CN112079258A - Movable Microgravity Environment Simulator - Google Patents
Movable Microgravity Environment Simulator Download PDFInfo
- Publication number
- CN112079258A CN112079258A CN202010932404.XA CN202010932404A CN112079258A CN 112079258 A CN112079258 A CN 112079258A CN 202010932404 A CN202010932404 A CN 202010932404A CN 112079258 A CN112079258 A CN 112079258A
- Authority
- CN
- China
- Prior art keywords
- suspension bracket
- environment simulation
- microgravity environment
- mobile
- hoisting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66C—CRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
- B66C13/00—Other constructional features or details
- B66C13/16—Applications of indicating, registering, or weighing devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66C—CRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
- B66C5/00—Base supporting structures with legs
- B66C5/02—Fixed or travelling bridges or gantries, i.e. elongated structures of inverted L or of inverted U shape or tripods
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明涉及低重力模拟装置技术领域,公开了一种可移动微重力环境模拟装置,包括悬吊支架、自动导向移动装置、路线采集装置、起吊装置、牵引绳和力量参数反馈装置;其中,自动导向移动装置设于所述悬吊支架底端,用于驱动所述悬吊支架移动;路线采集装置设于所述悬吊支架上且与所述自动导向移动装置电性连接;起吊装置设于所述悬吊支架上;牵引绳与所述起吊装置连接;所述起吊装置驱动所述牵引绳伸长或收缩;力量参数反馈装置设于所述悬吊支架上且与所述起吊装置电性连接。本发明提供的可移动微重力环境模拟装置可全自动实现跟随目标移动,可实现对所拉动的目标进行多种微重力的模拟,结构简单、灵活多变,使用效率高,成本低。
The invention relates to the technical field of low-gravity simulation devices, and discloses a movable micro-gravity environment simulation device, comprising a suspension bracket, an automatic guide moving device, a route acquisition device, a hoisting device, a traction rope and a force parameter feedback device; The guiding moving device is arranged at the bottom end of the suspension bracket and is used to drive the suspension bracket to move; the route collecting device is arranged on the suspension bracket and is electrically connected with the automatic guiding movement device; the hoisting device is arranged at the on the suspension bracket; the traction rope is connected with the hoisting device; the hoisting device drives the traction rope to extend or contract; a force parameter feedback device is arranged on the suspension bracket and is electrically connected to the hoisting device connect. The movable microgravity environment simulation device provided by the invention can automatically realize the movement of following the target, and can realize the simulation of various microgravity on the pulled target.
Description
技术领域technical field
本发明属于低重力模拟装置领域,特别是涉及一种可移动微重力环境模拟装置。The invention belongs to the field of low-gravity simulation devices, in particular to a movable micro-gravity environment simulation device.
背景技术Background technique
目前,常用的微重力模拟方法包括落塔法、抛物飞行法、水浮法、气浮法、悬吊法和静平衡法等。现有的悬吊法主要采用的是固定悬吊方式的吊绳方案,存在控制难度大,占用面积较大等,而且位置固定不变,只能在室内实现,基本不具备可移动性,不能实现户外环境的模拟测试,,使用效率较低。At present, the commonly used microgravity simulation methods include drop tower method, parabolic flight method, water flotation method, air flotation method, suspension method and static equilibrium method. The existing suspension method mainly adopts the sling scheme of fixed suspension method, which is difficult to control, occupies a large area, etc., and the position is fixed, which can only be realized indoors, and basically has no mobility and cannot be used. To achieve the simulation test of the outdoor environment, the use efficiency is low.
发明内容SUMMARY OF THE INVENTION
本发明的目的是克服了现有技术的问题,提供了一种可自动跟随目标移动、实现对所拉动的目标进行多种微重力的模拟、结构简单的可移动微重力环境模拟装置。The purpose of the present invention is to overcome the problems of the prior art, and to provide a movable microgravity environment simulation device with a simple structure that can automatically follow the movement of the target and realize various microgravity simulations on the pulled target.
为了达到上述目的,本发明采用以下方案:In order to achieve the above object, the present invention adopts the following scheme:
可移动微重力环境模拟装置,包括悬吊支架;还包括:Movable microgravity environment simulation device, including suspension bracket; also includes:
自动导向移动装置,其设于所述悬吊支架底端,用于驱动所述悬吊支架移动;an automatic guide moving device, which is arranged at the bottom end of the suspension bracket and is used to drive the suspension bracket to move;
路线采集装置,其设于所述悬吊支架上且与所述自动导向移动装置电性连接;a route acquisition device, which is arranged on the suspension bracket and is electrically connected with the automatic guide moving device;
起吊装置,其设于所述悬吊支架上;a hoisting device, which is arranged on the suspension bracket;
牵引绳,其与所述起吊装置连接;所述起吊装置驱动所述牵引绳伸长或收缩;a traction rope, which is connected with the hoisting device; the hoisting device drives the traction rope to extend or contract;
力量参数反馈装置,其设于所述悬吊支架上且与所述起吊装置电性连接。A force parameter feedback device is arranged on the suspension bracket and is electrically connected with the hoisting device.
进一步地,所述悬吊支架包括:Further, the suspension bracket includes:
两根底支杆;所述自动导向移动装置设于所述底支杆上;two bottom support rods; the automatic guide moving device is arranged on the bottom support rod;
两根竖向支杆,其分别与两根所述底支杆连接;two vertical struts, which are respectively connected with the two bottom struts;
人形支架,其连接于两根竖向支杆之间;所述路线采集装置设于所述人形支架上;a human-shaped bracket, which is connected between two vertical support rods; the route collection device is arranged on the human-shaped bracket;
两根顶支杆,其分别与两根所述竖向支杆的上端连接;每根顶支杆的前端均设有一个所述起吊装置和力量参数反馈装置。The two top support rods are respectively connected with the upper ends of the two vertical support rods; the front end of each top support rod is provided with a hoisting device and a force parameter feedback device.
进一步地,每根所述底支架的两端分别设有一个所述自动导向移动装置;所述自动导向移动装置包括方向控制装置和移动滚轮。Further, the two ends of each of the bottom brackets are respectively provided with an automatic guide moving device; the automatic guide moving device includes a direction control device and a moving roller.
进一步地,所述移动滚轮为麦克纳姆轮。Further, the moving roller is a Mecanum wheel.
进一步地,所述顶支杆的前端具有一个杆内腔;所述力量参数反馈装置设于所述杆内腔内;所述起吊装置设于所述杆内腔内;所述起吊装置包括驱动电机和绕绳轮;所述牵引绳连接在所述绕绳轮上;所述驱动电机的输出轴与所述绕绳轮连接且驱动所述绕绳轮旋转以伸长或收缩。Further, the front end of the top support rod has a rod inner cavity; the force parameter feedback device is arranged in the rod inner cavity; the lifting device is arranged in the rod inner cavity; the lifting device includes a drive A motor and a reel; the traction rope is connected to the reel; an output shaft of the driving motor is connected to the reel and drives the reel to rotate to extend or contract.
进一步地,所述悬吊支架为碳纤维悬吊支架。Further, the suspension bracket is a carbon fiber suspension bracket.
进一步地,所述顶支杆与下方对应的所述底支杆相平行。Further, the top support rod is parallel to the bottom support rod corresponding to the bottom.
进一步地,所述竖向支杆的下端与所述底支杆之间、所述竖向支杆的上端与所述顶支杆之间通过螺钉和三通套筒连接。Further, the lower end of the vertical support rod and the bottom support rod, and the upper end of the vertical support rod and the top support rod are connected by screws and three-way sleeves.
进一步地,所述力量参数反馈装置为拉力传感器。Further, the force parameter feedback device is a tension sensor.
进一步地,所述路线采集装置为摄像采集装置。Further, the route collection device is a camera collection device.
与现有的技术相比,本发明具有如下优点:Compared with the prior art, the present invention has the following advantages:
本发明将牵引绳系目标上进行牵引,使目标处于低重力状态,通过力量参数反馈装置反馈的数据,使起吊装置可持续驱动牵引绳的伸长或收缩,以提供相同的牵引绳的拉力,实现精准的拉力抵消重力,保证目标处于低重力状态,同时,通过自动导向移动装置驱动悬吊支架跟随目标移动,并根据路线采集装置采集并反馈目标移动的路线数据,及时调整移动路线,使该可移动微重力环境模拟装置可全自动实现跟随目标移动,并且可持续在目标上方提供拉力,实现对所拉动的目标进行多种微重力的模拟,如固定在室内的微重力模拟、户外环境移动的微重力模拟,结构简单、灵活多变,使用效率高,成本低。The invention pulls the traction rope on the target, so that the target is in a low gravity state, and through the data fed back by the force parameter feedback device, the hoisting device can continuously drive the extension or contraction of the traction rope to provide the same pulling force of the traction rope, Realize accurate pulling force to offset gravity, ensure that the target is in a low gravity state, at the same time, drive the suspension bracket to move with the target through the automatic guiding mobile device, and collect and feed back the route data of the target movement according to the route acquisition device, and adjust the moving route in time to make the target move. The movable microgravity environment simulation device can automatically move with the target, and can continuously provide pulling force above the target, so as to realize various microgravity simulations on the pulled target, such as microgravity simulation fixed indoors, outdoor environment movement The microgravity simulation is simple, flexible and changeable, with high efficiency and low cost.
附图说明Description of drawings
下面结合附图和具体实施方式对本申请作进一步详细的说明。The present application will be described in further detail below with reference to the accompanying drawings and specific embodiments.
图1是本发明的可移动微重力环境模拟装置的立体示意图。FIG. 1 is a schematic perspective view of the movable microgravity environment simulation device of the present invention.
图2是本发明的可移动微重力环境模拟装置一方向角度的结构示意图。FIG. 2 is a schematic structural diagram of a direction angle of the movable microgravity environment simulation device of the present invention.
图3是本发明的起吊装置的结构示意图。FIG. 3 is a schematic structural diagram of the hoisting device of the present invention.
图4是本发明的力量参数反馈装置与起吊装置之间电连接示意图。4 is a schematic diagram of the electrical connection between the force parameter feedback device and the hoisting device of the present invention.
图中包括:The figure includes:
悬吊支架1、底支杆11、竖向支杆12、人形支架13、顶支杆14、自动导向移动装置2、方向控制装置21、移动滚轮22、路线采集装置3、起吊装置4、驱动电机41、绕绳轮42、牵引绳5、力量参数反馈装置6、螺钉7、三通套筒8。Suspension bracket 1,
具体实施方式Detailed ways
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。The specific embodiments of the present invention will be described in further detail below with reference to the accompanying drawings and embodiments. The following examples are intended to illustrate the present invention, but not to limit the scope of the present invention.
如图1至图4所示,可移动微重力环境模拟装置包括悬吊支架1、自动导向移动装置2、路线采集装置3、起吊装置4、牵引绳5和力量参数反馈装置6。自动导向移动装置2设于所述悬吊支架1底端,用于驱动所述悬吊支架1移动;该自动导向移动装置2具有数据分析、方向改变和驱动悬吊支架1移动的功能。路线采集装置3设于所述悬吊支架1上且与所述自动导向移动装置2电性连接;该路线采集装置3为摄像采集装置;该路线采集装置3根据摄像头采集目标移动位置相对悬吊支架1前后、左右的位置,以及移动方向是否有障碍物,生成反馈信息反馈至自动导向移动装置2;自动导向移动装置2根据这些反馈信息,与自动导向移动装置2内的数据库相对比,自动调整移动的路线跟随目标同步移动。起吊装置4设于所述悬吊支架1上;牵引绳5,其与所述起吊装置4连接;所述起吊装置4驱动所述牵引绳5伸长或收缩;力量参数反馈装置6设于所述悬吊支架1上且与所述起吊装置4电性连接。该力量参数反馈装置6为拉力传感器。目标移动,牵动牵引绳5,牵引绳5的拉力超过或低于设定的范围,该力量参数反馈装置6及时检测并反馈数据至起吊装置4,起吊装置4根据力量参数反馈装置6反馈的数据可持续驱动牵引绳5的伸长或收缩,以提供相同的牵引绳5的拉力,实现精准的拉力抵消重力,保证目标处于低重力状态。上述目标指人或微重力模拟实验体(机器人)等;在本具体实施方式中,目标是指微重力模拟实验体(机器人)。As shown in FIG. 1 to FIG. 4 , the movable microgravity environment simulation device includes a suspension bracket 1 , an automatic guide mobile device 2 , a route acquisition device 3 , a hoisting
该可移动微重力环境模拟装置将牵引绳5系在目标上进行牵引,使目标处于低重力状态,通过力量参数反馈装置6反馈的数据,使起吊装置4可持续驱动牵引绳5的伸长或收缩,以提供相同的牵引绳5的拉力,实现精准的拉力抵消重力,保证目标处于低重力状态,同时,通过自动导向移动装置2驱动悬吊支架1跟随目标移动,并根据路线采集装置3采集并反馈目标移动的路线数据,及时调整移动路线,使该可移动微重力环境模拟装置可全自动实现跟随目标移动,并且可持续在目标上方提供拉力,实现对所拉动的目标进行多种微重力的模拟,如固定在室内的微重力模拟、户外环境移动的微重力模拟,结构简单、灵活多变,使用效率高,成本低。The movable microgravity environment simulation device ties the
悬吊支架1包括底支杆11、竖向支杆12、人形支架13和顶支杆14。其中,所述自动导向移动装置2设于所述底支杆11上;两根竖向支杆12分别与两根所述底支杆11连接;人形支架13连接于两根竖向支杆12之间;所述路线采集装置3设于所述人形支架13上,方便该人形支架13设计是通过人带“T”字帽子,然后大字张开,形成一个“天”字;双手双脚分别与两根竖向支杆12连接,使该可移动微重力环境模拟装置整体美观,视觉效果好。两根顶支杆14分别与两根所述竖向支杆12的上端连接;每根顶支杆14的前端均设有一个所述起吊装置4和力量参数反馈装置6。通过将底支杆11、竖向支杆12、人形支架13和顶支杆14设置成悬吊支架1,使该可移动微重力环境模拟装置整体质量减轻,方便移动,大大缩小该可移动微重力环境模拟装置的占地面积。The suspension bracket 1 includes a
优选的,所述悬吊支架1为碳纤维悬吊支架1。该悬吊支架1采用碳纤维制成,具有良好的硬度和强度,同时可以大大地减轻可移动微重力环境模拟装置整体质量,方便移动,灵活多变,适用于不同的环境,使用效率高,成本低。Preferably, the suspension bracket 1 is a carbon fiber suspension bracket 1 . The suspension bracket 1 is made of carbon fiber, which has good hardness and strength, and can greatly reduce the overall quality of the movable microgravity environment simulation device. It is convenient to move, flexible, and suitable for different environments. Low.
其中,所述顶支杆14与下方对应的所述底支杆11相平行。通过设置顶支杆14和对应的顶支杆14相平衡,便于起吊装置4对牵引绳5的长度调节。Wherein, the
为了竖向支杆12和底支杆11之间安装方便;所述竖向支杆12的下端与所述底支杆11之间、所述竖向支杆12的上端与所述顶支杆14之间通过螺钉7和三通套筒8连接。将底支杆11和竖向支杆12相配合套设在三通套筒8上,在通过螺钉7锁紧固定,结构简单,拆装方便。In order to facilitate the installation between the
在本具体实施方式中,每根所述底支架的两端分别设有一个所述自动导向移动装置2;即该自动导向移动装置2具有4个。所述自动导向移动装置2包括方向控制装置21和移动滚轮22。该具有数据分析、方向改变和驱动移动滚轮22转动的功能,可以实现4个移动在地面上实现任意方向的直线移动,更加灵活,可保证时刻紧随目标。In this specific embodiment, two ends of each of the bottom brackets are respectively provided with one of the automatic guide moving devices 2 ; that is, there are four automatic guide moving devices 2 . The automatic guide moving device 2 includes a
具体的,所述移动滚轮22为麦克纳姆轮。通过使用4个麦克纳姆轮实现移动,可以在地面上实现任意方向的直线移动,更加灵活,可保证时刻紧随目标。Specifically, the moving roller 22 is a Mecanum wheel. By using 4 Mecanum wheels to achieve movement, it can achieve linear movement in any direction on the ground, which is more flexible and can ensure that it follows the target at all times.
所述顶支杆14的前端具有一个杆内腔;所述力量参数反馈装置6设于所述杆内腔内;所述起吊装置4设于所述杆内腔内;即起吊装置4和力量参数反馈装置6的数量具有2个。所述起吊装置4包括驱动电机41和绕绳轮42;所述牵引绳5连接在所述绕绳轮42上;所述驱动电机41的输出轴与所述绕绳轮42连接且驱动所述绕绳轮42旋转以伸长或收缩。通过将驱动电机41和绕绳轮42设于杆内腔内,使该可移动微重力环境模拟装置整体美观,同时,驱动电机41根据力量参数反馈装置6反馈的数据可持续驱动绕绳轮42滚转,以使牵引绳5的伸长或收缩,使两条提供相同的牵引绳5的拉力,实现精准的拉力抵消重力,保证目标处于低重力状态。The front end of the
综上,本发明实施例提供一种移动微重力环境模拟装置。其中,该移动微重力环境模拟装置将牵引绳5系在目标上进行牵引,使目标处于低重力状态,通过力量参数反馈装置6反馈的数据,使起吊装置4可持续驱动牵引绳5的伸长或收缩,以提供相同的牵引绳5的拉力,实现精准的拉力抵消重力,保证目标处于低重力状态,同时,通过自动导向移动装置2驱动悬吊支架1跟随目标移动,并根据路线采集装置3采集并反馈目标移动的路线数据,及时调整移动路线,使该可移动微重力环境模拟装置可全自动实现跟随目标移动,并且可持续在目标上方提供拉力,实现对所拉动的目标进行多种微重力的模拟,如固定在室内的微重力模拟、户外环境移动的微重力模拟,结构简单、灵活多变,使用效率高,成本低。To sum up, the embodiments of the present invention provide a mobile microgravity environment simulation device. Among them, the mobile microgravity environment simulation device ties the
以上所述仅是本申请的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请技术原理的前提下,还可以做出若干改进和替换,这些改进和替换也应视为本申请的保护范围。The above are only the preferred embodiments of the present application. It should be pointed out that for those skilled in the art, without departing from the technical principles of the present application, several improvements and replacements can be made. These improvements and replacements It should also be regarded as the protection scope of this application.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202010932404.XA CN112079258A (en) | 2020-09-08 | 2020-09-08 | Movable Microgravity Environment Simulator |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202010932404.XA CN112079258A (en) | 2020-09-08 | 2020-09-08 | Movable Microgravity Environment Simulator |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN112079258A true CN112079258A (en) | 2020-12-15 |
Family
ID=73732082
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202010932404.XA Pending CN112079258A (en) | 2020-09-08 | 2020-09-08 | Movable Microgravity Environment Simulator |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN112079258A (en) |
Citations (21)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101589984A (en) * | 2009-07-03 | 2009-12-02 | 北京理工大学 | a rehabilitation robot |
| US20110067157A1 (en) * | 2009-09-19 | 2011-03-24 | Quan Xiao | Method and apparatus for Variable G force experience and creating immersive VR sensations |
| CN103466109A (en) * | 2013-09-05 | 2013-12-25 | 哈尔滨工业大学 | Space microgravity environment ground simulation experiment device |
| CN103552697A (en) * | 2013-09-23 | 2014-02-05 | 上海卫星装备研究所 | Active suspension type satellite antenna three-dimensional extension testing device |
| CN104118580A (en) * | 2014-07-14 | 2014-10-29 | 上海宇航系统工程研究所 | Device and method for simulating low gravity |
| CN104968313A (en) * | 2012-11-09 | 2015-10-07 | 浩康股份公司 | Gait training apparatus |
| US9194977B1 (en) * | 2013-07-26 | 2015-11-24 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Active response gravity offload and method |
| CN105479433A (en) * | 2016-01-04 | 2016-04-13 | 江苏科技大学 | Omnidirectional moving transfer robot with Mecanum wheels |
| CN106535852A (en) * | 2014-07-09 | 2017-03-22 | 浩康股份公司 | Apparatus for gait training |
| CN107161360A (en) * | 2017-06-07 | 2017-09-15 | 北京航空航天大学 | Replaceable free across the yardstick checking device of pedestal motion reappearance of space tasks |
| CN107244431A (en) * | 2017-06-07 | 2017-10-13 | 北京航空航天大学 | Space tasks ground motion reproduces across yardstick verification platform |
