CN113344909B - Method and device for identifying and displaying flame penetration height Wen Lvjing coking of thermal power boiler - Google Patents
Method and device for identifying and displaying flame penetration height Wen Lvjing coking of thermal power boiler Download PDFInfo
- Publication number
- CN113344909B CN113344909B CN202110747508.8A CN202110747508A CN113344909B CN 113344909 B CN113344909 B CN 113344909B CN 202110747508 A CN202110747508 A CN 202110747508A CN 113344909 B CN113344909 B CN 113344909B
- Authority
- CN
- China
- Prior art keywords
- coking
- image
- thermal power
- flame
- power boiler
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/20—Image enhancement or restoration using local operators
- G06T5/30—Erosion or dilatation, e.g. thinning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/70—Denoising; Smoothing
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10004—Still image; Photographic image
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20024—Filtering details
- G06T2207/20032—Median filtering
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- General Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Software Systems (AREA)
- Molecular Biology (AREA)
- Computational Linguistics (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Mathematical Physics (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Evolutionary Biology (AREA)
- Quality & Reliability (AREA)
- Radiation Pyrometers (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
Abstract
Description
技术领域Technical field
本发明属于火电厂锅炉结焦监测技术领域,特别是涉及一种火电锅炉透火焰高温滤镜结焦识别显示方法和装置。The invention belongs to the technical field of boiler coking monitoring in thermal power plants, and in particular relates to a method and device for identifying and displaying coking on a flame-transparent high-temperature filter of a thermal power boiler.
背景技术Background technique
锅炉的结焦是燃煤火电厂普遍存在的问题,它会破坏正常燃烧工况,降低锅炉效率,破坏正常水循环,甚至造成爆管事故,严重时还会使炉膛出口堵塞而被迫停炉,影响锅炉运行的经济性与安全性。目前在火电厂锅炉炉膛除焦时,需要派专业技术人员通过观火口观测并预判结焦状态,再凭借经验进行除焦,因为在热态工况下无法准确的判断结焦情况,所以没有合适的解决方案,无法对结焦的位置和结焦的程度进行准确的定量判断。Boiler coking is a common problem in coal-fired thermal power plants. It will destroy normal combustion conditions, reduce boiler efficiency, destroy normal water circulation, and even cause pipe explosion accidents. In severe cases, it will block the furnace outlet and force the furnace to shut down, affecting the Economic efficiency and safety of boiler operation. At present, when decoking the boiler furnace of a thermal power plant, it is necessary to send professional technicians to observe and predict the coking status through the fire viewing port, and then rely on experience to carry out decoking. Because the coking situation cannot be accurately judged under hot conditions, there is no suitable method Solution: It is impossible to make an accurate quantitative judgment on the location and degree of coking.
现在有一种“基于卷积神经网络的锅炉结焦预警方法”,其采集同一时间段多个测点的温度数据,通过神经网络得到测点温度数据的图像特征,判断其是否结焦,但其不能判断结焦类型,也不能直接地观测到结焦状态,这种间接测量方式属于小样本数据的预测,预测结焦状态及程度不够准确,并且不能够直观的显示。There is now a "boiler coking early warning method based on convolutional neural network", which collects temperature data of multiple measuring points in the same time period, obtains the image characteristics of the temperature data of the measuring points through the neural network, and determines whether it is coking, but it cannot determine whether it is coking. Coking type and coking state cannot be directly observed. This indirect measurement method belongs to the prediction of small sample data. The prediction of coking state and degree is not accurate enough and cannot be displayed intuitively.
发明内容Contents of the invention
为解决上述问题,本发明提供了一种火电锅炉透火焰高温滤镜结焦识别显示方法和装置,能够实现结焦的定量化分析及利用基于深度学习的结焦图像识别,实现结焦的分类和显示,提高检测精度和效率。In order to solve the above problems, the present invention provides a method and device for identifying and displaying coking in a flame-transmissive high-temperature filter of a thermal power boiler, which can realize quantitative analysis of coking and utilize coking image recognition based on deep learning to achieve classification and display of coking, improving Detection accuracy and efficiency.
本发明提供的一种火电锅炉透火焰高温滤镜结焦识别显示方法包括:A method for identifying and displaying coking of a flame-transparent high-temperature filter of a thermal power boiler provided by the invention includes:
对采集的火电锅炉透火焰高温滤镜结焦图像进行预处理;Preprocess the collected images of thermal power boiler through flame high temperature filter focusing;
基于神经网络预测算法进行结焦识别;Coking identification based on neural network prediction algorithm;
对识别出来的结焦进行定量分析,计算结焦的分数;Perform quantitative analysis on the identified coking and calculate the coking score;
当所述结焦的分数大于第一预设阈值时进行预警,大于第二预设阈值时采取干预措施;When the coking score is greater than the first preset threshold, an early warning is issued, and when the coking score is greater than the second preset threshold, intervention measures are taken;
显示所述结焦的情况。Shows the coking condition.
优选的,在上述火电锅炉透火焰高温滤镜结焦识别显示方法中,所述对采集的结焦图像进行预处理包括:Preferably, in the above-mentioned method for identifying and displaying coking on flame-transparent high-temperature filters of thermal power boilers, the preprocessing of the collected coking images includes:
基于加权平均法减少原始图像数据量;Reduce the amount of original image data based on the weighted average method;
基于中值滤波法抑制炉内环境影响产生的图像噪声;Suppress image noise caused by the influence of the furnace environment based on the median filter method;
基于小波变换勾画出结焦目标物体;Outline the focused target object based on wavelet transform;
基于迭代法将所述原始图像分为结焦和背景物;The original image is divided into focus and background objects based on an iterative method;
将所述结焦图像进行先腐蚀后膨胀运算,消除小颗粒噪声,平滑结焦边界。The focal image is first corroded and then expanded to eliminate small particle noise and smooth the focal boundary.
