * | 2010-09-27 | 2012-04-05 | Vanderbilt University | Movement assistance device |
| KR20130001663A (en) * | 2011-06-27 | 2013-01-04 | 엘지전자 주식회사 | Walking assistance device and method of controlling operation of the device |
| CN103841942A (en) * | 2011-08-31 | 2014-06-04 | 美迪卡医学有限公司 | Therapeutic walking trainer |
| WO2015137877A1 (en) * | 2014-03-14 | 2015-09-17 | National University Of Singapore | Gait rehabilitation apparatus |
| CN105748264A (en) * | 2015-12-16 | 2016-07-13 | 北京理工大学 | Human body lower limb motion rehabilitation training robot |
| CN106618979A (en) * | 2017-03-03 | 2017-05-10 | 杭州福祉医疗器械有限公司 | Gait rehabilitation robot and method for controlling gait rehabilitation robot |
| CN106859928A (en) * | 2017-04-19 | 2017-06-20 | 杭州福祉医疗器械有限公司 | Gait rehabilitation training robot and the force-feedback control method for the robot |
| CN110946742A (en) * | 2019-12-02 | 2020-04-03 | 南京伟思医疗科技股份有限公司 | Device and method for assisting lower limb robot to transfer gravity center by aid of weight reduction vehicle |
| CN112999026A (en) * | 2019-12-19 | 2021-06-22 | 沈阳新松机器人自动化股份有限公司 | Self-adaptive control method applied to rehabilitation walking-aid robot |
| CN112754868A (en) * | 2021-01-21 | 2021-05-07 | 芜湖航科恒益自动化科技有限责任公司 | Mobile accompanying type human lower limb rehabilitation training robot |
| CN216136294U (en) * | 2021-06-15 | 2022-03-29 | 松下家电(中国)有限公司 | Walking robot |
Non-Patent Citations (1)
| Title |
|---|
| 基于TMS320VC5402的激光多普勒测速系统;汪涛等;《物理实验》;20110320(第03期);18-21 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN114305996A (en) | 2022-04-12 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN112577446B (en) | Device and method for measuring in-position surface shape of large-aperture planar optical components | |
| CN108037594B (en) | Assembly method and device of full-field lens | |
| CN101803906A (en) | Automatic defocusing compensation human eye aberration Hartmann measuring instrument | |
| CN109900602A (en) | Corpuscular counter | |
| CN101972928A (en) | Automatic aligning assembly system for micro members | |
| US12436379B2 (en) | Scanning device with point-to-point focusing | |
| US7221437B1 (en) | Method and apparatus for measuring distances using light | |
| CN102879110B (en) | Adaptive Optics System Based on Modulated and Non-modulated Pyramidal Wavefront Sensor | |
| CN114305996B (en) | Speed control system and method for lower limb robot | |
| CN103424177A (en) | A method and device for improving the sensitivity of a reflective laser vibration measurement system | |
| CN108646230A (en) | A kind of hybrid Doppler lidar and its application method | |
| CN111551951B (en) | A laser Doppler velocimeter with automatic signal size adjustment and its signal size control strategy | |
| CN112761902B (en) | Monitoring system and method for settlement and tilt of fan tower based on line laser intensity measurement | |
| CN102707434B (en) | Intracavity self-adaptive optical beam purification system and method | |
| KR101911425B1 (en) | Autocollimator | |
| CN119721155B (en) | Optogenetic calibration method and system based on special space research | |
| US10788362B2 (en) | Light detection device | |
| CN103575380A (en) | Optical fiber vibration sensor based on fluorescence method, vibration sensing method and system | |
| JP6990782B2 (en) | Simulator device | |
| CN105204168B (en) | Wave-front-free detector far-field laser beam shaping device and method based on double wave-front corrector | |
| CN108827595B (en) | Detection apparatus based on self-adaptation theory optical system machining error | |
| EP4354245A1 (en) | Position-measuring device, position-measuring system, and measuring device | |
| JP3197074B2 (en) | Optical speed detector | |
| RU203201U1 (en) | MULTIAPERTURE MULTIWAVE LIDAR FOR SENSING THE ATMOSPHERE | |
| CN103309240A (en) | High-frequency vibration target simulation device based on driving of piezoelectric ceramic |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |















