CN110996776B - Method for combining heart mapping and model - Google Patents

Method for combining heart mapping and model Download PDF

Info

Publication number
CN110996776B
CN110996776B CN201880052802.3A CN201880052802A CN110996776B CN 110996776 B CN110996776 B CN 110996776B CN 201880052802 A CN201880052802 A CN 201880052802A CN 110996776 B CN110996776 B CN 110996776B
Authority
CN
China
Prior art keywords
heart
activation
patient
model
pvc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201880052802.3A
Other languages
Chinese (zh)
Other versions
CN110996776A (en
Inventor
史蒂夫·阿德勒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Catheter Precision Inc
Original Assignee
Catheter Precision Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catheter Precision Inc filed Critical Catheter Precision Inc
Publication of CN110996776A publication Critical patent/CN110996776A/en
Application granted granted Critical
Publication of CN110996776B publication Critical patent/CN110996776B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • A61B5/6852Catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
    • A61B5/024Measuring pulse rate or heart rate
    • A61B5/0245Measuring pulse rate or heart rate by using sensing means generating electric signals, i.e. ECG signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; Determining position of diagnostic devices within or on the body of the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/28Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
    • A61B5/283Invasive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/28Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
    • A61B5/283Invasive
    • A61B5/287Holders for multiple electrodes, e.g. electrode catheters for electrophysiological study [EPS]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/339Displays specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7221Determining signal validity, reliability or quality
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient; User input means
    • A61B5/742Details of notification to user or communication with user or patient; User input means using visual displays
    • A61B5/743Displaying an image simultaneously with additional graphical information, e.g. symbols, charts, function plots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient; User input means
    • A61B5/742Details of notification to user or communication with user or patient; User input means using visual displays
    • A61B5/7435Displaying user selection data, e.g. icons in a graphical user interface
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient; User input means
    • A61B5/7475User input or interface means, e.g. keyboard, pointing device, joystick
    • A61B5/748Selection of a region of interest, e.g. using a graphics tablet
    • A61B5/7485Automatic selection of region of interest

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Cardiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physiology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Signal Processing (AREA)
  • Human Computer Interaction (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Robotics (AREA)
  • Electrotherapy Devices (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

各种实施例提供心脏标测和模型合并的方法,包含:基于三维(3D)心脏模型和在心脏的室性期前收缩(PVC)期间的PVC心电图(ECG)数据记录,生成心脏的PVC激活图;通过对电生理(EP)过程中收集的逐点接触数据进行三角化来生成心脏的3D内表面模型;将3D激活图和3D内表面模型合并以形成PVC激活表面模型;以及在第一起搏位置起搏心脏,第一起搏位置设置在PVC激活表面模型中识别的最早激活区域中。

Figure 201880052802

Various embodiments provide a method of cardiac mapping and model merging comprising: generating a PVC activation of the heart based on a three-dimensional (3D) heart model and PVC electrocardiogram (ECG) data recordings during premature ventricular systoles (PVCs) of the heart Figure; generating a 3D inner surface model of the heart by triangulating point-by-point contact data collected during electrophysiological (EP); merging the 3D activation map and the 3D inner surface model to form a PVC activation surface model; and in the first To pace the heart at the pacing site, the first pacing site is set in the earliest activated region identified in the PVC activation surface model.

Figure 201880052802

Description

心脏标测和模型合并的方法Cardiac Mapping and Model Merging Method

相关申请的交叉引用Cross References to Related Applications

本申请要求以下专利申请的优先权:2017年8月1日提交的美国临时专利申请第62/539,740号,标题为“心脏标测和定向引导的方法”;2017年8月1日提交的美国临时专利申请第62/539,787号,标题为“心脏标测和定向引导的方法”;2017年8月1日提交的美国临时专利申请第62/539,802号,标题为“心脏标测和模型合并的方法”;和2018年7月30日提交的美国临时专利申请第62/711,777号,标题为“心脏标测系统、方法和包含基准标记物的试剂盒”,所有这些申请通过引用全文并入本文。This application claims priority to the following patent applications: U.S. Provisional Patent Application No. 62/539,740, filed August 1, 2017, entitled "Methods for Cardiac Mapping and Orientation Guidance"; Provisional Patent Application No. 62/539,787, entitled "Methods for Cardiac Mapping and Orientation Guidance"; Methods"; and U.S. Provisional Patent Application No. 62/711,777, filed July 30, 2018, entitled "Cardiac Mapping Systems, Methods, and Kits Containing Fiducial Markers," all of which are incorporated herein by reference in their entirety .

背景技术Background technique

传导系统中的一些心脏缺陷导致心脏的异步收缩(心律失常),并且有时被称为传导障碍。结果,心脏没有泵送足够的血液,这可能最终导致心力衰竭。传导障碍有多种原因,包含年龄、心脏(肌肉)损伤、药物治疗和遗传。Some heart defects in the conduction system cause asynchronous contractions of the heart (arrhythmias) and are sometimes called conduction disorders. As a result, the heart does not pump enough blood, which can eventually lead to heart failure. Conduction disorders have a variety of causes, including age, heart (muscle) damage, medications, and genetics.

室性期前收缩(PVC)是指始于心室某处异常或不正常的心脏搏动,而不是像正常窦性搏动那样始于心脏的上腔。PVC通常导致心输出量降低,因为心室在有机会完全充满血液之前收缩。PVC也可能引发室性心动过速(VT或V-Tach)。A premature ventricular contraction (PVC) is an abnormal or irregular heartbeat that begins somewhere in the ventricles rather than in the upper chambers of the heart as a normal sinus beat does. PVCs often result in reduced cardiac output as the ventricles contract before they have a chance to completely fill with blood. PVC may also trigger ventricular tachycardia (VT or V-Tach).

室性心动过速(VT或V-Tach)是由心室中异常电信号引起的另一种心律失常障碍。在VT中,异常电信号导致心脏比正常搏动更快,通常超过每分钟100次,搏动从心室开始。VT通常发生在潜在心脏异常的人群中。VT有时会发生在结构正常的心脏中,并且在这些患者中,异常电信号的来源可能在心脏的多个位置。一个常见的位置是右心室流出道(RVOT),其为血液从右心室流向肺部的路径。在心脏病发作的患者中,心脏病发作留下的疤痕会形成完整的心肌环境和使患者易患VT的疤痕。Ventricular tachycardia (VT or V-Tach) is another arrhythmia disorder caused by abnormal electrical signals in the ventricles of the heart. In VT, abnormal electrical signals cause the heart to beat faster than normal, usually more than 100 beats per minute, with the beating starting in the ventricles. VT usually occurs in people with underlying heart abnormalities. VT sometimes occurs in a structurally normal heart, and in these patients, the source of the abnormal electrical signal can be in multiple locations in the heart. A common location is the right ventricular outflow tract (RVOT), which is the path of blood flow from the right ventricle to the lungs. In patients with a heart attack, scarring from the heart attack creates an intact myocardial environment and scarring that predisposes the patient to VT.

传导障碍的其它常见原因包含左心室和/或右心室快速激活纤维、希氏-浦肯野系统或疤痕组织的缺陷。结果,左右心室可能不同步。这被称为左束支传导阻滞(LBBB)或右束支传导阻滞(RBBB)。Other common causes of conduction disorders include defects in the rapidly activating fibers of the left and/or right ventricle, the His-Purkinje system, or scar tissue. As a result, the left and right ventricles may become out of sync. This is called left bundle branch block (LBBB) or right bundle branch block (RBBB).

心脏再同步治疗(CRT),也称为双心室起搏或多点心室起搏,是LBBB或RBBB情形中改善心脏功能的一种已知方法。CRT包含使用起搏器同时起搏右心室(RV)和左心室(LV)。为了实现CRT,除了常规RV心内膜导联(有或没有右心房(RA)导联)之外,还放置了冠状窦(CS)导联用于LV起搏。CRT的基本目标是通过恢复扩张型心肌病患者的LV同步性和扩大的QRS周期(这主要是LBBB的结果)来改善LV的机械功能。Cardiac resynchronization therapy (CRT), also known as biventricular pacing or multipoint ventricular pacing, is a known method of improving cardiac function in LBBB or RBBB situations. CRT involves simultaneous pacing of the right ventricle (RV) and left ventricle (LV) with a pacemaker. To achieve CRT, coronary sinus (CS) leads were placed for LV pacing in addition to conventional RV endocardial leads (with or without right atrial (RA) leads). The basic goal of CRT is to improve LV mechanical function by restoring LV synchrony and an enlarged QRS period in patients with dilated cardiomyopathy, which is primarily a consequence of LBBB.

导管消融是VT和/或有症状PVC患者的首选治疗方法。消融的目标是心脏中发生PVC的位置或VT发作发生的位置。为了确定合适的消融位置,治疗医生可以首先使用电导联刺激提议的位置,以便确定提议位置处的消融是否将提供心脏的期望电激活模式刺激。Catheter ablation is the treatment of choice for patients with VT and/or symptomatic PVC. Ablation targets the site in the heart where a PVC occurs or where a VT attack occurs. To determine an appropriate ablation location, the treating physician may first stimulate the proposed location using electrical leads in order to determine whether ablation at the proposed location will provide the desired electrical activation pattern stimulation of the heart.

目前,确定导联的正确位置以获得最大的心脏同步或所需的电激活模式需要手术医生进行一定程度的猜测。Currently, determining the correct placement of the leads for maximum cardiac synchrony or the desired pattern of electrical activation requires a degree of guesswork by the surgeon.

然而,目前的方法不允许在逐个患者的基础上确定电联线的最佳位置。进一步,如果当心脏在给定位置被刺激时没有实现期望的激活模式,则当前的方法不提供用于调节导联位置的定向引导以提供改进的激活模式。因此,在确定CRT的电导联的正确位置和确定消融位置时,需要改进的引导。However, current methods do not allow the determination of the optimal placement of the electrical lead on a patient-by-patient basis. Further, current methods do not provide directional guidance for adjusting lead positions to provide an improved activation pattern if the desired activation pattern is not achieved when the heart is stimulated at a given location. Therefore, there is a need for improved guidance in determining the correct location of the electrical leads of a CRT and in determining the location of ablation.

发明内容Contents of the invention

各种实施例提供心脏标测和模型合并的方法,包含:基于三维(3D)心脏模型和在心脏的室性期前收缩(PVC)期间的PVC心电图(ECG)数据记录,生成心脏的PVC激活图;通过对电生理(EP)过程中收集的逐点接触数据进行三角化来生成所述心脏的3D内表面模型;将3D激活图和3D内表面模型合并以形成PVC激活表面模型;使用EP导管在第一起搏位置起搏心脏,第一起搏位置设置在PVC激活表面模型中识别的最早激活区域中。Various embodiments provide a method of cardiac mapping and model merging comprising: generating a PVC activation of the heart based on a three-dimensional (3D) heart model and PVC electrocardiogram (ECG) data recordings during premature ventricular systoles (PVCs) of the heart Figure; Generate a 3D inner surface model of the heart by triangulating point-by-point contact data collected during electrophysiology (EP); Merge the 3D activation map and the 3D inner surface model to form a PVC activation surface model; use EP The catheter paces the heart at a first pacing site, which is positioned in the earliest activation region identified in the PVC activation surface model.

各种实施例提供心脏标测的方法,包含:将心电图(ECG)设备的12个电极附接到患者的胸部;使用心电图(ECG)设备记录ECG数据;基于患者心脏的ECG数据、3D胸部模型和二维(2D)图像生成心脏的激活图,该PVC激活图包含最早激活的区域;基于激活模型中最早激活的区域和最早激活的预测区域的比较,确定3D胸部模型中包含的每个电极的实际位置和每个电极的理想位置之间的偏移;以及基于所确定的偏移来调整激活图。一些实施例包含将基准标记物应用于患者的身体(例如,胸部或躯干)以识别解剖位置,该标记物被配置为通过检测从图像数据中包含的基准标记物反射的光而在图像数据中被识别,从而可以生成患者特定的三维(3D)解剖模型,该模型通过将识别的解剖位置与从CT或MRI扫描获得的成像中的相应解剖位置配准来将图像数据与患者的胸部的3D解剖模型合并。Various embodiments provide a method of cardiac mapping comprising: attaching 12 electrodes of an electrocardiogram (ECG) device to a patient's chest; recording ECG data using the electrocardiogram (ECG) device; based on the ECG data of the patient's heart, a 3D chest model and two-dimensional (2D) images to generate an activation map of the heart that contains the earliest activated regions; based on a comparison of the earliest activated regions in the activation model with the earliest predicted regions of activation, each electrode included in the 3D chest model is identified The offset between the actual position of each electrode and the ideal position of each electrode; and adjusting the activation map based on the determined offset. Some embodiments include applying fiducial markers to the patient's body (e.g., chest or torso) to identify anatomical locations, the markers being configured to appear in the image data by detecting light reflected from the fiducial markers contained in the image data. are identified so that a patient-specific three-dimensional (3D) anatomical model can be generated that aligns the image data with the 3D representation of the patient's chest by registering the identified anatomical locations with corresponding anatomical locations in imaging obtained from CT or MRI scans. Anatomical models merged.

附图说明Description of drawings

附图并入本文且构成本说明书的一部分,说明本发明的示例性实施例,并与上文给出的一般说明及下文给出的详细说明来解释本发明的特征。The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate exemplary embodiments of the invention and, together with the general description given above and the detailed description given below, explain features of the invention.

图1是根据各种实施例的心脏的3D模型的示例。FIG. 1 is an example of a 3D model of a heart, according to various embodiments.

图2A是根据各种实施例的心脏的电激活的3D模型的平面图。2A is a plan view of an electrically activated 3D model of a heart, according to various embodiments.

图2B是根据各种实施例的心脏的电激活的3D模型的平面图。2B is a plan view of an electrically activated 3D model of a heart, according to various embodiments.

图2C是根据各种实施例的同步性图的平面图。Figure 2C is a plan view of a synchronicity graph, according to various embodiments.

图2D是根据各种实施例的同步性图的平面图。Figure 2D is a plan view of a synchronicity graph, according to various embodiments.

图3是根据各种实施例的心脏成像系统的示意性表示。Figure 3 is a schematic representation of a cardiac imaging system, according to various embodiments.

图4A和图4B是根据各种实施例的心脏的电激活的3D模型的平面图。4A and 4B are plan views of an electrically activated 3D model of a heart, according to various embodiments.

图4C和图4D是根据各种实施例的同步性图的平面图。4C and 4D are plan views of synchronicity graphs according to various embodiments.

图5是根据各种实施例的心脏成像系统的示意性表示。Figure 5 is a schematic representation of a cardiac imaging system, according to various embodiments.

图6是示出根据各种实施例的方法的流程图。Figure 6 is a flowchart illustrating a method according to various embodiments.

图7A是根据各种实施例的心脏的电激活的3D模型的LAO和PA视图的示意性表示。7A is a schematic representation of LAO and PA views of an electrically activated 3D model of a heart, according to various embodiments.

图7B是根据各种实施例的同步性图的LAO和PA视图的示意性表示。Figure 7B is a schematic representation of LAO and PA views of a synchronicity graph, according to various embodiments.

图8A是根据各种实施例的心脏的电激活的3D模型的LAO和PA视图的示意性表示。8A is a schematic representation of LAO and PA views of an electrically activated 3D model of a heart, according to various embodiments.

图8B是根据各种实施例的同步性图的LAO和PA视图的示意性表示。Figure 8B is a schematic representation of LAO and PA views of a synchronicity graph, according to various embodiments.

图9是根据各种实施例的外科成像系统的示意图。9 is a schematic diagram of a surgical imaging system, according to various embodiments.

图10是根据各种实施例的使用图9的系统的方法的流程图。Figure 10 is a flowchart of a method of using the system of Figure 9, according to various embodiments.

图11A是根据各种实施例的使用图9的系统的方法的流程图。11A is a flowchart of a method of using the system of FIG. 9, according to various embodiments.

图11B示出了在图11A的方法期间生成的参考心脏图像的示例。FIG. 11B shows an example of a reference heart image generated during the method of FIG. 11A .

图11C和图11D示出了可以在图11A的方法期间生成的激活图。11C and 11D illustrate activation maps that may be generated during the method of FIG. 11A.

图12是根据各种实施例的使用图9的系统的方法的流程图。Figure 12 is a flowchart of a method of using the system of Figure 9, according to various embodiments.

图13是根据各种实施例的心脏成像系统的系统框图。Figure 13 is a system block diagram of a cardiac imaging system according to various embodiments.

图14A和图14B是根据各种实施例的患者的躯干上的电导联和基准标记物的3D图像。14A and 14B are 3D images of electrical leads and fiducial markers on a patient's torso, according to various embodiments.

具体实施方式Detailed ways

参考附图对各种实施例进行详细描述。在可能的情况下,在所有附图中,相同的附图标记将用于指代相同或相似的部件。对特定示例和实现的引用是为了说明的目的,并不旨在限制本发明或权利要求的范围。Various embodiments are described in detail with reference to the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts. References made to particular examples and implementations are for purposes of illustration, and are not intended to limit the scope of the invention or the claims.

心电图(ECG)在本文中被定义为(优选地非侵入性地)将心肌的实际电活动与心脏的测量或导出(电活动)相关联的任何方法。在经典心电图的情况下,体表电极之间的电位差与心脏的电活动相关。还可以通过其它方式(例如,通过所谓的ICD(植入型心律转复除颤器)进行测量)获得导出的ECG。为了获得这样的功能图像,必须提供对电活动的运动的估计。An electrocardiogram (ECG) is defined herein as any method that correlates (preferably non-invasively) the actual electrical activity of the myocardium with the measurement or derivation (electrical activity) of the heart. In the case of a classical ECG, the potential difference between electrodes on the body surface is related to the electrical activity of the heart. The derived ECG can also be obtained by other means, for example by measurement by a so called ICD (Implantable Cardioverter Defibrillator). In order to obtain such functional images, an estimate of the motion of the electrical activity must be provided.

心脏不同步通过降低左心室(LV)机械性能,同时增加心肌耗氧量,对心脏功能产生有害影响。此外,心脏不同步可能导致LV重构。因此,心脏不同步加速了慢性充血性心力衰竭(CHF)的进展,并且降低了患者的存活率。Cardiac dyssynchrony has deleterious effects on cardiac function by reducing left ventricular (LV) mechanical properties while increasing myocardial oxygen consumption. In addition, cardiac dyssynchrony may lead to LV remodeling. Thus, cardiac dyssynchrony accelerates the progression of chronic congestive heart failure (CHF) and reduces patient survival.

在正常传导过程中,心脏激活开始于左心室(LV)和右心室(RV)心内膜中。特别地,电脉冲(即去极化波)基本上同时穿过左心室和右心室。束支传导阻滞(BBB)是一种沿电脉冲路径存在延迟或阻塞的情况。延迟或阻塞可能发生在向左心室或右心室发送电脉冲的路径上。During normal conduction, cardiac activation begins in the left ventricle (LV) and right ventricle (RV) endocardium. In particular, electrical impulses (ie, waves of depolarization) travel through the left and right ventricles substantially simultaneously. Bundle branch block (BBB) is a condition in which there is a delay or blockage along the path of electrical impulses. Delays or blockages can occur in the pathways that send electrical impulses to the left or right ventricle.

左BBB是向LV的电脉冲减慢的一种情况,是心脏不同步的主要原因中的一种。特别地,激活仅始于RV中,并且在到达LV心内膜之前通过隔膜进行。A left BBB is a condition in which the electrical impulse to the LV slows down and is one of the main causes of cardiac dyssynchrony. In particular, activation begins only in the RV and proceeds through the septum before reaching the LV endocardium.

起搏器是一种电子设备,大约有怀表的大小,可以感知内在的心律,并且在指示时提供电刺激。心脏起搏可以是暂时的,也可以是永久的。A pacemaker is an electronic device, about the size of a pocket watch, that senses the inner heart rhythm and provides electrical stimulation when directed. Pacing can be temporary or permanent.

永久起搏最常见的是通过经静脉将导联放置到心内膜(即右心房或心室)或心外膜(即通过冠状窦的LV表面)来完成,随后将它们连接到放置在锁骨下区域皮下的起搏发生器。然而,小型化起搏器已经被开发出来直接心脏表面移植或植入心脏。Permanent pacing is most commonly accomplished by transvenous placement of leads into the endocardium (i.e., the right atrium or ventricle) or epicardium (i.e., through the LV surface of the coronary sinus), which are subsequently connected to a subclavian Regional subcutaneous pacing generator. However, miniaturized pacemakers have been developed for direct cardiac surface grafting or implantation into the heart.

心脏再同步治疗(CRT)是一种提供双心室起搏的特殊起搏器治疗。CRT是在使用或不使用植入型心律转复除颤器(ICD)的情况下进行的,植入型心律转复除颤器是一种用于治疗和预防有室性心动过速(VT)或心室纤颤(VF)风险的患者的设备。Cardiac resynchronization therapy (CRT) is a specialized pacemaker therapy that provides biventricular pacing. CRT is performed with or without the use of an implantable cardioverter-defibrillator (ICD), a medical device used to treat and prevent ventricular tachycardia (VT ) or patients at risk for ventricular fibrillation (VF).

在该应用中,心脏中由起搏电极、微导管等电刺激(例如起搏)的区域可以互换地称为“起搏位置”或“刺激位置”。In this application, areas of the heart that are electrically stimulated (eg, paced) by pacing electrodes, microcatheters, etc. may be referred to interchangeably as "pacing sites" or "stimulation sites."

图1示出了从两个不同方向观察到的心脏1的三维(3D)模型。3D模型包含代表心脏外表面的网状物6,这里是心肌表面。在这个示例中,模型还可以包含隔膜壁。网状物6具有多个节点8。在这个示例中,网状物是三角形网状物,其中心脏的表面由相邻的三角形近似。Figure 1 shows a three-dimensional (3D) model of a heart 1 viewed from two different directions. The 3D model contains a mesh 6 representing the outer surface of the heart, here the surface of the myocardium. In this example, the model can also contain diaphragm walls. The mesh 6 has a plurality of nodes 8 . In this example, the mesh is a triangular mesh where the surface of the heart is approximated by adjacent triangles.

图2A-2D是心脏的3D模型4,示出了心脏1从各种单一刺激位置10的初始电激活。图2A-2C示出了具有隔膜壁2的心肌的心室表面。通常,3D模型4可以包含代表心脏的心室表面的网状物6,这里是如图1中所示的具有隔膜壁的心室心肌的外表面。网状物6具有多个节点8。在所示示例中,心脏1在刺激位置10处被电刺激。在刺激位置10处进行电刺激时,电信号将穿过心脏组织。因此,心脏的不同部分将在不同的时间被激活。心脏上的每个位置相对于初始刺激都有特定的延迟。每个节点8具有与其相关联的值,该值代表在刺激位置10处刺激心脏1和在相应节点8处激活心脏之间的时间延迟。共享相同延迟时间的位置由图2A-2D中的等时线12连接。在这个应用中,等时线被定义为在3D心脏表面模型上绘制的线,该线连接模型上激活同时发生或到达的点。在本示例中,穿过心脏表面的节点的延迟时间也通过不同的渲染阴影来显示。竖条指示与相应颜色相关联的时间延迟(毫秒)。应当理解的是,刺激位置10可以是心脏1的内在激活位置。Figures 2A-2D are 3D models 4 of a heart showing the initial electrical activation of the heart 1 from various single stimulation locations 10. 2A-2C show the ventricular surface of the myocardium with the septal wall 2 . Typically, the 3D model 4 may comprise a mesh 6 representing the ventricular surface of the heart, here the outer surface of the ventricular myocardium with the septal wall as shown in FIG. 1 . The mesh 6 has a plurality of nodes 8 . In the example shown, heart 1 is electrically stimulated at stimulation site 10 . During electrical stimulation at the stimulation site 10, electrical signals will pass through the heart tissue. Therefore, different parts of the heart will be activated at different times. Each location on the heart has a specific delay relative to the initial stimulus. Each node 8 has associated therewith a value representing the time delay between stimulating the heart 1 at the stimulation location 10 and activating the heart at the corresponding node 8 . The locations sharing the same delay time are connected by an isochrone 12 in Figures 2A-2D. In this application, an isochrone is defined as a line drawn on a 3D surface model of the heart that connects points on the model where activations occur or are reached simultaneously. In this example, the latency of nodes passing through the surface of the heart is also shown by differently rendered shading. Vertical bars indicate the time delay (in milliseconds) associated with the corresponding color. It should be understood that the stimulation site 10 may be an intrinsic activation site of the heart 1 .

图3是系统100的系统框图,用于提供心脏组织的电激活的同步性的表示。系统100包含处理单元102和存储器104。3 is a system block diagram of a system 100 for providing a representation of the synchrony of electrical activation of cardiac tissue. System 100 includes processing unit 102 and memory 104 .

3D电激活模型4可以通过在系统100中组合心电图和医学成像数据来获得。这个数据可以存储在存储器104中。处理单元102可以连接到心电图系统106和医学成像系统108,用于检索数据并且将相应的数据存储在存储器104中。处理单元102可以应用能够从12导联ECG确定心脏激活的心电图成像(ECGI)方法,以确定心脏的电激活的3D模型4。在ECGI方法中,为了计算心脏等时线的位置,ECG信号可以与心脏、肺和/或躯干的患者特定的3D解剖模型相结合。患者特定的3D解剖模型可以从自医学成像系统108接收的磁共振图像(MRI)或计算机断层摄影(CT)图像中获得。可替代地或附加地,可以从包含多个3D解剖模型的数据库中选择并且可选地修改显示与患者最接近一致性的3D解剖模型。所选择的并且可选地修改的3D解剖模型可以用作患者特定的3D解剖模型。A 3D electrical activation model 4 can be obtained by combining electrocardiogram and medical imaging data in the system 100 . This data may be stored in memory 104 . Processing unit 102 may be connected to electrocardiography system 106 and medical imaging system 108 for retrieving data and storing corresponding data in memory 104 . The processing unit 102 may apply an electrocardiographic imaging (ECGI) method capable of determining cardiac activation from a 12-lead ECG to determine a 3D model 4 of the electrical activation of the heart. In the ECGI method, to calculate the position of the isochrone of the heart, the ECG signal can be combined with a patient-specific 3D anatomical model of the heart, lungs and/or torso. The patient-specific 3D anatomical model may be obtained from magnetic resonance images (MRI) or computed tomography (CT) images received from the medical imaging system 108 . Alternatively or additionally, the 3D anatomical model exhibiting the closest conformity to the patient may be selected from a database containing a plurality of 3D anatomical models and optionally modified. The selected and optionally modified 3D anatomical model can be used as the patient-specific 3D anatomical model.

3D模型4还可以包含进一步的信息。在图2A中所示的示例中,3D模型4可以包含心肌上的心脏血管14和/或静脉。这个信息可以被添加到3D模型4中,因为节点被指示为与这样的血管相关联。血管14然后可以被识别并且可选地显示在3D模型4中。可选地,处理单元102可以包含第一识别单元110,该第一识别单元被布置用于从患者的心脏的3D解剖模型中自动检索代表这种血管的位置的信息。处理单元102然后可以自动将这个信息插入3D模型4中。The 3D model 4 may also contain further information. In the example shown in Fig. 2A, the 3D model 4 may contain cardiac vessels 14 and/or veins on the myocardium. This information can be added to the 3D model 4 as nodes are indicated as being associated with such vessels. The blood vessel 14 can then be identified and optionally displayed in the 3D model 4 . Optionally, the processing unit 102 may comprise a first recognition unit 110 arranged for automatically retrieving information representative of the location of such blood vessels from a 3D anatomical model of the patient's heart. The processing unit 102 can then automatically insert this information into the 3D model 4 .

3D模型4还可以包含关于疤痕组织的信息。疤痕组织位置可以从延迟增强磁共振成像(MRI)图像中获得,并且添加到3D模型4中。疤痕组织可以在3D模型4中通过降低电信号的传播速度来模拟。疤痕组织也可以通过出售心脏壁中存在疤痕组织的区域从一个节点到另一节点的过渡到非常慢或非过渡来解释。可选地,处理单元102可以包含第二识别单元112,该第二识别单元被配置和布置用于从患者特定的心脏的3D解剖模型自动检索代表这种疤痕组织的位置的信息。处理单元102可以自动将这个信息插入3D模型4中。The 3D model 4 may also contain information about scar tissue. Scar tissue locations can be obtained from delayed-enhanced magnetic resonance imaging (MRI) images and added to the 3D model4. Scar tissue can be simulated in 3D Model 4 by reducing the propagation speed of electrical signals. Scar tissue can also be explained by selling very slow or non-transitional transitions from one node to another in areas of the heart wall where there is scar tissue. Optionally, the processing unit 102 may comprise a second recognition unit 112 configured and arranged for automatically retrieving information representative of the location of such scar tissue from a patient-specific 3D anatomical model of the heart. The processing unit 102 can automatically insert this information into the 3D model 4 .

在各种实施例中,获得的3D模型4可以用于获得关于心脏的电激活的进一步的信息。例如,可以确定从一个节点到另一节点的激活的时间延迟。这可以用于基于3D模型4生成由网状物6的其它节点处的初始刺激产生的其它视图。为了实现这一点,处理单元102可以包含插入单元114,其可以采用3D模型4并且将某个节点定义为刺激位置。应当理解的是,3D模型4可以假设在预定节点处刺激。出于计算目的,插入单元114可以移除预定节点处的刺激。In various embodiments, the obtained 3D model 4 can be used to obtain further information about the electrical activation of the heart. For example, a time delay of activation from one node to another can be determined. This can be used to generate other views based on the 3D model 4 resulting from initial stimuli at other nodes of the mesh 6 . To achieve this, the processing unit 102 may comprise an interpolation unit 114, which may take the 3D model 4 and define a certain node as a stimulus location. It should be understood that the 3D model 4 may assume stimulation at predetermined nodes. The interpolation unit 114 may remove stimuli at predetermined nodes for computational purposes.

图2B示出了由另一刺激位置10′处的初始刺激产生的3D模型4的示例。应当理解的是,可以为网状物6的每个节点生成由网状物6的其它节点处的初始刺激产生的视图。Fig. 2B shows an example of a 3D model 4 resulting from an initial stimulation at another stimulation location 10'. It will be appreciated that for each node of the mesh 6 a view resulting from an initial stimulus at other nodes of the mesh 6 may be generated.

由特定节点处的刺激产生的整个心脏1的特定电激活序列可以概括为单个参数,即心脏激活同步性。心脏激活同步性提供了整个心脏如何同步地被激活的指示。对于普通情况,心脏的更同步的激活被认为是有益的。本示例中心脏激活同步性的测量是心脏的去极化(dep)时间的标准偏差(std)。因此,心脏激活同步性提供了作为相应节点处刺激的结果的整个心脏的激活的同步性的指示。处理单元102可以包含配置为确定心脏激活同步性的同步性确定单元116。A specific sequence of electrical activations throughout the heart 1 resulting from stimulation at specific nodes can be summarized into a single parameter, cardiac activation synchrony. Cardiac activation synchrony provides an indication of how the entire heart is activated in synchrony. For the common case, a more synchronized activation of the heart is believed to be beneficial. The measure of cardiac activation synchrony in this example is the standard deviation (std) of the depolarization (dep) times of the heart. Cardiac activation synchrony thus provides an indication of the synchrony of activation of the entire heart as a result of stimulation at the corresponding node. The processing unit 102 may comprise a synchrony determination unit 116 configured to determine cardiac activation synchrony.

在各种实施例中,心脏激活同步性可以针对每个节点处的刺激单独确定。因此,可以为网状物的每个节点提供心脏激活同步性的测量。处理单元102可以包含同步性图生成单元118,该同步性图生成单元配置为基于由同步性确定单元116对每个节点的心脏激活同步性的计算来生成同步性图。处理单元102可以与输出单元120连接,该输出单元布置为向用户输出同步性图15和/或替代数据。输出单元可以是显示单元、打印机、消息单元等。In various embodiments, cardiac activation synchrony may be determined separately for stimulation at each node. Thus, a measure of cardiac activation synchrony can be provided for each node of the mesh. The processing unit 102 may comprise a synchrony map generation unit 118 configured to generate a synchrony map based on the calculation of the cardiac activation synchrony of each node by the synchrony determination unit 116 . The processing unit 102 may be connected to an output unit 120 arranged to output the synchronization map 15 and/or the substitute data to a user. The output unit may be a display unit, a printer, a message unit, and the like.

