CN112451680B - ROS sensitive nano reagent with synergistic induction of photodynamic therapy and iron death and preparation method thereof - Google Patents
ROS sensitive nano reagent with synergistic induction of photodynamic therapy and iron death and preparation method thereof Download PDFInfo
- Publication number
- CN112451680B CN112451680B CN202011327233.4A CN202011327233A CN112451680B CN 112451680 B CN112451680 B CN 112451680B CN 202011327233 A CN202011327233 A CN 202011327233A CN 112451680 B CN112451680 B CN 112451680B
- Authority
- CN
- China
- Prior art keywords
- ros
- sensitive
- ferroptosis
- agent
- photosensitizer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002428 photodynamic therapy Methods 0.000 title claims abstract description 24
- 230000002195 synergetic effect Effects 0.000 title claims abstract description 20
- 230000006698 induction Effects 0.000 title claims abstract description 18
- 238000002360 preparation method Methods 0.000 title claims abstract description 16
- 239000003153 chemical reaction reagent Substances 0.000 title claims abstract description 15
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title description 4
- 230000034994 death Effects 0.000 title description 3
- 231100000517 death Toxicity 0.000 title description 3
- 229910052742 iron Inorganic materials 0.000 title description 2
- 239000012218 nanoagent Substances 0.000 claims abstract description 59
- 230000004806 ferroptosis Effects 0.000 claims abstract description 36
- 239000000178 monomer Substances 0.000 claims abstract description 25
- 239000003504 photosensitizing agent Substances 0.000 claims abstract description 22
- 238000000034 method Methods 0.000 claims abstract description 18
- 229920000642 polymer Polymers 0.000 claims abstract description 16
- 230000001939 inductive effect Effects 0.000 claims abstract description 8
- 239000006185 dispersion Substances 0.000 claims abstract description 6
- 239000010409 thin film Substances 0.000 claims abstract description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 32
- 238000000502 dialysis Methods 0.000 claims description 27
- -1 cyclic amino acid Chemical class 0.000 claims description 26
- 239000002253 acid Substances 0.000 claims description 23
- 238000006243 chemical reaction Methods 0.000 claims description 22
- YZXBAPSDXZZRGB-DOFZRALJSA-N arachidonic acid Chemical compound CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O YZXBAPSDXZZRGB-DOFZRALJSA-N 0.000 claims description 20
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 18
- 239000008367 deionised water Substances 0.000 claims description 17
- 229910021641 deionized water Inorganic materials 0.000 claims description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 17
- 229910052757 nitrogen Inorganic materials 0.000 claims description 16
- 239000002904 solvent Substances 0.000 claims description 16
- 125000003277 amino group Chemical group 0.000 claims description 13
- 238000003756 stirring Methods 0.000 claims description 13
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 11
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 11
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 10
- 235000021342 arachidonic acid Nutrition 0.000 claims description 10
- 229940114079 arachidonic acid Drugs 0.000 claims description 10
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 9
- QOSSAOTZNIDXMA-UHFFFAOYSA-N Dicylcohexylcarbodiimide Chemical group C1CCCCC1N=C=NC1CCCCC1 QOSSAOTZNIDXMA-UHFFFAOYSA-N 0.000 claims description 8
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical group CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 8
- 239000003960 organic solvent Substances 0.000 claims description 8
- 230000004913 activation Effects 0.000 claims description 7
- 235000001014 amino acid Nutrition 0.000 claims description 7
- 150000001875 compounds Chemical class 0.000 claims description 7
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 claims description 6
- 239000003795 chemical substances by application Substances 0.000 claims description 6
- UBQKCCHYAOITMY-UHFFFAOYSA-N pyridin-2-ol Chemical group OC1=CC=CC=N1 UBQKCCHYAOITMY-UHFFFAOYSA-N 0.000 claims description 6
- GODZNYBQGNSJJN-UHFFFAOYSA-N 1-aminoethane-1,2-diol Chemical compound NC(O)CO GODZNYBQGNSJJN-UHFFFAOYSA-N 0.000 claims description 5
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical compound ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 claims description 5
- 239000010408 film Substances 0.000 claims description 5
- 238000004108 freeze drying Methods 0.000 claims description 5
- 239000003999 initiator Substances 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 5
- 239000002245 particle Substances 0.000 claims description 5
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 4
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 claims description 3
- 239000002105 nanoparticle Substances 0.000 claims description 3
- 230000008569 process Effects 0.000 claims description 3
- 239000011814 protection agent Substances 0.000 claims description 3
- 239000003223 protective agent Substances 0.000 claims description 3
- 238000002390 rotary evaporation Methods 0.000 claims description 3
- 238000000926 separation method Methods 0.000 claims description 3
- NJSRYBIBUXBNSW-VIFPVBQESA-N (3s)-3-azaniumyl-4-oxo-4-phenylmethoxybutanoate Chemical compound [O-]C(=O)C[C@H]([NH3+])C(=O)OCC1=CC=CC=C1 NJSRYBIBUXBNSW-VIFPVBQESA-N 0.000 claims description 2
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 claims description 2
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 claims description 2
- 108010020346 Polyglutamic Acid Proteins 0.000 claims description 2
- 150000008065 acid anhydrides Chemical class 0.000 claims description 2
- 235000020669 docosahexaenoic acid Nutrition 0.000 claims description 2
- 229920002643 polyglutamic acid Polymers 0.000 claims description 2
- 150000004032 porphyrins Chemical class 0.000 claims description 2
- FAGUFWYHJQFNRV-UHFFFAOYSA-N tetraethylenepentamine Chemical compound NCCNCCNCCNCCN FAGUFWYHJQFNRV-UHFFFAOYSA-N 0.000 claims description 2
- MBMBGCFOFBJSGT-KUBAVDMBSA-N all-cis-docosa-4,7,10,13,16,19-hexaenoic acid Chemical compound CC\C=C/C\C=C/C\C=C/C\C=C/C\C=C/C\C=C/CCC(O)=O MBMBGCFOFBJSGT-KUBAVDMBSA-N 0.000 claims 2
- 150000001413 amino acids Chemical class 0.000 claims 1
- BIRYUMUXPVBNBH-UHFFFAOYSA-N docosa-1,3,5,7-tetraene Chemical compound CCCCCCCCCCCCCCC=CC=CC=CC=C BIRYUMUXPVBNBH-UHFFFAOYSA-N 0.000 claims 1
- 229940090949 docosahexaenoic acid Drugs 0.000 claims 1
- 230000014759 maintenance of location Effects 0.000 claims 1
- NSFSLUUZQIAOOX-LDCXZXNSSA-N pheophorbide a Chemical compound N1C(C=C2[C@H]([C@H](CCC(O)=O)C(=N2)C2=C3NC(=C4)C(C)=C3C(=O)[C@@H]2C(=O)OC)C)=C(C)C(C=C)=C1C=C1C(C)=C(CC)C4=N1 NSFSLUUZQIAOOX-LDCXZXNSSA-N 0.000 claims 1
- 150000003384 small molecules Chemical class 0.000 claims 1
- 230000002209 hydrophobic effect Effects 0.000 abstract description 5
- 230000004614 tumor growth Effects 0.000 abstract description 5
- 230000005764 inhibitory process Effects 0.000 abstract description 3
- 238000002560 therapeutic procedure Methods 0.000 abstract description 3
- 229920002988 biodegradable polymer Polymers 0.000 abstract description 2
- 239000004621 biodegradable polymer Substances 0.000 abstract description 2
- 238000001338 self-assembly Methods 0.000 abstract description 2
- 206010028980 Neoplasm Diseases 0.000 description 33
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 21
- 210000004881 tumor cell Anatomy 0.000 description 20
- 201000011510 cancer Diseases 0.000 description 14
- 210000004027 cell Anatomy 0.000 description 12
- 229960003180 glutathione Drugs 0.000 description 11
- 230000000694 effects Effects 0.000 description 10
- 239000000243 solution Substances 0.000 description 9
- 238000011282 treatment Methods 0.000 description 9
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 8
- 239000003642 reactive oxygen metabolite Substances 0.000 description 7
- 241000699670 Mus sp. Species 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- 238000001727 in vivo Methods 0.000 description 6
- 210000003734 kidney Anatomy 0.000 description 6
- 210000004185 liver Anatomy 0.000 description 6
- 210000004072 lung Anatomy 0.000 description 6
- 229920000835 poly(gamma-benzyl-L-glutamate) polymer Polymers 0.000 description 6
- 210000000952 spleen Anatomy 0.000 description 6
- 101000829725 Homo sapiens Phospholipid hydroperoxide glutathione peroxidase Proteins 0.000 description 5
- 102100023410 Phospholipid hydroperoxide glutathione peroxidase Human genes 0.000 description 5
- 210000000056 organ Anatomy 0.000 description 5
- 230000009471 action Effects 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 4
- 238000004220 aggregation Methods 0.000 description 4
- 229960001701 chloroform Drugs 0.000 description 4
- 231100000135 cytotoxicity Toxicity 0.000 description 4
- 230000003013 cytotoxicity Effects 0.000 description 4
- 229940079593 drug Drugs 0.000 description 4
- 239000003814 drug Substances 0.000 description 4
- 238000000799 fluorescence microscopy Methods 0.000 description 4
- 230000002401 inhibitory effect Effects 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 210000001519 tissue Anatomy 0.000 description 4
- 108010024636 Glutathione Proteins 0.000 description 3
- 239000002202 Polyethylene glycol Substances 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 230000008685 targeting Effects 0.000 description 3
- 102100028999 High mobility group protein HMGI-C Human genes 0.000 description 2
- 101000986379 Homo sapiens High mobility group protein HMGI-C Proteins 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 241000699660 Mus musculus Species 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- PFKFTWBEEFSNDU-UHFFFAOYSA-N carbonyldiimidazole Chemical class C1=CN=CN1C(=O)N1C=CN=C1 PFKFTWBEEFSNDU-UHFFFAOYSA-N 0.000 description 2
- 230000030833 cell death Effects 0.000 description 2
- 238000002512 chemotherapy Methods 0.000 description 2
- 231100000263 cytotoxicity test Toxicity 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000007490 hematoxylin and eosin (H&E) staining Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 238000011580 nude mouse model Methods 0.000 description 2
- 238000001959 radiotherapy Methods 0.000 description 2
- 238000007151 ring opening polymerisation reaction Methods 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 238000013042 tunel staining Methods 0.000 description 2
- 238000001291 vacuum drying Methods 0.000 description 2
- 210000003462 vein Anatomy 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- OYINILBBZAQBEV-UWJYYQICSA-N (17s,18s)-18-(2-carboxyethyl)-20-(carboxymethyl)-12-ethenyl-7-ethyl-3,8,13,17-tetramethyl-17,18,22,23-tetrahydroporphyrin-2-carboxylic acid Chemical compound N1C2=C(C)C(C=C)=C1C=C(N1)C(C)=C(CC)C1=CC(C(C)=C1C(O)=O)=NC1=C(CC(O)=O)C([C@@H](CCC(O)=O)[C@@H]1C)=NC1=C2 OYINILBBZAQBEV-UWJYYQICSA-N 0.000 description 1
- DVSZKTAMJJTWFG-SKCDLICFSA-N (2e,4e,6e,8e,10e,12e)-docosa-2,4,6,8,10,12-hexaenoic acid Chemical compound CCCCCCCCC\C=C\C=C\C=C\C=C\C=C\C=C\C(O)=O DVSZKTAMJJTWFG-SKCDLICFSA-N 0.000 description 1
- FPRKGXIOSIUDSE-SYACGTDESA-N (2z,4z,6z,8z)-docosa-2,4,6,8-tetraenoic acid Chemical compound CCCCCCCCCCCCC\C=C/C=C\C=C/C=C\C(O)=O FPRKGXIOSIUDSE-SYACGTDESA-N 0.000 description 1
- RKEBXTALJSALNU-LDCXZXNSSA-N 3-[(3R,21S,22S)-16-ethenyl-11-ethyl-4-hydroxy-3-methoxycarbonyl-12,17,21,26-tetramethyl-7,23,24,25-tetrazahexacyclo[18.2.1.15,8.110,13.115,18.02,6]hexacosa-1,4,6,8(26),9,11,13(25),14,16,18(24),19-undecaen-22-yl]propanoic acid Chemical compound CCC1=C(C2=NC1=CC3=C(C4=C([C@@H](C(=C5[C@H]([C@@H](C(=CC6=NC(=C2)C(=C6C)C=C)N5)C)CCC(=O)O)C4=N3)C(=O)OC)O)C)C RKEBXTALJSALNU-LDCXZXNSSA-N 0.000 description 1
- GZJLLYHBALOKEX-UHFFFAOYSA-N 6-Ketone, O18-Me-Ussuriedine Natural products CC=CCC=CCC=CCC=CCC=CCC=CCCCC(O)=O GZJLLYHBALOKEX-UHFFFAOYSA-N 0.000 description 1
- 235000021292 Docosatetraenoic acid Nutrition 0.000 description 1
- 206010059866 Drug resistance Diseases 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 1
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 108010087230 Sincalide Proteins 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000003782 apoptosis assay Methods 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000003149 assay kit Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000004900 autophagic degradation Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000010609 cell counting kit-8 assay Methods 0.000 description 1
- 239000006143 cell culture medium Substances 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- KAUVQQXNCKESLC-UHFFFAOYSA-N docosahexaenoic acid (DHA) Natural products COC(=O)C(C)NOCC1=CC=CC=C1 KAUVQQXNCKESLC-UHFFFAOYSA-N 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 229960002089 ferrous chloride Drugs 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- NMCUIPGRVMDVDB-UHFFFAOYSA-L iron dichloride Chemical compound Cl[Fe]Cl NMCUIPGRVMDVDB-UHFFFAOYSA-L 0.000 description 1
- 230000002147 killing effect Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 230000003859 lipid peroxidation Effects 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000001926 lymphatic effect Effects 0.000 description 1
- 210000001365 lymphatic vessel Anatomy 0.000 description 1
- 229920001427 mPEG Polymers 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 230000036457 multidrug resistance Effects 0.000 description 1
- 239000002539 nanocarrier Substances 0.000 description 1
- 230000017074 necrotic cell death Effects 0.000 description 1
- 238000011275 oncology therapy Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 230000005522 programmed cell death Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- IZTQOLKUZKXIRV-YRVFCXMDSA-N sincalide Chemical compound C([C@@H](C(=O)N[C@@H](CCSC)C(=O)NCC(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(N)=O)NC(=O)[C@@H](N)CC(O)=O)C1=CC=C(OS(O)(=O)=O)C=C1 IZTQOLKUZKXIRV-YRVFCXMDSA-N 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 230000002110 toxicologic effect Effects 0.000 description 1
- 231100000027 toxicology Toxicity 0.000 description 1
- 238000004627 transmission electron microscopy Methods 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- 230000001875 tumorinhibitory effect Effects 0.000 description 1
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 1
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/56—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
- A61K47/59—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/19—Carboxylic acids, e.g. valproic acid
- A61K31/20—Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids
- A61K31/202—Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids having three or more double bonds, e.g. linolenic
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K41/00—Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
- A61K41/0057—Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
- A61K41/0071—PDT with porphyrins having exactly 20 ring atoms, i.e. based on the non-expanded tetrapyrrolic ring system, e.g. bacteriochlorin, chlorin-e6, or phthalocyanines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K41/00—Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
- A61K41/0057—Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
- A61K41/0076—PDT with expanded (metallo)porphyrins, i.e. having more than 20 ring atoms, e.g. texaphyrins, sapphyrins, hexaphyrins, pentaphyrins, porphocyanines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y5/00—Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G69/00—Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
- C08G69/02—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
- C08G69/08—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino-carboxylic acids
- C08G69/10—Alpha-amino-carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G69/00—Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
- C08G69/48—Polymers modified by chemical after-treatment
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Engineering & Computer Science (AREA)
- Epidemiology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Nanotechnology (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Chemical & Material Sciences (AREA)
- Polymers & Plastics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Biophysics (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicinal Preparation (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
Abstract
一种具有协同诱导光动力治疗和铁死亡的ROS敏感性纳米试剂及其制备方法,属于生物医药技术领域。该纳米试剂由一种光敏剂修饰的ROS敏感性两亲性嵌段聚合物构建,包括两亲性生物可降解聚合物、尾端连接光敏剂基团和侧链修饰的可诱导铁死亡的ROS敏感性感性单体;两亲性聚合物能自组装为一种具有协同诱导光动力治疗和铁死亡的ROS敏感性纳米试剂,其中疏水部分自组装成为疏水的核,而亲水部分成为亲水的外壳。最终,利用薄膜分散法驱使光敏剂修饰的ROS敏感性两亲性嵌段聚合物自组装成可协同诱导光动力治疗和铁死亡的ROS敏感性纳米试剂,使其通过肿瘤微环境作用下,实现光动力与铁死亡治疗协同作用抑制肿瘤增长的效果。
A ROS-sensitive nano-agent with synergistic induction of photodynamic therapy and ferroptosis and a preparation method thereof belong to the technical field of biomedicine. The nano-reagent is constructed from a photosensitizer-modified ROS-sensitive amphiphilic block polymer, including an amphiphilic biodegradable polymer, a photosensitizer group attached to the tail end, and a side-chain-modified ferroptosis-inducing ROS. Sensitive sensitive monomer; amphiphilic polymer can self-assemble into a ROS-sensitive nanoagent with synergistic induction of photodynamic therapy and ferroptosis, in which the hydrophobic part self-assembles into a hydrophobic core and the hydrophilic part becomes hydrophilic shell. Finally, the self-assembly of the photosensitizer-modified ROS-sensitive amphiphilic block polymer is driven by the thin-film dispersion method into a ROS-sensitive nano-agent that can synergistically induce photodynamic therapy and ferroptosis. Synergistic effect of photodynamic and ferroptosis therapy on tumor growth inhibition.
Description
技术领域technical field
本发明属于生物医药技术领域,具体涉及一种具有协同诱导光动力治疗和铁死亡的ROS(Reactive Oxygen Species,活性氧)敏感性纳米试剂及其制备方法。The invention belongs to the technical field of biomedicine, and in particular relates to a ROS (Reactive Oxygen Species, reactive oxygen species) sensitive nano-agent with synergistic induction of photodynamic therapy and ferroptosis and a preparation method thereof.
背景技术Background technique
癌症在我国乃至世界范围内都是人类健康的宿敌,癌症的发病率也在日益增加。最新调查结果显示,2019年全球癌症新发病例达2000余万例,死亡更是超过千万例。其中,中国癌症的发病人数和死亡人数更是高居全球第一。目前,常用的癌症治疗方法并不能提供令人满意的治疗效果,且存在特异性低、毒副作用强、复发率高等缺陷。早期的癌症难以发现,而肿瘤细胞又易通过淋巴血管等途径转移扩散,导致癌症的治愈率不理想。目前临床癌症的治疗方法是手术治疗、放射治疗和化学治疗。然而,手术治疗存在高风险、创伤面积大和易复发的缺点;放疗和化疗在杀死肿瘤细胞的同时会损伤机体的正常细胞,导致正常生理功能受损,同时还会产生多药耐药性。因此,人们亟需开发新型的癌症治疗方案和药物来攻克这一难题。Cancer is the old enemy of human health in our country and even in the world, and the incidence of cancer is also increasing day by day. The latest survey results show that in 2019, there were more than 20 million new cases of cancer worldwide, and more than 10 million deaths. Among them, the number of cancer incidence and deaths in China ranks first in the world. At present, the commonly used cancer treatment methods cannot provide satisfactory therapeutic effects, and have the defects of low specificity, strong toxic and side effects, and high recurrence rate. Early cancer is difficult to find, and tumor cells are easy to metastasize and spread through lymphatic and blood vessels, resulting in an unsatisfactory cure rate for cancer. The current clinical treatments for cancer are surgery, radiotherapy and chemotherapy. However, surgical treatment has the disadvantages of high risk, large trauma area and easy recurrence; radiotherapy and chemotherapy will damage the normal cells of the body while killing tumor cells, resulting in the impairment of normal physiological functions, and at the same time, multidrug resistance. Therefore, it is urgent to develop new cancer treatment regimens and drugs to overcome this problem.
光动力疗法是近些年新兴的一种有效的癌症治疗方法,在特定波长光照射下可以产生具有细胞毒性的单线态氧,选择性地清除肿瘤细胞而不损害健康组织和器官,因此在肿瘤治疗中受到广泛关注作为用于癌症诊断的成像探针,也可用于指导癌症治疗。然而,光敏剂传递效率低和诊断不敏感严重限制了其在临床中的使用。现已开发了一些方法通过利用对肿瘤微环境有反应的纳米药物载体。纳米药物载体具有优越的细胞穿透能力,可以提高药物的作用,并控制其释放和靶向肿瘤细胞。从而减少了药物的剂量和副作用。通过提高纳米载体的肿瘤靶向聚集能力,以及在细胞内激活光敏剂,是提高光动力治疗效果的有效途径。Photodynamic therapy is an emerging effective cancer treatment method in recent years. It can generate cytotoxic singlet oxygen under specific wavelength light irradiation, and selectively remove tumor cells without damaging healthy tissues and organs. It has received extensive attention in therapy as imaging probes for cancer diagnosis and can also be used to guide cancer therapy. However, the low delivery efficiency and diagnostic insensitivity of photosensitizers severely limit their clinical use. Several approaches have been developed by utilizing nanodrug carriers that are responsive to the tumor microenvironment. Nano-drug carriers have superior cell-penetrating ability, which can enhance the effect of drugs and control their release and targeting to tumor cells. Thereby reducing the dose and side effects of the drug. By improving the tumor-targeted aggregation ability of nanocarriers and activating photosensitizers in cells, it is an effective way to improve the effect of photodynamic therapy.
然而,随着医疗技术不断发展,一些肿瘤细胞的耐药性也显现出来,单一性的治疗体系已不能满足目前癌症治疗的要求,我们需要结合多种治疗手段,开发全新的纳米药物制剂。近年来出现了一种全新的细胞死亡方式铁死亡(Ferroptosis)。铁死亡是一种铁依赖性的,区别于细胞凋亡、细胞坏死、细胞自噬的新型的细胞程序性死亡方式。铁死亡的主要机制是,在二价铁的作用下,催化不饱和脂肪酸发生脂质过氧化,从而导致脂质过氧化物堆积进而诱导细胞死亡。However, with the continuous development of medical technology, the drug resistance of some tumor cells has also emerged. A single treatment system can no longer meet the requirements of current cancer treatment. We need to combine multiple treatment methods to develop new nano-drug preparations. In recent years, a new cell death method, ferroptosis, has emerged. Ferroptosis is an iron-dependent new type of programmed cell death that is different from apoptosis, necrosis and autophagy. The main mechanism of ferroptosis is that under the action of ferrous iron, unsaturated fatty acids are catalyzed to undergo lipid peroxidation, which leads to the accumulation of lipid peroxides and induces cell death.
发明内容SUMMARY OF THE INVENTION
本发明的目的是为了克服现有问题而提供一种具有协同诱导光动力治疗和铁死亡的ROS(Reactive Oxygen Species,活性氧)敏感性纳米试剂及其制备方法,该纳米试剂可以有效的通过被动靶向聚集到肿瘤位置,经肿瘤细胞内吞后与肿瘤内的活性氧物质相互作用,以实现同时激活光动力治疗和铁死亡的效应,从而达到癌症的精准治疗。The purpose of the present invention is to provide a ROS (Reactive Oxygen Species, reactive oxygen species) sensitive nano-agent with synergistic induction of photodynamic therapy and ferroptosis and a preparation method thereof in order to overcome the existing problems. The nano-agent can effectively pass passive Targeted to accumulate at the tumor location, after being endocytosed by tumor cells, it interacts with reactive oxygen species in the tumor to achieve the simultaneous activation of photodynamic therapy and ferroptosis, so as to achieve precise cancer treatment.
本发明所述的一种具有协同诱导光动力治疗和铁死亡的ROS敏感性纳米试剂,其特征在于:该纳米试剂由一种光敏剂修饰的ROS敏感性两亲性嵌段聚合物构建,所述的光敏剂修饰的ROS敏感性两亲性聚合物包括两亲性生物可降解聚合物(即含有端氨基基团的甲氧基聚乙二醇胺作为大分子引发剂,一步引发成环氨基酸单体开环聚合形成的聚合物主骨架)、尾端连接光敏剂基团和侧链修饰的可诱导铁死亡的ROS敏感性感性单体;所述的光敏剂修饰的ROS敏感性两亲性聚合物能自组装为一种具有协同诱导光动力治疗和铁死亡的ROS敏感性纳米试剂,其中疏水部分自组装成为疏水的核,而亲水部分成为亲水的外壳。最终,利用薄膜分散法驱使光敏剂修饰的ROS敏感性两亲性嵌段聚合物自组装成可协同诱导光动力治疗和铁死亡的ROS敏感性纳米试剂,使其通过肿瘤微环境作用下,实现光动力与铁死亡治疗协同作用抑制肿瘤增长的效果。The ROS-sensitive nano-agent with synergistic induction of photodynamic therapy and ferroptosis according to the present invention is characterized in that: the nano-agent is constructed from a ROS-sensitive amphiphilic block polymer modified by a photosensitizer, so the The photosensitizer-modified ROS-sensitive amphiphilic polymers described above include amphiphilic biodegradable polymers (i.e., methoxypolyethylene glycol amines containing terminal amino groups as macroinitiators to initiate cyclic amino acid formation in one step). The polymer backbone formed by the ring-opening polymerization of monomers), the tail end is connected with a photosensitizer group and a side chain modified ROS-sensitive monomer that can induce ferroptosis; the photosensitizer-modified ROS-sensitive amphiphilic The polymer can self-assemble as a ROS-sensitive nanoagent with synergistic induction of photodynamic therapy and ferroptosis, in which the hydrophobic part self-assembles into a hydrophobic core and the hydrophilic part becomes a hydrophilic shell. Finally, the self-assembly of the photosensitizer-modified ROS-sensitive amphiphilic block polymer is driven by the thin-film dispersion method into a ROS-sensitive nano-agent that can synergistically induce photodynamic therapy and ferroptosis, which can be achieved by the tumor microenvironment. Synergistic effect of photodynamic and ferroptosis therapy on tumor growth inhibition.
本发明所述的一种具有协同诱导光动力治疗和铁死亡的ROS敏感性纳米试剂的制备方法,其步骤如下:The preparation method of a ROS-sensitive nano-agent with synergistic induction of photodynamic therapy and ferroptosis according to the present invention, the steps are as follows:
(1)将作为亲水链段的甲氧基聚乙二醇胺(mPEG-NH2)大分子引发剂和成环氨基酸单体混合后置于有机溶剂1中,在氮气、30~35℃下搅拌70~72小时,然后倒入分离溶剂中,搅拌、沉降、过滤、真空干燥后得到聚氨基酸主骨架(mPEG-b-PBLG);(1) Mix the methoxy polyethylene glycol amine (mPEG-NH 2 ) macroinitiator as a hydrophilic segment and the cyclic amino acid monomer, and place it in the
(2)将含有羧基基团的光敏剂和用来活化光敏剂中羧基基团的化合物混合后置于无水溶剂中,在氮气、30~35℃下避光搅拌2~3小时,得到反应体系A;之后将步骤(1)得到的聚氨基酸主骨架(mPEG-b-PBLG)溶于无水溶剂中,得到反应体系B;然后把反应体系B添加到反应体系A中,在氮气下、30~35℃避光搅拌24~28小时;最后在避光条件下透析,冷冻干燥得到光敏剂修饰的聚氨基酸主骨架(mPEG-b-PBLG-Ce6);(2) Mix the photosensitizer containing a carboxyl group and the compound used to activate the carboxyl group in the photosensitizer, place it in an anhydrous solvent, and stir for 2 to 3 hours under nitrogen at 30 to 35° C. in the dark to obtain the reaction. system A; then the polyamino acid main skeleton (mPEG-b-PBLG) obtained in step (1) is dissolved in an anhydrous solvent to obtain reaction system B; then reaction system B is added to reaction system A, and under nitrogen, Stir at 30-35°C in the dark for 24-28 hours; finally dialyze in the dark and freeze-dry to obtain a photosensitizer-modified polyamino acid backbone (mPEG-b-PBLG-Ce6);
(3)将步骤(2)得到的光敏剂修饰的聚氨基酸主骨架、链保护剂和含有双端氨基基团的小分子化合物混合后置于无水溶剂中,在氮气、50~55℃下避光搅拌70~72小时,然后依次在盐酸和去离子水中透析,冷冻干燥后得到侧链带有自由氨基基团的聚氨基酸主骨架(mPEG-b-P(ED)LG-Ce6);(3) The photosensitizer-modified polyamino acid main skeleton obtained in step (2), the chain protection agent and the small molecule compound containing double-terminal amino groups are mixed and placed in an anhydrous solvent under nitrogen at 50-55° C. Stirring in the dark for 70-72 hours, then dialyzed in hydrochloric acid and deionized water in turn, and freeze-dried to obtain a polyamino acid main skeleton (mPEG-b-P(ED)LG-Ce6) with free amino groups in the side chain;
(4)将能够诱导铁死亡的ROS敏感性单体和活化敏感单体中羧基基团化合物混合后置于无水溶剂中,在氮气、30~35℃下避光搅拌2~3小时,得到反应体系C;然后将步骤(3)得到的侧链带有自由氨基基团的聚氨基酸主骨架溶解于无水溶剂中,并添加到反应体系C中,在氮气下,30~35℃避光搅拌24~28小时,透析,冷冻干燥得到光敏剂修饰的ROS敏感性两亲性嵌段聚合物(mPEG-b-P(ED-AA)LG-Ce6);(4) The ROS-sensitive monomer capable of inducing ferroptosis and the carboxyl group compound in the activation-sensitive monomer are mixed, placed in an anhydrous solvent, and stirred for 2 to 3 hours under nitrogen at 30-35°C in the dark to obtain Reaction system C; then the main skeleton of the polyamino acid with free amino groups in the side chain obtained in step (3) is dissolved in an anhydrous solvent, and added to reaction system C, under nitrogen, at 30-35°C to avoid light Stir for 24-28 hours, dialyze, and freeze-dry to obtain a photosensitizer-modified ROS-sensitive amphiphilic block polymer (mPEG-b-P(ED-AA)LG-Ce6);
(5)步骤(4)得到的光敏剂修饰的ROS敏感性两亲性嵌段聚合物(mPEG-b-P(ED-AA)LG-Ce6)通过薄膜分散法制备纳米颗粒,具体包括以下过程:所述的薄膜分散法是将光敏剂修饰的ROS敏感性两亲性嵌段聚合物溶于有机溶剂2中,之后置于圆底烧瓶中,真空状态下旋转蒸发至烧瓶内壁形成一层干燥的薄膜,然后在烧瓶中加入去离子水,超声5~10分钟至薄膜全部分散,透析,冷冻干燥得到ROS敏感性纳米试剂(PPA@Ce6)。(5) The photosensitizer-modified ROS-sensitive amphiphilic block polymer (mPEG-b-P(ED-AA)LG-Ce6) obtained in step (4) prepares nanoparticles by a thin film dispersion method, which specifically includes the following process: The thin film dispersion method described is to dissolve the photosensitizer-modified ROS-sensitive amphiphilic block polymer in an
优选的,步骤(1)所述的亲水链段甲氧基聚乙二醇胺(mPEG-NH2)大分子引发剂,其平均分子质量为1000~5000。Preferably, the hydrophilic segment methoxy polyethylene glycol amine (mPEG-NH 2 ) macromolecular initiator described in step (1) has an average molecular weight of 1000-5000.
优选的,步骤(1)所述的成环氨基酸单体为聚谷氨酸苄酯羧酸酐(BLG-NCA)或天冬氨酸苄酯内环酸酐单体(BLA-NCA)。Preferably, the cyclic amino acid monomer described in step (1) is a polyglutamic acid benzyl ester carboxylic acid anhydride (BLG-NCA) or an aspartic acid benzyl ester intracyclic acid anhydride monomer (BLA-NCA).
优选的,步骤(1)所述的大分子引发剂与成环氨基酸单体的摩尔比例为1:20~40。Preferably, the molar ratio of the macromolecular initiator described in step (1) to the cyclic amino acid monomer is 1:20-40.
优选的,步骤(1)所述的有机溶剂1为无水三氯甲烷、无水二氯甲烷或无水二甲基甲酰胺中的一种。Preferably, the
优选的,步骤(1)所述的用于分离聚合物的溶剂为乙醚。Preferably, the solvent for separating the polymer described in step (1) is diethyl ether.
优选的,步骤(2)所述的含有羧基基团的光敏剂为二氢卟吩e6(Ce6)、间-四(4-羧基苯基)卟啉或脱镁叶绿酸盐A中的一种。Preferably, the photosensitizer containing a carboxyl group described in step (2) is one of chlorin e6 (Ce6), m-tetra(4-carboxyphenyl) porphyrin or pheophorbide A kind.
优选的,步骤(2)所述的活化光敏剂中羧基基团的化合物是二环己基碳二亚胺(DCC)与N-羟基琥珀酰亚胺(NHS)组合的缩合剂或N'N-羰基二咪唑(CDI)其中的一种。Preferably, the compound that activates the carboxyl group in the photosensitizer described in step (2) is a condensing agent of dicyclohexylcarbodiimide (DCC) combined with N-hydroxysuccinimide (NHS) or N'N- One of the carbonyldiimidazoles (CDI).
优选的,步骤(2)所述的光敏剂与活化光敏剂中羧基基团的化合物的摩尔比为1:1~1.1。Preferably, the molar ratio of the photosensitizer in step (2) to the compound that activates the carboxyl group in the photosensitizer is 1:1 to 1.1.
优选的,步骤(2)所述的透析条件为:透析袋的截留分量为1000~3500Da,透析时间为48~72小时,透析液为去离子水。Preferably, the dialysis conditions in step (2) are as follows: the intercepted weight of the dialysis bag is 1000-3500 Da, the dialysis time is 48-72 hours, and the dialysate is deionized water.
优选的,步骤(3)所述的含有双端氨基基团的小分子化合物为乙二胺、二亚乙基三胺、三亚乙基四胺或四亚乙基五胺中的一种。Preferably, the small molecule compound containing double-ended amino groups in step (3) is one of ethylenediamine, diethylenetriamine, triethylenetetramine or tetraethylenepentamine.
优选的,步骤(3)所述的链保护剂为2-羟基吡啶,用于防止聚氨基酸主链断发生断裂。Preferably, the chain protecting agent in step (3) is 2-hydroxypyridine, which is used to prevent the main chain of the polyamino acid from being broken.
优选的,步骤(3)所述的光敏剂修饰的聚氨基酸主骨架(mPEG-b-PBLG-Ce6)与含有双端氨基基团的小分子化合物的摩尔比为1:20~30,光敏剂修饰的聚氨基酸主骨架(mPEG-b-PBLG-Ce6)与链保护剂的摩尔比为1:5~10。Preferably, the molar ratio of the photosensitizer-modified polyamino acid main skeleton (mPEG-b-PBLG-Ce6) described in step (3) to the small molecule compound containing double-terminal amino groups is 1:20-30, and the photosensitizer The molar ratio of the modified polyamino acid main backbone (mPEG-b-PBLG-Ce6) to the chain protecting agent is 1:5-10.
优选的,步骤(3)所述的透析条件为:透析袋的截留分量为1000~3500Da,先在0.05~0.1mol/L盐酸中透析48~72小时,再在去离子水中透析24~48小时;Preferably, the dialysis conditions described in step (3) are as follows: the interception of the dialysis bag is 1000-3500 Da, firstly dialysis in 0.05-0.1mol/L hydrochloric acid for 48-72 hours, and then dialysis in deionized water for 24-48 hours ;
优选的,步骤(4)所述的能够诱导铁死亡的ROS敏感性单体为花生四烯酸(AA)、二十二碳四烯酸或二十二碳六烯酸(DHA)中的一种。Preferably, the ROS-sensitive monomer capable of inducing ferroptosis described in step (4) is one of arachidonic acid (AA), docosatetraenoic acid or docosahexaenoic acid (DHA). kind.
优选的,步骤(4)所述的能够诱导铁死亡的ROS敏感性单体与侧链带有自由氨基基团的聚氨基酸主骨架的摩尔比例为0.8~1:1。Preferably, the molar ratio of the ROS-sensitive monomer capable of inducing ferroptosis described in step (4) to the main backbone of the polyamino acid with free amino groups in the side chain is 0.8-1:1.
优选的,步骤(4)所述的活化敏感单体中羧基基团化合物为二环己基碳二亚胺(DCC)与N-羟基琥珀酰亚胺(NHS)组合的缩合剂或N'N-羰基二咪唑(CDI)其中的一种。Preferably, the carboxyl group compound in the activation-sensitive monomer described in step (4) is a condensing agent combining dicyclohexylcarbodiimide (DCC) and N-hydroxysuccinimide (NHS) or N'N- One of the carbonyldiimidazoles (CDI).
优选的,步骤(4)所述的能够诱导铁死亡的ROS敏感性单体和活化敏感单体中羧基基团化合物的摩尔用量比为1:1~1.1。Preferably, the molar dosage ratio of the carboxyl group compound in the ROS-sensitive monomer capable of inducing ferroptosis and the activation-sensitive monomer in step (4) is 1:1-1.1.
优选的,步骤(2)、步骤(3)和步骤(4)所述的无水溶剂为无水二甲基亚砜(DMSO)。Preferably, the anhydrous solvent described in step (2), step (3) and step (4) is anhydrous dimethyl sulfoxide (DMSO).
优选的,步骤(4)所述的透析条件为:透析袋的截留分量为1000~3500Da,透析时间为48~72小时,透析液采用去离子水。Preferably, the dialysis conditions described in step (4) are as follows: the intercepted weight of the dialysis bag is 1000-3500 Da, the dialysis time is 48-72 hours, and the dialysate is deionized water.
优选的,步骤(5)所述的有机溶剂2为无水氯仿。Preferably, the
优选的,步骤(5)所述的透析条件为:透析袋的截留分量为30000~50000Da,透析时间为12~24小时,透析液采用去离子水。Preferably, the dialysis conditions described in step (5) are as follows: the intercepted weight of the dialysis bag is 30,000-50,000 Da, the dialysis time is 12-24 hours, and the dialysate is deionized water.
优选的,步骤(5)所述的旋转蒸发温度为35~40℃。Preferably, the rotary evaporation temperature in step (5) is 35-40°C.
优选的,步骤(2)、步骤(3)、步骤(4)和步骤(5)所述冷冻干燥的温度范围是-40℃~-60℃。Preferably, the temperature range of freeze-drying in step (2), step (3), step (4) and step (5) is -40°C to -60°C.
优选的,步骤(5)所述的制备的ROS敏感性纳米试剂的粒径为40~60nm,有利于通过被动靶向,有效聚集在肿瘤位置。Preferably, the particle size of the ROS-sensitive nano-agent prepared in step (5) is 40-60 nm, which is conducive to passive targeting and effective aggregation at the tumor location.
与目前技术相比,本发明具有以下优点:Compared with the current technology, the present invention has the following advantages:
(1)本发明提供一种简单、有效的多功能纳米治疗试剂制备方法,选用甲氧基聚乙二醇胺作为大分子引发剂,一步开环聚合制备聚氨基酸主骨架,随后尾端修饰光敏剂,侧链接枝花生四烯酸单体,来获得目标聚合物。最后,用一种简单的薄膜分散法来制备ROS敏感性纳米试剂。该制备策略,具有可调控、方式简单、灵活和重复性强等优点。(1) The present invention provides a simple and effective method for preparing a multifunctional nano-therapeutic reagent. The methoxy polyethylene glycol amine is selected as the macromolecular initiator, and the main skeleton of polyamino acid is prepared by one-step ring-opening polymerization, and then the tail end is modified with photosensitizer. agent, side chain branched arachidonic acid monomer, to obtain the target polymer. Finally, a facile thin-film dispersion method was used to prepare ROS-sensitive nanoagents. The preparation strategy has the advantages of tunable, simple, flexible and reproducible.
(2)制备获得的ROS敏感性纳米试剂具有良好的生物相容性和生物可降解性。(2) The prepared ROS-sensitive nano-agents have good biocompatibility and biodegradability.
(3)制备获得的ROS敏感性纳米试剂较小的尺寸,有利于纳米颗粒在肿瘤部位的有效聚集。(3) The small size of the prepared ROS-sensitive nano-agents is beneficial to the effective aggregation of nanoparticles at tumor sites.
(4)制备获得的ROS敏感性纳米试剂,在肿瘤细胞内,不仅可通过内源性的活性氧刺激使疏水的花生四烯酸释转化成亲水的脂质过氧化物而激活光动力治疗,还可以通过产生的单线态氧和脂质过氧化物共同作用加强铁死亡效果,从而有效提高癌症治疗效率。(4) The prepared ROS-sensitive nano-agents can not only release and convert hydrophobic arachidonic acid into hydrophilic lipid peroxides through endogenous reactive oxygen stimulation in tumor cells to activate photodynamic therapy , and can also enhance the effect of ferroptosis through the combined action of the generated singlet oxygen and lipid peroxides, thereby effectively improving the efficiency of cancer treatment.
附图说明Description of drawings
图1为制备得到的mPEG-b-P(ED-AA)LG-Ce6氢核磁谱图。Figure 1 is a hydrogen nuclear magnetic spectrum of the prepared mPEG-b-P(ED-AA)LG-Ce6.
图2为制备得到的mPEG-b-P(ED-AA)LG-Ce6紫外吸收光谱图。Figure 2 shows the UV absorption spectrum of the prepared mPEG-b-P(ED-AA)LG-Ce6.
图3为制备获得的ROS敏感性纳米试剂(PPA@Ce6)的透射电镜图Figure 3 shows the transmission electron microscope image of the prepared ROS-sensitive nano-agent (PPA@Ce6)
图4为制备得到的ROS敏感性纳米试剂在羟基自由基作用下的单线态氧产生检测图。Figure 4 is a graph showing the detection of singlet oxygen generation of the prepared ROS-sensitive nano-reagent under the action of hydroxyl radicals.
图5为制备得到的ROS敏感性纳米试剂在无660nm激光辐射下,对肿瘤细胞内谷胱甘肽消耗测试图。FIG. 5 is a graph showing the consumption of glutathione in tumor cells by the prepared ROS-sensitive nano-agent without 660 nm laser irradiation.
图6为制备得到的ROS敏感性纳米试剂在660nm激光辐射下,对肿瘤细胞内谷胱甘肽消耗测试图。FIG. 6 is a graph showing the consumption of glutathione in tumor cells by the prepared ROS-sensitive nano-agent under 660 nm laser irradiation.
图7为制备得到的ROS敏感性纳米试剂在有和无660nm激光辐射下,对肿瘤细胞内GPX4活性能力分析图。FIG. 7 is a graph showing the ability of the prepared ROS-sensitive nano-agent to activate GPX4 in tumor cells with and without 660 nm laser irradiation.
图8为制备得到的ROS敏感性纳米试剂在无660nm激光辐射下的细胞毒性测试图。Figure 8 is a graph of the cytotoxicity test of the prepared ROS-sensitive nano-agent without 660 nm laser radiation.
图9为制备得到的ROS敏感性纳米试剂在660nm激光辐射下的细胞毒性测试图。Figure 9 is a graph of the cytotoxicity test of the prepared ROS-sensitive nano-agent under 660 nm laser irradiation.
图10为制备得到的ROS敏感性纳米试剂的体内和体外荧光成像图。Figure 10 is the in vivo and in vitro fluorescence imaging images of the prepared ROS-sensitive nano-agents.
图11为制备得到的ROS敏感性纳米试剂在不同条件作用下对肿瘤生长抑制作用的曲线图。Figure 11 is a graph showing the inhibitory effect of the prepared ROS-sensitive nano-agent on tumor growth under different conditions.
图12为制备得到的ROS敏感性纳米试剂在不同条件作用下对肿瘤生长抑制作用分离的肿瘤质量图。Figure 12 is a graph of tumor mass separated by the prepared ROS-sensitive nano-agent on tumor growth inhibition under different conditions.
图13为制备得到的ROS敏感性纳米试剂在不同条件作用下对肿瘤生长抑制的肿瘤组织H&E和TUNEL染色图。Figure 13 is a graph showing the H&E and TUNEL staining of tumor tissue inhibited by the prepared ROS-sensitive nano-agent under different conditions.
图14为制备得到的ROS敏感性纳米试剂在体内组织(心:Heart;肝:Liver;脾:Spleen;肺:Lung;肾:Kidney;肿瘤:tumor)H&E和TUNEL染色的毒理图。Figure 14 is a toxicological diagram of H&E and TUNEL staining of the prepared ROS-sensitive nano-agents in vivo (heart: Heart; liver: Liver; spleen: Spleen; lung: Lung; kidney: Kidney; tumor: tumor).
具体实施方式Detailed ways
下面结合附图和具体实施例对发明详细说明,所述实施例用于帮助理解本发明,不应视为对本发明保护范围的限制。The invention will be described in detail below with reference to the accompanying drawings and specific embodiments. The embodiments are used to help understand the present invention and should not be regarded as limiting the protection scope of the present invention.
(一)制备mPEG-b-P(ED-AA)LG-Ce6(1) Preparation of mPEG-b-P(ED-AA)LG-Ce6
(1)mPEG-b-P(ED-AA)LG-Ce6的合成过程如式(I)所示。首先,将1g甲氧基聚乙二醇胺(mPEG-NH2,平均分子量为5000)和1.0532g的BLG-NCA混合后溶于30mL无水二甲基甲酰胺中,反应溶液在氮气保护、30℃下搅拌反应72小时。反应结束后,将溶液倒入300mL乙醚溶液中,通过搅拌、沉降、过滤和真空干燥得到聚氨基酸主骨架(mPEG-b-PBLG)。(1) The synthesis process of mPEG-bP(ED-AA)LG-Ce6 is shown in formula (I). First, 1 g of methoxypolyethylene glycol amine (mPEG-NH 2 , with an average molecular weight of 5000) and 1.0532 g of BLG-NCA were mixed and dissolved in 30 mL of anhydrous dimethylformamide. The reaction was stirred at 30°C for 72 hours. After the reaction, the solution was poured into 300 mL of ether solution, and the polyamino acid main skeleton (mPEG-b-PBLG) was obtained by stirring, sedimentation, filtration and vacuum drying.
(2)将264mg二环己基碳二亚胺(DCC)和147mg的N-羟基琥珀酰亚胺(NHS)组合的缩合剂与636mg的Ce6混合后溶于10mL无水二甲基亚砜(DMSO)中,反应溶液在氮气保护、30℃下避光搅拌2小时,得到反应体系A。将1g的聚氨基酸主骨架(mPEG-b-PBLG)溶解在10mL无水DMSO中后滴加到反应体系A中,30℃下避光搅拌24h。最后,在避光条件下,在去离子水中(采用截留分子量3500的透析膜)透析72h,-50℃冷冻干燥得到光敏剂修饰的聚氨基酸主骨架(mPEG-b-PBLG-Ce6)。(2) 264 mg of dicyclohexylcarbodiimide (DCC) and 147 mg of N-hydroxysuccinimide (NHS) combined condensing agent and 636 mg of Ce6 were mixed and dissolved in 10 mL of anhydrous dimethyl sulfoxide (DMSO). ), the reaction solution was stirred for 2 hours under nitrogen protection and protected from light at 30°C to obtain reaction system A. 1 g of polyamino acid main backbone (mPEG-b-PBLG) was dissolved in 10 mL of anhydrous DMSO and added dropwise to reaction system A, and stirred at 30° C. for 24 h in the dark. Finally, in the dark condition, dialyzed in deionized water (using a dialysis membrane with a molecular weight cut-off of 3500) for 72 h, and freeze-dried at -50 °C to obtain the photosensitizer-modified polyamino acid backbone (mPEG-b-PBLG-Ce6).
(3)将0.5g的mPEG-b-PBLG-Ce6和0.4774g 2-羟基吡啶一起溶于10mL无水DMSO中,随后加入2.013mL的乙二胺,该混合溶液在氮气保护、50℃下避光搅拌反应72小时。反应结束后,先在0.05mol/L的盐酸溶液中透析(截留分子量为3500的透析膜)72小时,然后再在去离子水中透析48小时后,-50℃冷冻干燥得到mPEG-b-P(ED)LG-Ce6。(3) Dissolve 0.5 g of mPEG-b-PBLG-Ce6 and 0.4774 g of 2-hydroxypyridine together in 10 mL of anhydrous DMSO, and then add 2.013 mL of ethylenediamine, and the mixed solution is protected under nitrogen protection at 50° C. The reaction was lightly stirred for 72 hours. After the reaction, it was first dialyzed in 0.05mol/L hydrochloric acid solution (dialysis membrane with a molecular weight cut-off of 3500) for 72 hours, then dialyzed in deionized water for 48 hours, and freeze-dried at -50 °C to obtain mPEG-b-P(ED) LG-Ce6.
(4)将58mg的N'N-羰基二咪唑(CDI)和108mg花生四烯酸(AA)共同溶于6mL无水DMSO中,在氮气、30℃下避光搅拌2h,得到反应体系C。把200mg的mPEG-b-P(ED)LG-Ce6溶解在5mL无水DMSO后,将其注入反应体系C,在氮气、30℃下避光搅拌24h。在去离子水中透析(用截留分子量1000的透析膜)72h后,-50℃冷冻干燥得到最终产物mPEG-b-P(ED-AA)LG-Ce6。(4) 58 mg of N'N-carbonyldiimidazole (CDI) and 108 mg of arachidonic acid (AA) were co-dissolved in 6 mL of anhydrous DMSO, and stirred for 2 h under nitrogen at 30°C in the dark to obtain reaction system C. After dissolving 200 mg of mPEG-b-P(ED)LG-Ce6 in 5 mL of anhydrous DMSO, it was injected into reaction system C, and stirred under nitrogen at 30 °C for 24 h in the dark. After dialysis (using a dialysis membrane with a molecular weight cut-off of 1000) in deionized water for 72 h, the final product mPEG-b-P(ED-AA)LG-Ce6 was obtained by freeze-drying at -50°C.
利用核磁氢谱进行化学结构鉴定(参见图1),结果证明,在3.41ppm和3.58ppm出现的特征峰属于mPEG,在2.01ppm、2.41ppm和2.92ppm的特征峰属于PBLG主链,在7.32ppm和5.45ppm的特征峰属于AA,以上结果证明成功的合成了mPEG-b-P(ED-AA)LG-Ce6。利用紫外吸收光谱进行光敏剂Ce6负载的鉴定(参加图2),如图所示,mPEG-b-P(ED-AA)LG-Ce6在400nm、500nm和660nm的吸收峰完全与游离的Ce6保持一致,这个结果说明了Ce6成功接枝到mPEG-b-P(ED-AA)LG-Ce6上。The chemical structure was identified by hydrogen NMR (see Figure 1), and the results proved that the characteristic peaks at 3.41ppm and 3.58ppm belonged to mPEG, the characteristic peaks at 2.01ppm, 2.41ppm and 2.92ppm belonged to the main chain of PBLG, and the characteristic peaks at 7.32ppm belonged to the main chain of PBLG. And the characteristic peak of 5.45ppm belongs to AA, and the above results prove that mPEG-b-P(ED-AA)LG-Ce6 was successfully synthesized. The photosensitizer Ce6 loading was identified by UV absorption spectrum (see Figure 2). As shown in the figure, the absorption peaks of mPEG-b-P(ED-AA)LG-Ce6 at 400nm, 500nm and 660nm are completely consistent with the free Ce6, This result indicated that Ce6 was successfully grafted onto mPEG-b-P(ED-AA)LG-Ce6.
(二)制备ROS敏感性纳米试剂(PPA@Ce6)(2) Preparation of ROS-sensitive nano-agent (PPA@Ce6)
将20mg的mPEG-b-P(ED-AA)LG-Ce6置于圆底烧瓶中,之后置入10mL无水氯仿,搅拌至全部溶解。所得混合溶液,在40℃抽真空条件下通过旋转蒸发去除氯仿,直至瓶内壁形成一层干燥的薄膜。然后,在烧瓶中加入去离子水(20mL)超声5分钟至全部分散。在去离子水中(用截留分子量30000的透析膜)透析24小时后,-50℃下冷冻干燥得到ROS敏感性纳米试剂。20 mg of mPEG-b-P(ED-AA)LG-Ce6 was placed in a round-bottomed flask, followed by 10 mL of anhydrous chloroform, and stirred until completely dissolved. The resulting mixed solution was subjected to rotary evaporation to remove chloroform under vacuum at 40°C until a dry film was formed on the inner wall of the bottle. Then, deionized water (20 mL) was added to the flask and sonicated for 5 minutes until fully dispersed. After dialysis in deionized water (with a dialysis membrane with a molecular weight cut-off of 30,000) for 24 hours, ROS-sensitive nano-reagents were obtained by freeze-drying at -50 °C.
采用高清透射电子显微镜测定纳米试剂的形貌和粒径尺寸,结果指明所制备的纳米试剂呈均一的颗粒状,显示其粒径大约为50nm左右,证明成功制备ROS敏感性纳米试剂(参见图3)。The morphology and particle size of the nano-reagents were determined by high-definition transmission electron microscopy, and the results indicated that the prepared nano-reagents were in uniform particle shape, showing that the particle size was about 50 nm, which proved that the ROS-sensitive nano-reagents were successfully prepared (see Figure 3). ).
(三)评价ROS敏感性纳米试剂在羟基自由基(·OH)作用下单线态氧产生的性能(3) Evaluation of the performance of ROS-sensitive nano-reagents for singlet oxygen generation under the action of hydroxyl radicals ( OH)
将制备好的ROS敏感性纳米试剂分别分散在含有和不含有氯化亚铁(FeCl2)和过氧化氢(H2O2)的去离子水溶液中(在含有FeCl2和H2O2的溶液中,FeCl2和H2O2的浓度均为100μM,ROS敏感性纳米试剂的浓度均为1mg/mL)通过FeCl2与H2O2发生Fenton反应产生的羟基自由基来模拟细胞内环境中的ROS),加入单线态氧绿色荧光探针(SOSG,1μM)后,选用660nm激光器照射(功率:50mW/cm2),随后采用荧光分光光度计在525nm处测定荧光强度。结果显示所制备的ROS敏感性纳米试剂在含有羟基自由基的溶液中能够加强单线态氧的生成,说明所制备的纳米试剂在活性氧的存在下可以激活光敏剂产生更多的单线态氧(参见图4)。The prepared ROS-sensitive nano-agents were dispersed in deionized aqueous solution with and without ferrous chloride (FeCl 2 ) and hydrogen peroxide (H 2 O 2 ), respectively (in a solution containing FeCl 2 and H 2 O 2 ). In the solution, the concentrations of FeCl and H 2 O 2 are both 100 μM, and the concentrations of ROS-sensitive nano-agents are both 1 mg/mL) by the hydroxyl radicals generated by the Fenton reaction between FeCl 2 and H 2 O 2 to simulate the intracellular environment After adding singlet oxygen green fluorescent probe (SOSG, 1 μM), a 660 nm laser (power: 50 mW/cm 2 ) was selected for irradiation, and the fluorescence intensity was measured at 525 nm using a fluorescence spectrophotometer. The results show that the prepared ROS-sensitive nano-agent can enhance the generation of singlet oxygen in the solution containing hydroxyl radicals, indicating that the prepared nano-agent can activate the photosensitizer to generate more singlet oxygen in the presence of reactive oxygen species ( See Figure 4).