优选的,在上述火电锅炉透火焰高温滤镜结焦识别显示方法中,所述基于神经网络预测算法进行结焦识别包括:Preferably, in the above-mentioned method for identifying and displaying coking through flame high temperature filters of thermal power boilers, the coking identification based on the neural network prediction algorithm includes:
创建带标签的结焦图像数据库,所述标签包括焦块、高温结焦、其它和正常;Create a coking image database with labels, the labels include coke block, high temperature coking, other and normal;
分割所述结焦图像数据库,训练集取60%,测试集取40%;Split the focal image database, taking 60% of the training set and 40% of the test set;
利用设置图像尺寸随即翻转的方式创建增强结焦图像数据库,并载入Alex网络,修改全连接层输出分类数目;Create an enhanced focus image database by setting the image size and then flipping it, load it into the Alex network, and modify the number of fully connected layer output categories;
设置学习率和循环参数,开始训练;Set the learning rate and loop parameters and start training;
读取所述测试集中的结焦图像,进行预测分类,获得准确率信息;Read the focus images in the test set, perform prediction and classification, and obtain accuracy information;
通过优化学习率和增强数据集分布的方式优化所述神经网络。The neural network is optimized by optimizing the learning rate and enhancing the distribution of the data set.
优选的,在上述火电锅炉透火焰高温滤镜结焦识别显示方法中,所述对识别出来的结焦进行定量分析包括:Preferably, in the above-mentioned method for identifying and displaying coking in a flame-transmitting high-temperature filter of a thermal power boiler, the quantitative analysis of the identified coking includes:
选取已知实际尺寸为d的标定物;Select a calibration object whose actual size is known to be d;
测量图像中标定物和结焦物的像素个数D1和D2,确定标定系数d/D1;Measure the number of pixels D1 and D2 of the calibration object and the coked object in the image, and determine the calibration coefficient d/D1;
对目标图像中的结焦面积进行定量化计算。Quantitatively calculate the focal area in the target image.
优选的,在上述火电锅炉透火焰高温滤镜结焦识别显示方法中,所述显示所述结焦的情况包括:Preferably, in the above-mentioned method for identifying and displaying coking in a flame-transmitting high-temperature filter of a thermal power boiler, the display of the coking situation includes:
显示结焦图像、结焦分类结果、结焦定量分析结果和结焦处理建议。Displays coking images, coking classification results, coking quantitative analysis results, and coking treatment suggestions.
本发明提供的一种火电锅炉透火焰高温滤镜结焦识别显示装置包括:A thermal power boiler flame-transmitting high-temperature filter coking identification and display device provided by the invention includes:
预处理部件,用于对采集的火电锅炉透火焰高温滤镜结焦图像进行预处理;The preprocessing component is used to preprocess the collected images of the thermal power boiler through flame high temperature filter focusing;
识别部件,用于基于神经网络预测算法进行结焦识别;Identification component, used for coking identification based on neural network prediction algorithm;
分析计算部件,用于对识别出来的结焦进行定量分析,计算结焦的分数;The analysis and calculation component is used to quantitatively analyze the identified coking and calculate the coking score;
预警部件,用于当所述结焦的分数大于第一预设阈值时进行预警,大于第二预设阈值时采取干预措施;An early warning component, configured to provide an early warning when the coking score is greater than a first preset threshold, and to take intervention measures when it is greater than a second preset threshold;
显示部件,用于显示所述结焦的情况。A display component is used to display the coking situation.
优选的,在上述火电锅炉透火焰高温滤镜结焦识别显示装置中,所述预处理部件包括:Preferably, in the above-mentioned flame-transmitting high-temperature filter coking identification and display device for thermal power boilers, the pretreatment component includes:
数据量减少单元,用于基于加权平均法减少原始图像数据量;Data volume reduction unit, used to reduce the volume of original image data based on the weighted average method;
噪声抑制单元,用于基于中值滤波法抑制炉内环境影响产生的图像噪声;Noise suppression unit, used to suppress image noise caused by environmental effects in the furnace based on the median filter method;
勾画单元,用于基于小波变换勾画出结焦目标物体;An outlining unit is used to outline the focused target object based on wavelet transform;
背景物区分单元,用于基于迭代法将所述原始图像分为结焦和背景物;A background object distinguishing unit, used to divide the original image into focus and background objects based on an iterative method;
边界平滑单元,用于将所述结焦图像进行先腐蚀后膨胀运算,消除小颗粒噪声,平滑结焦边界。The boundary smoothing unit is used to first erode and then expand the focus image to eliminate small particle noise and smooth the focus boundary.
优选的,在上述火电锅炉透火焰高温滤镜结焦识别显示装置中,所述识别部件包括:Preferably, in the above-mentioned flame-transmitting high-temperature filter coking identification and display device for thermal power boilers, the identification component includes:
数据库创建单元,用于创建带标签的结焦图像数据库,所述标签包括焦块、高温结焦、其它和正常;A database creation unit configured to create a labeled coking image database, where the labels include coke block, high temperature coking, other and normal;
分割单元,用于分割所述结焦图像数据库,训练集取60%,测试集取40%;A segmentation unit used to segment the focal image database, taking 60% of the training set and 40% of the test set;
增强数据库创建单元,用于利用设置图像尺寸随即翻转的方式创建增强结焦图像数据库,并载入Alex网络,修改全连接层输出分类数目;The enhanced database creation unit is used to create an enhanced focused image database by setting the image size and then flipping it, and loads the Alex network to modify the number of fully connected layer output categories;
训练单元,用于设置学习率和循环参数,开始训练;The training unit is used to set the learning rate and loop parameters and start training;
预测分类单元,用于读取所述测试集中的结焦图像,进行预测分类,获得准确率信息;A prediction classification unit, used to read the focused images in the test set, perform prediction classification, and obtain accuracy information;
神经网络优化单元,用于通过优化学习率和增强数据集分布的方式优化所述神经网络。A neural network optimization unit is used to optimize the neural network by optimizing the learning rate and enhancing the distribution of the data set.
优选的,在上述火电锅炉透火焰高温滤镜结焦识别显示装置中,所述分析计算部件包括:Preferably, in the above-mentioned thermal power boiler flame-transmitting high-temperature filter coking identification and display device, the analysis and calculation component includes:
标定物选取单元,用于选取已知实际尺寸为d的标定物;The calibration object selection unit is used to select the calibration object whose actual size is known to be d;
像素个数测量单元,用于测量图像中标定物和结焦物的像素个数D1和D2,确定标定系数d/D1;The pixel number measuring unit is used to measure the pixel numbers D1 and D2 of the calibration object and the coking object in the image, and determine the calibration coefficient d/D1;
结焦面积计算单元,用于对目标图像中的结焦面积进行定量化计算。The coking area calculation unit is used to quantitatively calculate the coking area in the target image.
优选的,在上述火电锅炉透火焰高温滤镜结焦识别显示装置中,所述显示部件具体用于显示结焦图像、结焦分类结果、结焦定量分析结果和结焦处理建议。Preferably, in the above-mentioned coking identification and display device of a flame-transmitting high-temperature filter for thermal power boilers, the display component is specifically used to display coking images, coking classification results, coking quantitative analysis results and coking treatment suggestions.
通过上述描述可知,本发明提供的上述火电锅炉透火焰高温滤镜结焦识别显示方法,由于包括对采集的火电锅炉透火焰高温滤镜结焦图像进行预处理;基于神经网络预测算法进行结焦识别;对识别出来的结焦进行定量分析,计算结焦的分数;当所述结焦的分数大于第一预设阈值时进行预警,大于第二预设阈值时采取干预措施;显示所述结焦的情况,因此能够实现结焦的定量化分析及利用基于深度学习的结焦图像识别,实现结焦的分类和显示,提高检测精度和效率。本发明提供的上述火电锅炉透火焰高温滤镜结焦识别显示装置具有与上述方法同样的优点。It can be seen from the above description that the above-mentioned flame-transmitting high-temperature filter coking identification and display method for thermal power boilers provided by the present invention includes preprocessing the collected flame-transmitting high-temperature filter coking images of thermal power boilers; performing coking identification based on a neural network prediction algorithm; The identified coking is quantitatively analyzed and the coking score is calculated; when the coking score is greater than the first preset threshold, an early warning is issued, and when it is greater than the second preset threshold, intervention measures are taken; the coking situation is displayed, so that it can be realized Quantitative analysis of coking and the use of coking image recognition based on deep learning to classify and display coking, improving detection accuracy and efficiency. The above-mentioned flame-transmitting high-temperature filter coking identification and display device for thermal power boilers provided by the present invention has the same advantages as the above-mentioned method.
附图说明Description of the drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。In order to explain the embodiments of the present invention or the technical solutions in the prior art more clearly, the drawings needed to be used in the description of the embodiments or the prior art will be briefly introduced below. Obviously, the drawings in the following description are only These are embodiments of the present invention. For those of ordinary skill in the art, other drawings can be obtained based on the provided drawings without exerting creative efforts.
图1为本发明提供的一种火电锅炉透火焰高温滤镜结焦识别显示方法和装置的实施例的示意图;Figure 1 is a schematic diagram of an embodiment of a method and device for identifying and displaying coking of a flame-transmitting high-temperature filter of a thermal power boiler provided by the present invention;
图2为火电锅炉透火焰高温滤镜结焦识别显示方法采用的可视化软件模块的示意图;Figure 2 is a schematic diagram of the visualization software module used in the coking identification and display method of the flame-transmitting high-temperature filter of a thermal power boiler;
图3为本发明提供的一种火电锅炉透火焰高温滤镜结焦识别显示装置的实施例的示意图。Figure 3 is a schematic diagram of an embodiment of a flame-transmitting high-temperature filter coking identification and display device for a thermal power boiler provided by the present invention.
具体实施方式Detailed ways
本发明的核心是提供一种火电锅炉透火焰高温滤镜结焦识别显示方法和装置,能够实现火电锅炉透火焰高温滤镜结焦的定量化分析及利用基于深度学习的结焦图像识别,实现结焦的分类和显示,提高检测精度和效率。The core of the present invention is to provide a method and device for identifying and displaying coking of a flame-transmitting high-temperature filter of a thermal power boiler, which can realize quantitative analysis of coking of a flame-transmitting high-temperature filter of a thermal power boiler and utilize coking image recognition based on deep learning to achieve coking classification. and display to improve detection accuracy and efficiency.
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some of the embodiments of the present invention, rather than all the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts fall within the scope of protection of the present invention.
本发明提供的一种火电锅炉透火焰高温滤镜结焦识别显示方法的实施例如图1所示,图1为本发明提供的一种火电锅炉透火焰高温滤镜结焦识别显示方法的实施例的示意图,该方法包括如下步骤:An embodiment of a method for identifying and displaying coking of a flame-transparent high-temperature filter of a thermal power boiler provided by the invention is shown in Figure 1. Figure 1 is a schematic diagram of an embodiment of a method of identifying and displaying coking of a flame-transparent high-temperature filter of a thermal power boiler provided by the invention. , the method includes the following steps:
S1:对采集的火电锅炉透火焰高温滤镜结焦图像进行预处理;S1: Preprocess the collected image of thermal power boiler through flame high temperature filter focusing;
需要说明的是,经过预处理之后,能够使得火电锅炉透火焰高温滤镜结焦部分更为明显突出和易识别,提高识别效率。It should be noted that after preprocessing, the coked part of the flame-transmitting high-temperature filter of the thermal power boiler can be made more prominent and easier to identify, thereby improving the identification efficiency.
S2:基于神经网络预测算法进行结焦识别;S2: Coking identification based on neural network prediction algorithm;
具体的,这种神经网络预测算法可以基于MATLAB中Alex网络训练而成。Specifically, this neural network prediction algorithm can be trained based on the Alex network in MATLAB.
S3:对识别出来的结焦进行定量分析,计算结焦的分数;S3: Perform quantitative analysis on the identified coking and calculate the coking score;
具体的,可以依据结焦种类和结焦面积,对结焦状态进行打分,例如可以分为红、橙、黄、绿这些级别,其中,红色表示危险,绿色表示安全。Specifically, the coking status can be scored according to the coking type and coking area. For example, it can be divided into red, orange, yellow, and green levels, where red indicates danger and green indicates safety.
S4:当结焦的分数大于第一预设阈值时进行预警,大于第二预设阈值时采取干预措施;S4: Provide an early warning when the coking score is greater than the first preset threshold, and take intervention measures when it is greater than the second preset threshold;
具体的,可以根据分析出来的结焦的分数判断是否发出预警,这就便于操作人员针对结焦的情况及时做出反应,避免时间过长而导致事态更加严重,这里可以但不限于设置为高于70分就要人工介入,高于90分就要采取干预措施,以免发生结焦过大等恶劣情况。Specifically, it can be judged whether to issue an early warning based on the analyzed coking score, which facilitates the operator to respond promptly to the coking situation and avoid making the situation more serious if the time is too long. It can be, but is not limited to, set to a value higher than 70. If the score exceeds 90, manual intervention will be required, and if the score exceeds 90, intervention measures will be taken to avoid severe situations such as excessive coking.
S5:显示结焦的情况。S5: Displays the coking situation.
具体可以但不限于采用上位机屏幕来显示结焦的情况,这里可以同时显示出结焦的多种参数、图像和分析结果等等,让操作人员更好的掌握结焦的实时情况。Specifically, but not limited to, the host computer screen can be used to display the coking situation. Various coking parameters, images, analysis results, etc. can be displayed at the same time, allowing the operator to better grasp the real-time situation of coking.
通过上述描述可知,本发明提供的上述火电锅炉透火焰高温滤镜结焦识别显示方法的实施例中,由于包括对采集的火电锅炉透火焰高温滤镜结焦图像进行预处理;基于神经网络预测算法进行结焦识别;对识别出来的结焦进行定量分析,计算结焦的分数;当结焦的分数大于第一预设阈值时进行预警,大于第二预设阈值时采取干预措施;显示结焦的情况,因此能够实现结焦的定量化分析及利用基于深度学习的结焦图像识别,实现结焦的分类和显示,提高检测精度和效率。As can be seen from the above description, the embodiment of the method for identifying and displaying the coking of the flame-transmitting high-temperature filter of a thermal power boiler provided by the present invention includes preprocessing the collected image of the coking of the flame-transmitting high-temperature filter of the thermal power boiler; based on a neural network prediction algorithm. Coking identification; quantitatively analyze the identified coking and calculate the coking score; issue an early warning when the coking score is greater than the first preset threshold, and take intervention measures when it is greater than the second preset threshold; display the coking situation, so it can be achieved Quantitative analysis of coking and the use of coking image recognition based on deep learning to classify and display coking, improving detection accuracy and efficiency.
在上述火电锅炉透火焰高温滤镜结焦识别显示方法的一个具体实施例中,对采集的火电锅炉透火焰高温滤镜结焦图像进行预处理可以包括:In a specific embodiment of the above-mentioned flame-transmitting high-temperature filter coking identification and display method for thermal power boilers, preprocessing the collected flame-transmitting high-temperature filter coking images of thermal power boilers may include:
基于加权平均法减少原始图像数据量,这也就是一个灰度化过程,这样能够加快处理速度;Reduce the amount of original image data based on the weighted average method, which is a grayscale process, which can speed up processing;
基于中值滤波法抑制炉内环境影响产生的图像噪声,这也就是一个平滑去噪过程,这样能改善图像质量;Based on the median filtering method, the image noise caused by the influence of the furnace environment is suppressed, which is a smooth denoising process, which can improve the image quality;
基于小波变换勾画出结焦目标物体,使其特征更为明显,这也就是一个边缘检测过程;Based on wavelet transform, the focused target object is outlined to make its features more obvious, which is an edge detection process;
基于迭代法将原始图像分为结焦和背景物,这也就是一个二值化过程;The original image is divided into focus and background objects based on the iterative method, which is a binarization process;
将结焦图像进行先腐蚀后膨胀运算,消除小颗粒噪声,平滑结焦边界,这也就是一个开运算过程。The focal image is first corroded and then expanded to eliminate small particle noise and smooth the focal boundary. This is an open operation process.
在上述火电锅炉透火焰高温滤镜结焦识别显示方法的另一个具体实施例中,基于神经网络预测算法进行结焦识别可以包括如下步骤:In another specific embodiment of the above-mentioned method for identifying and displaying coking in a flame-transparent high-temperature filter of a thermal power boiler, identifying coking based on a neural network prediction algorithm may include the following steps:
创建带标签的结焦图像数据库,标签包括焦块、高温结焦、其它和正常;Create a labeled coking image database, with labels including coke block, high temperature coking, other and normal;
分割结焦图像数据库,训练集取60%,测试集取40%;Split the focused image database, taking 60% of the training set and 40% of the test set;
利用设置图像尺寸随即翻转的方式创建增强结焦图像数据库,并载入Alex网络,修改全连接层输出分类数目;Create an enhanced focus image database by setting the image size and then flipping it, load it into the Alex network, and modify the number of fully connected layer output categories;
设置学习率和循环参数,开始训练,并且储存已训练好的网络;Set the learning rate and loop parameters, start training, and save the trained network;
读取测试集中的结焦图像,进行预测分类,获得准确率信息;Read the focus images in the test set, perform prediction and classification, and obtain accuracy information;
通过优化学习率和增强数据集分布的方式优化神经网络,以不断提高准确率。Optimize the neural network by optimizing the learning rate and enhancing the distribution of the data set to continuously improve accuracy.
在上述火电锅炉透火焰高温滤镜结焦识别显示方法的又一个具体实施例中,对识别出来的结焦进行定量分析可以包括:In another specific embodiment of the above-mentioned method for identifying and displaying coking in a flame-transmitting high-temperature filter of a thermal power boiler, quantitative analysis of the identified coking may include:
选取已知实际尺寸为d的标定物;Select a calibration object whose actual size is known to be d;
测量图像中标定物和结焦物的像素个数D1和D2,确定标定系数d/D1;Measure the number of pixels D1 and D2 of the calibration object and the coked object in the image, and determine the calibration coefficient d/D1;
对目标图像中的结焦面积进行定量化计算。Quantitatively calculate the focal area in the target image.
也就是说,用这种方式就能够识别出结焦的具体尺寸,当到达一定阈值后则发出预警,做出及时处理,避免结焦造成更大的风险。In other words, in this way, the specific size of coking can be identified. When it reaches a certain threshold, an early warning will be issued and timely processing can be done to avoid greater risks caused by coking.
在上述火电锅炉透火焰高温滤镜结焦识别显示方法得一个优选实施例中,显示结焦的情况可以包括:In a preferred embodiment of the above-mentioned method for identifying and displaying coking in a flame-transparent high-temperature filter of a thermal power boiler, displaying coking conditions may include:
显示结焦图像、结焦分类结果、结焦定量分析结果和结焦处理建议。Displays coking images, coking classification results, coking quantitative analysis results, and coking treatment suggestions.
具体的,该步骤中可以显示出两个界面:一是图像处理界面,图像处理界面包括要选用的各种图像处理算法、计算焦块面积、显示原始图像和处理后的图像等内容;二是故障诊断界面,包括识别结焦图像的显示、结焦图像分类结果显示、诊断结果显示、分值显示、报警指示灯显示和处理方法建议显示等。Specifically, two interfaces can be displayed in this step: one is the image processing interface, which includes various image processing algorithms to be selected, calculation of the focal block area, display of the original image and the processed image, etc.; the second is the image processing interface. The fault diagnosis interface includes the display of coking images, the display of coking image classification results, the display of diagnosis results, the display of scores, the display of alarm indicators and the display of suggested treatment methods, etc.
参考图2,图2为火电锅炉透火焰高温滤镜结焦识别显示方法采用的可视化软件模块的示意图,其中包括结焦图像读取模块、结焦图像处理模块、结焦图像分类识别模块、结焦图像显示模块、结焦图像定量分析模块、报警模块、结果显示模块和建议提示模块,其中,结焦图像经由结焦图像读取模块和图像处理模块进行分析处理后,由结焦图像显示模块分别将原始图像和处理后的图像进行实时、直观地显示,同时将结焦图像交由结焦图像分类识别模块和结焦定量分析模块进行分类识别和定量分析,通过分类结果显示模块和定量分析结果显示模块把结果进行展示,报警模块依据分类结果和定量分析结果进行阈值判断、打分,若分数超过设定阈值,则红灯亮起,进行报警,此时另起一张图窗,将此刻的结焦单帧图像进行首页放大展示并自动保存到结焦图像文件夹,若分数未超阈值,报警模块不做后续响应,建议提示模块也依据结焦分类识别的结果和定量分析的结果进行相对应的操作建议提示。Referring to Figure 2, Figure 2 is a schematic diagram of the visual software module used in the coking identification and display method of the thermal power boiler through flame high temperature filter, which includes a coking image reading module, a coking image processing module, a coking image classification and identification module, and a coking image display module. Coking image quantitative analysis module, alarm module, result display module and suggestion prompt module. After the coking image is analyzed and processed by the coking image reading module and the image processing module, the coking image display module displays the original image and the processed image respectively. Real-time and intuitive display is performed. At the same time, the coking image is handed over to the coking image classification and identification module and the coking quantitative analysis module for classification, identification and quantitative analysis. The results are displayed through the classification result display module and the quantitative analysis result display module. The alarm module is based on the classification. The results and quantitative analysis results are subjected to threshold judgment and scoring. If the score exceeds the set threshold, the red light will light up and an alarm will be issued. At this time, a new picture window will be opened, and the focused single frame image at this moment will be enlarged and displayed on the home page and automatically saved. Go to the coking image folder. If the score does not exceed the threshold, the alarm module will not make subsequent responses. The suggestion prompt module will also make corresponding operation suggestions based on the results of coking classification identification and the results of quantitative analysis.
综上所述,利用上述火电锅炉透火焰高温滤镜结焦识别显示方法,能够进行结焦识别分类、定量化分析、为制定除焦策略提供依据,克服人为因素,确保锅炉的安全经济运行。In summary, the above-mentioned coking identification and display method of the flame-transmitting high-temperature filter of thermal power boilers can carry out coking identification classification, quantitative analysis, provide a basis for formulating decoking strategies, overcome human factors, and ensure the safe and economical operation of the boiler.
本发明提供的一种火电锅炉透火焰高温滤镜结焦识别显示装置的实施例如图3所示,图3为本发明提供的一种火电锅炉透火焰高温滤镜结焦识别显示装置的实施例的示意图,可以集成于上位机中,包括:An embodiment of a coking identification and display device for a flame-transparent high-temperature filter of a thermal power boiler provided by the invention is shown in Figure 3. Figure 3 is a schematic diagram of an embodiment of a coking identification and display device for a flame-transparent high-temperature filter of a thermal power boiler provided by the invention. , can be integrated into the host computer, including:
预处理部件301,用于对采集的火电锅炉透火焰高温滤镜结焦图像进行预处理,需要说明的是,经过预处理之后,能够使得结焦部分更为明显突出和易识别,提高识别效率;The preprocessing component 301 is used to preprocess the collected coked images of the thermal power boiler through the flame high temperature filter. It should be noted that after preprocessing, the coked parts can be made more prominent and easy to identify, thereby improving the identification efficiency;
识别部件302,用于基于神经网络预测算法进行结焦识别,具体的,这种神经网络预测算法可以基于MATLAB中Alex网络训练而成;The identification component 302 is used for coking identification based on a neural network prediction algorithm. Specifically, this neural network prediction algorithm can be trained based on the Alex network in MATLAB;
分析计算部件303,用于对识别出来的结焦进行定量分析,计算结焦的分数,具体的,可以依据结焦种类和结焦面积,对结焦状态进行打分,例如可以分为红、橙、黄、绿这些级别,其中,红色表示危险,绿色表示安全;The analysis and calculation component 303 is used to quantitatively analyze the identified coking and calculate the coking score. Specifically, the coking status can be scored according to the type of coking and the coking area. For example, it can be divided into red, orange, yellow, and green. Level, where red indicates danger and green indicates safety;
预警部件304,用于当结焦的分数大于第一预设阈值时进行预警,大于第二预设阈值时采取干预措施,具体的,可以根据分析出来的结焦的分数判断是否发出预警,这就便于操作人员针对结焦的情况及时做出反应,避免时间过长而导致事态更加严重,这里可以但不限于设置为高于70分就要人工介入,高于90分就要采取干预措施,以免发生结焦过大等恶劣情况;The early warning component 304 is used to issue an early warning when the coking score is greater than the first preset threshold, and to take intervention measures when it is greater than the second preset threshold. Specifically, it can be judged whether to issue an early warning based on the analyzed coking score, which is convenient. The operator responds to the coking situation in a timely manner to avoid the situation becoming more serious if the time is too long. It can be, but is not limited to, set to manual intervention if the score exceeds 70, and intervention measures will be taken if the score exceeds 90 to avoid coking. Too large and other adverse conditions;
显示部件305,用于显示结焦的情况,具体可以但不限于采用上位机屏幕来显示结焦的情况,这里可以同时显示出结焦的多种参数、图像和分析结果等等,让操作人员更好的掌握结焦的实时情况。The display component 305 is used to display the coking situation. Specifically, it can be, but is not limited to, using a host computer screen to display the coking situation. Various coking parameters, images, analysis results, etc. can be displayed at the same time to allow the operator to better understand the coking situation. Understand the real-time situation of coking.