| CN107244430A (en) * | 2017-06-07 | 2017-10-13 | 北京航空航天大学 | Magnetic hangs across the yardstick checking device of the free pedestal space tasks of comprehensive compensation |
| US20180146168A1 (en) * | 2016-11-23 | 2018-05-24 | Hanwha Techwin Co., Ltd. | Following apparatus and following system |
| CN108127688A (en) * | 2017-01-24 | 2018-06-08 | 中国北方车辆研究所 | A kind of robot protective frame |
| CN108338895A (en) * | 2017-12-25 | 2018-07-31 | 北方工业大学 | A device and method for following support assisting plane walking |
| CN108606907A (en) * | 2018-05-02 | 2018-10-02 | 中国石油大学(华东) | A kind of packaged type parallel wire driven lower limb rehabilitation robot and its implementation |
| CN109568089A (en) * | 2019-01-24 | 2019-04-05 | 中国科学技术大学 | A kind of trailing type lower limb recovery robot by training paces system |
| CN110841245A (en) * | 2019-11-18 | 2020-02-28 | 南京伟思医疗科技股份有限公司 | A multi-modal rehabilitation weight loss walking training vehicle |
| CN110916970A (en) * | 2019-11-18 | 2020-03-27 | 南京伟思医疗科技股份有限公司 | A device and method for realizing the coordinated movement of a weight reduction vehicle and a lower limb robot through communication |
| CN211214227U (en) * | 2019-03-02 | 2020-08-11 | 杭州程天科技发展有限公司 | Walking following rehabilitation training equipment |
| CN212503675U (en) * | 2020-09-08 | 2021-02-09 | 中原动力智能机器人有限公司 | Movable microgravity environment simulation device |
-
2020
- 2020-09-08 CN CN202010932404.XA patent/CN112079258A/en active Pending
Patent Citations (21)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101589984A (en) * | 2009-07-03 | 2009-12-02 | 北京理工大学 | a rehabilitation robot |
| US20110067157A1 (en) * | 2009-09-19 | 2011-03-24 | Quan Xiao | Method and apparatus for Variable G force experience and creating immersive VR sensations |
| CN104968313A (en) * | 2012-11-09 | 2015-10-07 | 浩康股份公司 | Gait training apparatus |
| US9194977B1 (en) * | 2013-07-26 | 2015-11-24 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Active response gravity offload and method |
| CN103466109A (en) * | 2013-09-05 | 2013-12-25 | 哈尔滨工业大学 | Space microgravity environment ground simulation experiment device |
| CN103552697A (en) * | 2013-09-23 | 2014-02-05 | 上海卫星装备研究所 | Active suspension type satellite antenna three-dimensional extension testing device |
| CN106535852A (en) * | 2014-07-09 | 2017-03-22 | 浩康股份公司 | Apparatus for gait training |
| CN104118580A (en) * | 2014-07-14 | 2014-10-29 | 上海宇航系统工程研究所 | Device and method for simulating low gravity |
| CN105479433A (en) * | 2016-01-04 | 2016-04-13 | 江苏科技大学 | Omnidirectional moving transfer robot with Mecanum wheels |
| US20180146168A1 (en) * | 2016-11-23 | 2018-05-24 | Hanwha Techwin Co., Ltd. | Following apparatus and following system |
| CN108127688A (en) * | 2017-01-24 | 2018-06-08 | 中国北方车辆研究所 | A kind of robot protective frame |
| CN107244431A (en) * | 2017-06-07 | 2017-10-13 | 北京航空航天大学 | Space tasks ground motion reproduces across yardstick verification platform |
| CN107244430A (en) * | 2017-06-07 | 2017-10-13 | 北京航空航天大学 | Magnetic hangs across the yardstick checking device of the free pedestal space tasks of comprehensive compensation |
| CN107161360A (en) * | 2017-06-07 | 2017-09-15 | 北京航空航天大学 | Replaceable free across the yardstick checking device of pedestal motion reappearance of space tasks |
| CN108338895A (en) * | 2017-12-25 | 2018-07-31 | 北方工业大学 | A device and method for following support assisting plane walking |
| CN108606907A (en) * | 2018-05-02 | 2018-10-02 | 中国石油大学(华东) | A kind of packaged type parallel wire driven lower limb rehabilitation robot and its implementation |
| CN109568089A (en) * | 2019-01-24 | 2019-04-05 | 中国科学技术大学 | A kind of trailing type lower limb recovery robot by training paces system |
| CN211214227U (en) * | 2019-03-02 | 2020-08-11 | 杭州程天科技发展有限公司 | Walking following rehabilitation training equipment |
| CN110841245A (en) * | 2019-11-18 | 2020-02-28 | 南京伟思医疗科技股份有限公司 | A multi-modal rehabilitation weight loss walking training vehicle |
| CN110916970A (en) * | 2019-11-18 | 2020-03-27 | 南京伟思医疗科技股份有限公司 | A device and method for realizing the coordinated movement of a weight reduction vehicle and a lower limb robot through communication |
| CN212503675U (en) * | 2020-09-08 | 2021-02-09 | 中原动力智能机器人有限公司 | Movable microgravity environment simulation device |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN104326368B (en) | A kind of gravity-compensated device launching test for solar wing low temperature | |
| CN104132795B (en) | A kind of model cable support system realizing wind-tunnel virtual flight | |
| CN207967775U (en) | A kind of HV Transmission Line Routing Inspection robot rotation obstacle crossing device | |
| CN110219327B (en) | An auxiliary device for ultrasonic detection of foundation piles | |
| CN108344553A (en) | Model in wind tunnel parallel institution support device for aircraft formation flight | |
| CN113002810A (en) | Distributed multi-pose motion gravity unloading astronaut ground training system | |
| CN106764244B (en) | A kind of magnetic suspension pipe robot | |
| CN205707352U (en) | A kind of crank block type flapping wing aircraft | |
| CN108382480A (en) | A kind of power steel pipe tower climbing robot | |
| CN102779438A (en) | Flight simulated mechanical execution system simulating full-motion of airplane | |
| CN114197938B (en) | Reinforcing apparatus of communication pole base station | |
| CN202608927U (en) | Robot with gliding and bouncing functions | |
| CN112079258A (en) | Movable Microgravity Environment Simulator | |
| CN212503675U (en) | Movable microgravity environment simulation device | |
| CN208306789U (en) | A kind of power steel pipe tower climbing robot | |
| CN112985893B (en) | Ground surface sampling device based on unmanned aerial vehicle | |
| CN208284911U (en) | A kind of mono-track conducting wire running gear and a kind of mono-track robot | |
| CN106581989A (en) | Simulated riding table and control method thereof | |
| CN205672576U (en) | A kind of athletic training is with hurdling | |
| CN106275525B (en) | A kind of sun wing plate air supporting support ground simulation hanging expanding unit | |
| CN203677888U (en) | Light goal device for football teaching and training | |
| CN212605822U (en) | Unmanned aerial vehicle aircraft is with supplementary trainer | |
| CN220723221U (en) | Unmanned aerial vehicle receive and releases line mechanism | |
| CN114486154B (en) | Two-degree-of-freedom wing section supporting device and wind tunnel test equipment | |
| CN109289177A (en) | A humanoid basketball trainer |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication |
Application publication date: 20201215 |