(四)评价ROS敏感性纳米试剂消除肿瘤细胞内GSH的能力(4) Evaluation of the ability of ROS-sensitive nano-agents to eliminate GSH in tumor cells
将HepG2肿瘤细胞以1×104个/孔接种于96孔板中,当细胞完全伸展后,用ROS敏感性纳米试剂孵育细胞4小时后,细胞用PBS洗涤,随后用660nm的Laser辐射15分钟(功率:100mW/cm2),最后再分别孵育1小时、2小时和4小时,并且用无纳米试剂处理的细胞作为参照组,无激光照射的作为对比组,随后收取细胞,并悬浮在PBS溶液中,超声处理。然后依照GSH检测试剂的使用说明去测定不同时间点的GSH含量。结果显示在无光照射条件下,GSH浓度稍为降低,说明AA可能被羟基自由基氧化成了脂质过氧化物而成为一种新的活性氧,来消耗GSH;对比在激光照射条件下,GSH含量明显减低,说明产生的单线态氧可以更好的消除GSH。而且在4小时后GSH含量还明显低于对照组,说明了ROS敏感性纳米试剂具有较强的肿瘤细胞内消除GSH的能力(参见图5和6)。HepG2 tumor cells were seeded in a 96-well plate at 1×10 4 cells/well. When the cells were fully expanded, they were incubated with ROS-sensitive nano-reagents for 4 hours, washed with PBS, and then irradiated with a 660 nm Laser for 15 minutes. (Power: 100 mW/cm 2 ), and finally incubated for 1 hour, 2 hours, and 4 hours, respectively, and treated cells without nano-agent as a reference group and without laser irradiation as a control group, and then harvested and suspended in PBS solution, sonicated. Then, according to the instructions for use of the GSH detection reagent, the GSH content at different time points was determined. The results showed that the concentration of GSH decreased slightly under the condition of no light irradiation, indicating that AA may be oxidized by hydroxyl radicals to lipid peroxides and become a new reactive oxygen species to consume GSH; The content is significantly reduced, indicating that the singlet oxygen produced can better eliminate GSH. Moreover, the GSH content was significantly lower than that of the control group after 4 hours, indicating that the ROS-sensitive nano-agent has a strong ability to eliminate GSH in tumor cells (see Figures 5 and 6).
(五)评价ROS敏感性纳米试剂对肿瘤细胞内GPX4活性的抑制能力(5) Evaluation of the inhibitory ability of ROS-sensitive nano-agents on GPX4 activity in tumor cells
将HepG2肿瘤细胞以1×104个/孔接种于96孔板中,当细胞完全伸展后,用ROS敏感性纳米试剂孵育细胞4小时后,细胞用PBS洗涤,随后用660nm的Laser辐射10分钟(功率:100mW/cm2),无激光照射的作为对比组,再孵化12小时后,收取细胞,并悬浮在PBS溶液中,超声处理。然后依照谷胱甘肽过氧化物测定试剂盒的使用说明去测定GPX4的活性。结果显示ROS敏感性纳米试剂在光的照射下能更明显的抑制GPX4的活性(参见图7)。HepG2 tumor cells were seeded in a 96-well plate at 1×10 4 cells/well. When the cells were fully expanded, they were incubated with ROS-sensitive nano-reagents for 4 hours, washed with PBS, and then irradiated with a 660 nm Laser for 10 minutes. (Power: 100 mW/cm 2 ), the control group without laser irradiation was used as a control group. After another 12 hours of incubation, the cells were harvested, suspended in a PBS solution, and sonicated. The activity of GPX4 was then assayed according to the instructions of the glutathione peroxide assay kit. The results showed that the ROS-sensitive nanoagents could more significantly inhibit the activity of GPX4 under light irradiation (see Figure 7).
(六)评价ROS敏感性纳米试剂对肿瘤细胞内GPX4活性的抑制能力(6) Evaluation of the inhibitory ability of ROS-sensitive nano-agents on GPX4 activity in tumor cells
将HepG2肿瘤细胞以1×104个/孔接种于96孔板中,当孵育24小时后,细胞分别用ROS敏感性纳米试剂和游离的Ce6(FreeCe6)(Ce6浓度设置为0.5、1、2、4和8μg/mL)处理,孵育细胞4小时后,更换细胞培养液,超声处理,用660nm的Laser辐射20分钟(功率:100mW/cm2),无激光照射的作为对比组。再孵育24小时后。用CCK-8检测细胞毒性,结果显示在没有laser照射下,ROS敏感性纳米试剂没有明显的细胞毒性,而光照之后,ROS敏感性纳米试剂显示了明显的细胞毒性,且细胞毒性随Ce6的浓度增加而增强(参见图8和9)。HepG2 tumor cells were seeded in 96-well plates at 1×10 4 cells/well, and after 24 hours of incubation, the cells were treated with ROS-sensitive nano-reagent and free Ce6 (FreeCe6) (the Ce6 concentration was set to 0.5, 1, 2), respectively. , 4 and 8 μg/mL), after incubating the cells for 4 hours, the cell culture medium was replaced, the cells were sonicated, and irradiated with a 660 nm Laser for 20 minutes (power: 100 mW/cm 2 ), and no laser irradiation was used as a control group. After another 24 hours of incubation. The cytotoxicity was detected by CCK-8, and the results showed that without laser irradiation, the ROS-sensitive nano-agent had no obvious cytotoxicity, while after irradiation, the ROS-sensitive nano-agent showed obvious cytotoxicity, and the cytotoxicity increased with the concentration of Ce6 increases and increases (see Figures 8 and 9).
(七)评价ROS敏感性纳米试剂的肿瘤聚集能力(VII) Evaluation of tumor aggregation ability of ROS-sensitive nano-agents
取体重为25g左右的BABL/c雌性裸鼠5只,皮下接种HepG2肿瘤细胞,当肿瘤增长到100mm3左右时,经尾部静脉注射ROS敏感性纳米试剂(Ce6:2mg/kg),之后用小鼠体内荧光系统检测不同时间点小鼠体内荧光成像情况,24小时成像后,牺牲小鼠,剥离肿瘤和其它主要器官(心:Heart,肝:Liver,脾:Spleen,肺:Lung,肾:Kidney)并进行荧光成像分析。结果显示ROS敏感性纳米试剂能够通过被动靶向有效的聚集在肿瘤细胞(参见图10)Five BABL/c female nude mice weighing about 25 g were taken and inoculated subcutaneously with HepG2 tumor cells. When the tumor grew to about 100 mm 3 , the ROS-sensitive nano-reagent (Ce6: 2 mg/kg) was injected through the tail vein, and then injected with small The mouse in vivo fluorescence system was used to detect the in vivo fluorescence imaging of mice at different time points. After 24 hours of imaging, the mice were sacrificed to remove tumors and other major organs (heart: Heart, liver: Liver, spleen: Spleen, lung: Lung, kidney: Kidney ) and performed fluorescence imaging analysis. The results show that ROS-sensitive nanoagents can efficiently accumulate in tumor cells through passive targeting (see Figure 10)
(八)评价ROS敏感性纳米试剂的肿瘤抑制效果及生物安全性评估(8) Evaluation of tumor inhibitory effect and biosafety of ROS-sensitive nano-agents
取体重为25g左右的BABL/c雌性裸鼠25只,皮下接种HepG2肿瘤细胞,当肿瘤增长到100mm3左右时,随机分为5组(分别为saline作为对照组、游离的Ce6+laser、游离的AA、ROS敏感性纳米试剂(PPA@Ce6)和PPA@Ce6+laser)。FreeCe6、FreeAA和PPA@Ce6分别经尾部静脉注射(Ce6:5mg/kg),注射24小时后,FreeCe6和PPA@Ce6组用激光照射30分钟(功率:0.25W/cm2),每隔3天对小鼠的肿瘤体积用游标卡尺测量,治疗21天后,牺牲小鼠,分离体内荧光系统检测不同时间点小鼠体内荧光成像情况,24小时成像后,牺牲小鼠,分离肿瘤和其它主要器官(心:Heart,肝:Liver,脾:Spleen,肺:Lung,肾:Kidney)并对分离的肿瘤进行称量,而肿瘤组织进行H&E和TUNEL染色。结果指明ROS敏感性纳米试剂能够高效的抑制肿瘤增长(参见图11,12和13)。此外,对其它主要器官也进行了H&E和TUNEL染色,以此来评估生物安全性,结果如图14显示,ROS敏感性纳米试剂对其它主要器官组织,并没有引起明显的毒副作用,展现了良好的生物安全性。Take 25 BABL/c female nude mice weighing about 25g and inoculate HepG2 tumor cells subcutaneously. When the tumor grows to about 100mm, they are randomly divided into 5 groups (saline as the control group, free Ce6+laser, free AA, ROS-sensitive nanoagents (PPA@Ce6) and PPA@Ce6+laser). FreeCe6, FreeAA and PPA@Ce6 were injected via tail vein respectively (Ce6: 5mg/kg), 24 hours after injection, FreeCe6 and PPA@Ce6 groups were irradiated with laser for 30 minutes (power: 0.25W/cm 2 ), every 3 days The tumor volume of the mice was measured with a vernier caliper. After 21 days of treatment, the mice were sacrificed, and the in vivo fluorescence system was isolated to detect the in vivo fluorescence imaging of the mice at different time points. After 24 hours of imaging, the mice were sacrificed to isolate tumors and other major organs (heart). : Heart, Liver: Liver, Spleen: Spleen, Lung: Lung, Kidney: Kidney) and isolated tumors were weighed and tumor tissues were stained with H&E and TUNEL. The results indicated that the ROS-sensitive nanoagents were highly effective in inhibiting tumor growth (see Figures 11, 12 and 13). In addition, other major organs were also stained with H&E and TUNEL to evaluate biosafety. The results are shown in Figure 14. The ROS-sensitive nano-agents did not cause obvious toxic and side effects to other major organs and tissues, showing good performance. of biological safety.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202011327233.4A CN112451680B (en) | 2020-11-24 | 2020-11-24 | ROS sensitive nano reagent with synergistic induction of photodynamic therapy and iron death and preparation method thereof |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202011327233.4A CN112451680B (en) | 2020-11-24 | 2020-11-24 | ROS sensitive nano reagent with synergistic induction of photodynamic therapy and iron death and preparation method thereof |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN112451680A CN112451680A (en) | 2021-03-09 |
| CN112451680B true CN112451680B (en) | 2022-07-19 |
Family
ID=74798619
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202011327233.4A Active CN112451680B (en) | 2020-11-24 | 2020-11-24 | ROS sensitive nano reagent with synergistic induction of photodynamic therapy and iron death and preparation method thereof |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN112451680B (en) |
Families Citing this family (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN113069431B (en) * | 2021-04-02 | 2022-07-01 | 天津大学 | Nanometer diagnosis and treatment agent with variable particle size and preparation method thereof |
| CN114075127A (en) * | 2021-09-13 | 2022-02-22 | 广州汇元医药科技有限公司 | A kind of double carboxyl crosslinking monomer containing thioketal bond and preparation method and application thereof |