在上述火电锅炉透火焰高温滤镜结焦识别显示装置的一个具体实施例中,预处理部件可以包括:In a specific embodiment of the above-described flame-transmitting high-temperature filter coking identification and display device for thermal power boilers, the preprocessing component may include:
数据量减少单元,用于基于加权平均法减少原始图像数据量,这也就是一个灰度化过程,这样能够加快处理速度;The data volume reduction unit is used to reduce the volume of original image data based on the weighted average method, which is also a grayscale process, which can speed up the processing;
噪声抑制单元,用于基于中值滤波法抑制炉内环境影响产生的图像噪声,这也就是一个平滑去噪过程,这样能改善图像质量The noise suppression unit is used to suppress the image noise caused by the environmental influence in the furnace based on the median filter method. This is also a smooth denoising process, which can improve the image quality.
勾画单元,用于基于小波变换勾画出结焦目标物体,这也就是一个边缘检测过程;The outlining unit is used to outline the focused target object based on wavelet transform, which is also an edge detection process;
背景物区分单元,用于基于迭代法将原始图像分为结焦和背景物,这也就是一个二值化过程;The background object distinction unit is used to divide the original image into focus and background objects based on an iterative method, which is a binarization process;
边界平滑单元,用于将结焦图像进行先腐蚀后膨胀运算,消除小颗粒噪声,平滑结焦边界,这也就是一个开运算过程。The boundary smoothing unit is used to first erode and then expand the focal image to eliminate small particle noise and smooth the focal boundary. This is an open operation process.
在上述火电锅炉透火焰高温滤镜结焦识别显示装置的另一个具体实施例中,识别部件可以包括:In another specific embodiment of the above-described flame-transmitting high-temperature filter coking identification and display device for thermal power boilers, the identification components may include:
数据库创建单元,用于创建带标签的结焦图像数据库,标签包括焦块、高温结焦、其它和正常;A database creation unit used to create a labeled coking image database, where the labels include coke block, high temperature coking, other and normal;
分割单元,用于分割结焦图像数据库,训练集取60%,测试集取40%;The segmentation unit is used to segment the focal image database, taking 60% of the training set and 40% of the test set;
增强数据库创建单元,用于利用设置图像尺寸随即翻转的方式创建增强结焦图像数据库,并载入Alex网络,修改全连接层输出分类数目;The enhanced database creation unit is used to create an enhanced focused image database by setting the image size and then flipping it, and loads the Alex network to modify the number of fully connected layer output categories;
训练单元,用于设置学习率和循环参数,开始训练;The training unit is used to set the learning rate and loop parameters and start training;
预测分类单元,用于读取测试集中的结焦图像,进行预测分类,获得准确率信息;The prediction classification unit is used to read the focus images in the test set, perform prediction classification, and obtain accuracy information;
神经网络优化单元,用于通过优化学习率和增强数据集分布的方式优化神经网络。The neural network optimization unit is used to optimize the neural network by optimizing the learning rate and enhancing the distribution of the data set.
在上述火电锅炉透火焰高温滤镜结焦识别显示装置得又一个具体实施例中,分析计算部件可以包括:In another specific embodiment of the above-described flame-transmitting high-temperature filter coking identification and display device for thermal power boilers, the analysis and calculation components may include:
标定物选取单元,用于选取已知实际尺寸为d的标定物;The calibration object selection unit is used to select the calibration object whose actual size is known to be d;
像素个数测量单元,用于测量图像中标定物和结焦物的像素个数D1和D2,确定标定系数d/D1;The pixel number measuring unit is used to measure the pixel numbers D1 and D2 of the calibration object and the coking object in the image, and determine the calibration coefficient d/D1;
结焦面积计算单元,用于对目标图像中的结焦面积进行定量化计算。The coking area calculation unit is used to quantitatively calculate the coking area in the target image.
也就是说,用这种方式就能够识别出结焦的具体尺寸,当到达一定阈值后则发出预警,做出及时处理,避免结焦造成更大的风险。In other words, in this way, the specific size of coking can be identified. When it reaches a certain threshold, an early warning will be issued and timely processing can be done to avoid greater risks caused by coking.
在上述火电锅炉透火焰高温滤镜结焦识别显示装置得一个优选实施例中,显示部件具体可以用于显示结焦图像、结焦分类结果、结焦定量分析结果和结焦处理建议。In a preferred embodiment of the above-mentioned flame-transmitting high-temperature filter coking identification and display device for thermal power boilers, the display component can be used to display coking images, coking classification results, coking quantitative analysis results, and coking treatment suggestions.
可以显示出两个界面:一是图像处理界面,图像处理界面包括要选用的各种图像处理算法、计算焦块面积、显示原始图像和处理后的图像等内容;二是故障诊断界面,包括识别结焦图像的显示、结焦图像分类结果显示、诊断结果显示、分值显示、报警指示灯显示和处理方法建议显示等。Two interfaces can be displayed: one is the image processing interface, which includes various image processing algorithms to be selected, calculation of the focal block area, display of original images and processed images, etc.; the other is the fault diagnosis interface, including identification Display of coking images, display of coking image classification results, display of diagnosis results, display of scores, display of alarm lights and display of suggested treatment methods, etc.