| CN114404364B (en) * | 2022-01-18 | 2023-06-16 | 广西大学 | Construction of photosensitive nano micelle capable of inducing tumor-associated macrophage M1 type polarization and anti-tumor application thereof |
| CN114904014B (en) * | 2022-04-21 | 2023-06-02 | 山东大学 | A self-generating biomimetic photodynamic/ferroptosis/immunosuppressive microenvironment regulation nano-platform and its preparation and application |
| CN115177737B (en) * | 2022-07-19 | 2024-03-29 | 沈阳药科大学 | A carrier-free lipid peroxidation nanoamplifier that synergistically induces ferroptosis and its preparation method and application |
| CN116751348B (en) * | 2023-06-20 | 2025-06-10 | 郑州大学 | Triblock copolymer, preparation method and application |
| CN116585622B (en) * | 2023-07-12 | 2023-10-10 | 四川省肿瘤医院 | Photodynamic tablets and preparation methods thereof, anti-tumor model construction methods and systems |
| CN119700708B (en) * | 2024-12-24 | 2025-10-10 | 中国药科大学 | A pH/active oxygen dual-responsive iron-based PROTAC nanodrug and its preparation and application |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2011090333A2 (en) * | 2010-01-20 | 2011-07-28 | 주식회사 진코스 | Chlorine derivative/unsaturated fatty acid conjugates, photosensitizers comprising same, and cancer treatment compositions to be used in photodynamic therapy comprising same |
| KR20150097032A (en) * | 2014-02-17 | 2015-08-26 | 대구가톨릭대학교산학협력단 | The high density photosensitizer using spherical macromolecules for photodyn amic therapy and method of manufacturing thereof |
| CN108473869A (en) * | 2016-01-14 | 2018-08-31 | Omya国际股份公司 | Remove O2CaCO3Processing |
| CN109498548A (en) * | 2018-12-11 | 2019-03-22 | 吉林化工学院 | A kind of protein and photosensitizer transmit pH responsiveness polyaminoacid nanogel and preparation method thereof altogether |
| CN110314136A (en) * | 2019-04-29 | 2019-10-11 | 华南师范大学 | A kind of preparation and its application of the tumor-targeting drug based on unsaturated fatty acid nanoparticle |
| CN110898007A (en) * | 2019-11-13 | 2020-03-24 | 中国药科大学 | Preparation of targeting antitumor uronic acid carboxyl free polysaccharide derivative micelle |
-
2020
- 2020-11-24 CN CN202011327233.4A patent/CN112451680B/en active Active
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2011090333A2 (en) * | 2010-01-20 | 2011-07-28 | 주식회사 진코스 | Chlorine derivative/unsaturated fatty acid conjugates, photosensitizers comprising same, and cancer treatment compositions to be used in photodynamic therapy comprising same |
| KR20150097032A (en) * | 2014-02-17 | 2015-08-26 | 대구가톨릭대학교산학협력단 | The high density photosensitizer using spherical macromolecules for photodyn amic therapy and method of manufacturing thereof |
| CN108473869A (en) * | 2016-01-14 | 2018-08-31 | Omya国际股份公司 | Remove O2CaCO3Processing |
| CN109498548A (en) * | 2018-12-11 | 2019-03-22 | 吉林化工学院 | A kind of protein and photosensitizer transmit pH responsiveness polyaminoacid nanogel and preparation method thereof altogether |
| CN110314136A (en) * | 2019-04-29 | 2019-10-11 | 华南师范大学 | A kind of preparation and its application of the tumor-targeting drug based on unsaturated fatty acid nanoparticle |
| CN110898007A (en) * | 2019-11-13 | 2020-03-24 | 中国药科大学 | Preparation of targeting antitumor uronic acid carboxyl free polysaccharide derivative micelle |
Non-Patent Citations (5)
| Title |
|---|
| Dual activatable self-assembled nanotheranostics for bioimaging and photodynamic therapy;Fu, Y (Fu, Yan)等;《JOURNAL OF CONTROLLED RELEASE》;20201214;第129-139页 * |
| Hierarchical tumor acidity-responsive self-assembled magnetic nanotheranostics for bimodal bioimaging and photodynamic therapy;Yang, HY;《JOURNAL OF CONTROLLED RELEASE》;20190510;第157-165页 * |
| Polymer ligand-assisted fabrication of multifunctional and redox-responsive self-assembled magnetic nanoclusters for bimodal imaging and cancer treatment;Yang, HY等;《JOURNAL OF MATERIALS CHEMISTRY B》;20180921;第6卷(第35期);第5562-5569页 * |
| Transcriptome Investigation and In Vitro Verification of Curcumin-Induced HO-1 as a Feature of Ferroptosis in Breast Cancer Cells;Ruihua Li等;《Oxidative Medicine and Cellular Longevity》;20201119;第1-18页 * |
| 花生四烯酸多肽胶束用于癌症光动力学治疗的研究;辛科霆;《中国优秀硕士学位论文全文数据库(电子期刊)》;20180915;E079-53 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN112451680A (en) | 2021-03-09 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN112451680B (en) | ROS sensitive nano reagent with synergistic induction of photodynamic therapy and iron death and preparation method thereof | |
| KR101035269B1 (en) | Novel photodynamic therapy using polymer derivative-photosensitizer complex | |
| Gao et al. | All-active antitumor micelles via triggered lipid peroxidation | |
| CN109223729B (en) | Material with thioketal bond bonding adriamycin and polyphosphate ester and preparation method and application thereof | |
| Li et al. | Light-enhanced hypoxia-responsive nanoparticles for deep tumor penetration and combined chemo-photodynamic therapy | |
| US12343434B2 (en) | Hybrid membrane camouflaged nanomedicine loaded with oxidative phosphorylation inhibitor and preparing method thereof | |
| CN103349783B (en) | A kind of with amphiphilic polysaccharide-folate conjugate nanometer photosensitive drug that is carrier and preparation method thereof | |
| CN110856750B (en) | PH sensitive conjugate, micelle and preparation method and application thereof | |
| WO2017045192A1 (en) | Tumor-targeting nanomicelle capable of loading drug by using acousto-optical power, preparation method therefor, and applications thereof | |
| Wang et al. | DTX-loaded star-shaped TAPP-PLA-b-TPGS nanoparticles for cancer chemical and photodynamic combination therapy | |
| Xia et al. | Reduction-sensitive polymeric micelles as amplifying oxidative stress vehicles for enhanced antitumor therapy | |
| Doshi et al. | Conducting polymer nanoparticles for targeted cancer therapy | |
| Qing et al. | Indocyanine green loaded pH-responsive bortezomib supramolecular hydrogel for synergistic chemo-photothermal/photodynamic colorectal cancer therapy | |
| Zhang et al. | Sequentially activatable polypeptide nanoparticles for combinatory photodynamic chemotherapy of breast cancer | |
| CN110339181A (en) | A pH-responsive nano-preparation based on click reaction and its preparation method and application | |
| CN105001426B (en) | A kind of polyaminoacid graft copolymer with tumor-targeting and preparation method thereof | |
| CN115068606A (en) | Tumor-targeted nano preparation, preparation method and application in preparation of anti-tumor drugs | |
| Gao et al. | Light-triggered polymeric prodrug and nano-assembly for chemo-photodynamic therapy and potentiate immune checkpoint blockade immunotherapy for hepatocellular carcinoma | |
| CN110790922B (en) | Preparation method and application of polyporphyrin compound | |
| CN109771657A (en) | A kind of polymer antitumor drug bonded with vascular blocking agent and immunomodulator and preparation method thereof | |
| Wang et al. | Inulin and hyaluronic acid-based oral liposome for enhanced photo-chemotherapy against orthotopic colon cancer and its reversal effects on tumor hypoxia and intestinal microbiota | |
| Wang et al. | Dendron‐Functionalized Polyglutamate‐Pyropheophorbide‐a Conjugates as Nanomedicines for Breast Cancer Photodynamic Therapy | |
| Jian et al. | A biotin-modified and H2O2-activatable theranostic nanoplatform for enhanced photothermal and chemical combination cancer therapy | |
| Sari et al. | Fluorescent poly (β-amino ester) s containing aza-BODIPYs as theranostic agents for bioimaging and photodynamic therapy | |
| Sui et al. | Esterase‐activatable and glutathione‐responsive triptolide nano‐prodrug for the eradication of pancreatic cancer |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| TR01 | Transfer of patent right | ||
| TR01 | Transfer of patent right |
Effective date of registration: 20240801 Address after: 710000 No. B49, Xinda Zhongchuang space, 26th Street, block C, No. 2 Trading Plaza, South China City, international port district, Xi'an, Shaanxi Province Patentee after: Xi'an Huaqi Zhongxin Technology Development Co.,Ltd. Country or region after: China Address before: 132022 No. 45 Chengde street, Longtan District, Jilin, Jilin Patentee before: JILIN INSTITUTE OF CHEMICAL TECHNOLOGY Country or region before: China |