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。The above description of the disclosed embodiments enables those skilled in the art to make or use the present invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be practiced in other embodiments without departing from the spirit or scope of the invention. Therefore, the present invention is not to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
Claims (6)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202110747508.8A CN113344909B (en) | 2021-07-01 | 2021-07-01 | Method and device for identifying and displaying flame penetration height Wen Lvjing coking of thermal power boiler |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202110747508.8A CN113344909B (en) | 2021-07-01 | 2021-07-01 | Method and device for identifying and displaying flame penetration height Wen Lvjing coking of thermal power boiler |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN113344909A CN113344909A (en) | 2021-09-03 |
| CN113344909B true CN113344909B (en) | 2023-12-08 |
Family
ID=77482194
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202110747508.8A Expired - Fee Related CN113344909B (en) | 2021-07-01 | 2021-07-01 | Method and device for identifying and displaying flame penetration height Wen Lvjing coking of thermal power boiler |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN113344909B (en) |
Citations (29)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2000132080A (en) * | 1998-10-22 | 2000-05-12 | Kawasaki Heavy Ind Ltd | Fire simulator for fire drill |
| JP2009236391A (en) * | 2008-03-27 | 2009-10-15 | Japan Atom Power Co Ltd:The | High temperature atmosphere furnace observation device |
| CN101655700A (en) * | 2009-09-17 | 2010-02-24 | 同济大学 | Topographic control system and method of waste pyrolysis |
| CN101688127A (en) * | 2007-06-04 | 2010-03-31 | 埃克森美孚化学专利公司 | A process for pyrolyzing a hydrocarbon feedstock pyrolysis reactor system |
| CN101799661A (en) * | 2007-01-10 | 2010-08-11 | 株式会社日立制作所 | Control device for boiler plant and device for training operator of boiler plant |
| CN102425807A (en) * | 2011-11-23 | 2012-04-25 | 华北电力大学(保定) | Combustion Feedforward Feedback Composite Optimization Control Method for Pulverized Coal Boiler |
| CN102707762A (en) * | 2012-06-04 | 2012-10-03 | 同济大学 | Heating power control method for waste high polymer material pyrolysis |
| CN202692120U (en) * | 2012-07-09 | 2013-01-23 | 大唐双鸭山热电有限公司 | Visual monitoring control module in boiler hearth |
| CN105046868A (en) * | 2015-06-16 | 2015-11-11 | 苏州华启智能科技股份有限公司 | Fire early warning method based on infrared thermal imager in narrow environment |
| CN105423273A (en) * | 2015-12-15 | 2016-03-23 | 天津鹰麟节能科技发展有限公司 | Spectroscopic boiler anti-coking system and control method |
| CN107559878A (en) * | 2017-09-25 | 2018-01-09 | 华能国际电力股份有限公司日照电厂 | The method and device of fire coal management |
| CN109063412A (en) * | 2018-08-27 | 2018-12-21 | 浙江大学 | Source Data Fusion System and method for the assessment of coal pyrolysis in plasma producing acetylene reactiveness |
| CN109145689A (en) * | 2017-06-28 | 2019-01-04 | 南京理工大学 | A kind of robot fire detection method |
| CN208421626U (en) * | 2018-07-23 | 2019-01-22 | 合肥金星机电科技发展有限公司 | Ethane cracking furnace burning process monitors system |
| CN109934417A (en) * | 2019-03-26 | 2019-06-25 | 国电民权发电有限公司 | Early warning method of boiler coking based on convolutional neural network |
| CN109977838A (en) * | 2019-03-20 | 2019-07-05 | 西安理工大学 | A kind of flame combustion state detection method |
| CN110197199A (en) * | 2019-04-17 | 2019-09-03 | 广东石油化工学院 | Embedded DCNN and the weight tube temperature degree recognition methods of the pyrolysis furnace of edge calculations |
| CN110222633A (en) * | 2019-06-04 | 2019-09-10 | 北京工业大学 | City solid waste burning process combusts operating mode's switch method based on flame image color feature extracted |
| CN110222814A (en) * | 2019-04-25 | 2019-09-10 | 广东石油化工学院 | The pipe recognition methods again of Ethylene Cracking Furnace Tubes based on embedded DCNN |
| CN110419018A (en) * | 2016-12-29 | 2019-11-05 | 奇跃公司 | Automatic control of wearable display device based on external conditions |
| CN110633675A (en) * | 2019-09-18 | 2019-12-31 | 东北大学 | A fire recognition system and method in video based on convolutional neural network |
| CN111062293A (en) * | 2019-12-10 | 2020-04-24 | 太原理工大学 | A deep learning-based method for unmanned aerial vehicle forest fire recognition |
| CN111095261A (en) * | 2017-04-27 | 2020-05-01 | 视网膜病答案有限公司 | Automatic analysis system and method for fundus images |
| CN111368771A (en) * | 2020-03-11 | 2020-07-03 | 四川路桥建设集团交通工程有限公司 | Tunnel fire early warning method and device based on image processing, computer equipment and computer readable storage medium |
| CN111473358A (en) * | 2020-05-09 | 2020-07-31 | 中国华能集团有限公司 | Hearth flame television decoking device and control method thereof |
| CN111882810A (en) * | 2020-07-31 | 2020-11-03 | 广州市微智联科技有限公司 | Fire identification and early warning method and system |
| CN112080745A (en) * | 2020-09-02 | 2020-12-15 | 新疆金泰非晶科技有限公司 | Composite coating containing amorphous alloy identification layer and preparation method and application thereof |
| CN112521955A (en) * | 2020-11-04 | 2021-03-19 | 中南大学 | Coke cake center temperature detection method and system |
| CN112784405A (en) * | 2021-01-06 | 2021-05-11 | 润电能源科学技术有限公司 | Boiler slagging prediction method based on numerical simulation and related device |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8375032B2 (en) * | 2009-06-25 | 2013-02-12 | University Of Tennessee Research Foundation | Method and apparatus for predicting object properties and events using similarity-based information retrieval and modeling |
-
2021
- 2021-07-01 CN CN202110747508.8A patent/CN113344909B/en not_active Expired - Fee Related
Patent Citations (29)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2000132080A (en) * | 1998-10-22 | 2000-05-12 | Kawasaki Heavy Ind Ltd | Fire simulator for fire drill |
| CN101799661A (en) * | 2007-01-10 | 2010-08-11 | 株式会社日立制作所 | Control device for boiler plant and device for training operator of boiler plant |
| CN101688127A (en) * | 2007-06-04 | 2010-03-31 | 埃克森美孚化学专利公司 | A process for pyrolyzing a hydrocarbon feedstock pyrolysis reactor system |
| JP2009236391A (en) * | 2008-03-27 | 2009-10-15 | Japan Atom Power Co Ltd:The | High temperature atmosphere furnace observation device |
| CN101655700A (en) * | 2009-09-17 | 2010-02-24 | 同济大学 | Topographic control system and method of waste pyrolysis |
| CN102425807A (en) * | 2011-11-23 | 2012-04-25 | 华北电力大学(保定) | Combustion Feedforward Feedback Composite Optimization Control Method for Pulverized Coal Boiler |
| CN102707762A (en) * | 2012-06-04 | 2012-10-03 | 同济大学 | Heating power control method for waste high polymer material pyrolysis |
| CN202692120U (en) * | 2012-07-09 | 2013-01-23 | 大唐双鸭山热电有限公司 | Visual monitoring control module in boiler hearth |
| CN105046868A (en) * | 2015-06-16 | 2015-11-11 | 苏州华启智能科技股份有限公司 | Fire early warning method based on infrared thermal imager in narrow environment |
| CN105423273A (en) * | 2015-12-15 | 2016-03-23 | 天津鹰麟节能科技发展有限公司 | Spectroscopic boiler anti-coking system and control method |
| CN110419018A (en) * | 2016-12-29 | 2019-11-05 | 奇跃公司 | Automatic control of wearable display device based on external conditions |
| CN111095261A (en) * | 2017-04-27 | 2020-05-01 | 视网膜病答案有限公司 | Automatic analysis system and method for fundus images |
| CN109145689A (en) * | 2017-06-28 | 2019-01-04 | 南京理工大学 | A kind of robot fire detection method |
| CN107559878A (en) * | 2017-09-25 | 2018-01-09 | 华能国际电力股份有限公司日照电厂 | The method and device of fire coal management |
| CN208421626U (en) * | 2018-07-23 | 2019-01-22 | 合肥金星机电科技发展有限公司 | Ethane cracking furnace burning process monitors system |
| CN109063412A (en) * | 2018-08-27 | 2018-12-21 | 浙江大学 | Source Data Fusion System and method for the assessment of coal pyrolysis in plasma producing acetylene reactiveness |
| CN109977838A (en) * | 2019-03-20 | 2019-07-05 | 西安理工大学 | A kind of flame combustion state detection method |
| CN109934417A (en) * | 2019-03-26 | 2019-06-25 | 国电民权发电有限公司 | Early warning method of boiler coking based on convolutional neural network |
| CN110197199A (en) * | 2019-04-17 | 2019-09-03 | 广东石油化工学院 | Embedded DCNN and the weight tube temperature degree recognition methods of the pyrolysis furnace of edge calculations |
| CN110222814A (en) * | 2019-04-25 | 2019-09-10 | 广东石油化工学院 | The pipe recognition methods again of Ethylene Cracking Furnace Tubes based on embedded DCNN |
| CN110222633A (en) * | 2019-06-04 | 2019-09-10 | 北京工业大学 | City solid waste burning process combusts operating mode's switch method based on flame image color feature extracted |
| CN110633675A (en) * | 2019-09-18 | 2019-12-31 | 东北大学 | A fire recognition system and method in video based on convolutional neural network |
| CN111062293A (en) * | 2019-12-10 | 2020-04-24 | 太原理工大学 | A deep learning-based method for unmanned aerial vehicle forest fire recognition |
| CN111368771A (en) * | 2020-03-11 | 2020-07-03 | 四川路桥建设集团交通工程有限公司 | Tunnel fire early warning method and device based on image processing, computer equipment and computer readable storage medium |
| CN111473358A (en) * | 2020-05-09 | 2020-07-31 | 中国华能集团有限公司 | Hearth flame television decoking device and control method thereof |
| CN111882810A (en) * | 2020-07-31 | 2020-11-03 | 广州市微智联科技有限公司 | Fire identification and early warning method and system |
| CN112080745A (en) * | 2020-09-02 | 2020-12-15 | 新疆金泰非晶科技有限公司 | Composite coating containing amorphous alloy identification layer and preparation method and application thereof |
| CN112521955A (en) * | 2020-11-04 | 2021-03-19 | 中南大学 | Coke cake center temperature detection method and system |
| CN112784405A (en) * | 2021-01-06 | 2021-05-11 | 润电能源科学技术有限公司 | Boiler slagging prediction method based on numerical simulation and related device |
Non-Patent Citations (5)
| Title |
|---|
| Guided Image Filtering;HE. K;《IEEE Transactions on Pattern Analysis & Machine Intelligence》;第1397-1409页 * |
| 基于形态学的快速图像搜索与识别算法;常锐;裴海龙;;计算机工程与设计(07);第93-95页 * |
| 基于模糊聚类的稳健支撑向量回归机及火焰图像处理;陈晓峰;王士同;曹苏群;崔运静;马培勇;仇性启;;中国图象图形学报(03);第92-99页 * |
| 大数据技术应用于火电机组深度调峰的研究;陈鑫;刘利;徐威;陈啸;;科技创新与应用(28);第156-157页 * |
| 锅炉性能优化系统的应用试验研究;王秀林,孔令君,姜仕涛,张竟思,付全方,张世荣,杨启璋;中国电力(12);第49-52页 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN113344909A (en) | 2021-09-03 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN105678295B (en) | Gas heating flame method of real-time based on the analysis of ROI the average image | |
| CN111852792B (en) | Fan blade defect self-diagnosis positioning method based on machine vision | |
| CN118090908B (en) | Automatic flaw detection system for annular forging | |
| CN106980922A (en) | A kind of power transmission and transformation equipment state evaluation method based on big data | |
| CN109754019B (en) | A Method for Continuous Monitoring of Boiler Combustion Condition | |
| CN117314826A (en) | Performance detection method of display screen | |
| CN116342932A (en) | Method and system for diagnosing combustion state of waste incinerator based on image processing | |
| CN118587829B (en) | Distributed photovoltaic fire disaster early warning method and system | |
| Zhu et al. | Multi-classification recognition and quantitative characterization of surface defects in belt grinding based on YOLOv7 | |
| US20230077332A1 (en) | Defect Inspection System and Defect Inspection Method | |
| CN118941532A (en) | Battery welding defect detection system, method, device and storage medium | |
| CN113344909B (en) | Method and device for identifying and displaying flame penetration height Wen Lvjing coking of thermal power boiler | |
| CN119643567B (en) | A method for detecting forming defects of titanium alloy | |
| WO2025246969A1 (en) | Method and system for identifying internal surface defects of nuclear reactor pressure vessel, computer device, and computer-readable storage medium | |
| CN118537708B (en) | Borescope image damage recognition model and application system based on improved convolutional neural network | |
| CN119152251B (en) | A method for evaluating shear zone quality in dangerous rock mass based on machine vision | |
| CN102095207B (en) | Combustion process monitoring and diagnosing method based on image | |
| CN119665264A (en) | A furnace flame detection device and detection method | |
| CN119559584A (en) | Power transmission line foreign matter identification method and system based on improved YOLOv model | |
| CN118823289A (en) | Distribution cabinet equipment inspection system based on residual network | |
| CN118470386A (en) | Method for judging flow pattern change in flow boiling | |
| CN118914185A (en) | Meat product freshness detection method based on machine vision | |
| TWI381139B (en) | Vision-based method for combustion process monitoring, diagnosis, and computer-readable medium using the same | |
| CN118781598A (en) | A pathological image quality analysis method based on convolutional neural network | |
| TW202244848A (en) | System for pattern recognition model and method of maintaining pattern recognition model |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20231208 |