图2C示出了心脏同步性图15的示例。在图2C所示的示例中,为图15中的每个节点指示心脏激活同步性。在这个示例中,可以通过提供假色和/或等同步线16来显示该指示。等同步线16连接具有相同心脏激活同步性的节点。心脏同步性图15提供了单一的3D概观,显示了心脏上导致良好心脏激活同步性的位置,以及如果心脏在这些位置处被刺激,则显示了心脏上导致较差心脏激活同步性的位置。在图2C所示的示例中,可以看出原始刺激位置10没有提供特别好的同步,心脏激活同步性值大约为心脏去极化时间的45ms标准偏差。最不利的刺激位置(这里是心脏激活同步性值最高的位置)用S-指示。在这个示例中,出现最低心脏激活同步性值的最有利的刺激位置用S+指示。在一些情况下,如图2D中所示,当从另一方向看同步性图15时,最有利的刺激位置S+可以被最佳地看到。FIG. 2C shows an example of the cardiac synchrony graph 15 . In the example shown in FIG. 2C , cardiac activation synchrony is indicated for each node in FIG. 15 . In this example, the indication may be displayed by providing false colors and/or isochronous lines 16 . Isosynchrony lines 16 connect nodes with the same cardiac activation synchrony. Cardiac Synchronization Figure 15 provides a single 3D overview showing locations on the heart that lead to good cardiac activation synchrony, and, if the heart is stimulated at these locations, locations on the heart that result in poor cardiac activation synchrony. In the example shown in Fig. 2C, it can be seen that the original stimulation locations 10 do not provide particularly good synchronization, with cardiac activation synchrony values around 45 ms standard deviation of cardiac depolarization times. The most unfavorable stimulation position (here the position with the highest cardiac activation synchrony value) is indicated by S-. In this example, the most favorable stimulation location where the lowest cardiac activation synchrony values occur is indicated by S+. In some cases, as shown in Fig. 2D, the most favorable stimulation position S+ can be best seen when looking at the synchronicity diagram 15 from the other direction.

心脏激活同步性测量的另一示例是去极化时间的范围(最大去极化时间-最小去极化时间)。去极化时间的范围可以根据周期长度进行校正。心脏激活同步性测量的另一示例是仅左心室(LV)去极化时间的标准偏差。心脏激活同步性测量的另一示例是刺激和隔膜激活之间的延迟。心脏激活同步性测量的另一示例是AV延迟。心脏激活同步性测量的另一示例是VV延迟。应当理解的是,心脏激活同步性的测量可以根据手头的任务和/或根据患者经历的特定状况或异常来选择。Another example of a cardiac activation synchrony measure is the range of depolarization times (maximum depolarization time - minimum depolarization time). The range of depolarization times can be corrected for cycle length. Another example of a measure of cardiac activation synchrony is the standard deviation of left ventricular (LV) depolarization times alone. Another example of a measure of cardiac activation synchrony is the delay between stimulation and diaphragm activation. Another example of a measure of cardiac activation synchrony is AV latency. Another example of a measure of cardiac activation synchrony is VV latency. It should be appreciated that the measure of cardiac activation synchrony may be selected according to the task at hand and/or according to a particular condition or abnormality experienced by the patient.

图4A示出了第二示例,其中定义了第二刺激位置18。使用3D模型4以及在第一刺激位置10和第二刺激位置18的同时刺激来计算心脏的电激活。在这个示例中,出于计算目的,插入单元114不移除第一位置8处的刺激。图4A示出了计算出的心脏1的所得电激活。在图4A所示的示例中,由于添加了第二刺激位置18,总激活时间缩短。在这个示例中,第一刺激位置10表示心脏的内在激活的位置,或者第一选择的刺激位置,或者由心脏内已经存在的起搏器导联产生的刺激。Fig. 4A shows a second example in which a second stimulation position 18 is defined. The electrical activation of the heart is calculated using the 3D model 4 and the simultaneous stimulation at the first stimulation location 10 and the second stimulation location 18 . In this example, the interpolation unit 114 does not remove the stimulus at the first location 8 for computational purposes. FIG. 4A shows the calculated resulting electrical activation of the heart 1 . In the example shown in Figure 4A, the total activation time is reduced due to the addition of the second stimulation location 18. In this example, the first stimulation site 10 represents the site of intrinsic activation of the heart, or a first selected stimulation site, or stimulation produced by a pacemaker lead already present in the heart.

图4B示出了由在第二刺激位置18′处的初始刺激与第一刺激位置10处的刺激同时产生的心脏的电激活的示例。应当理解的是,可以为网状物6的每个节点生成由网状物6的第二节点处的初始刺激(和与第一刺激位置10相关联的第一节点处的刺激同时发生)产生的视图。FIG. 4B shows an example of electrical activation of the heart resulting from initial stimulation at the second stimulation location 18 ′ simultaneously with stimulation at the first stimulation location 10 . It should be understood that the generation of an initial stimulus at a second node of the mesh 6 (simultaneously with a stimulus at the first node associated with the first stimulus location 10) may be generated for each node of the mesh 6. view.

在图4C和图4D中所示的示例中,整个心脏的特定电激活序列被组合并且示出为心脏激活同步性。在这个示例中,电激活序列包含在第二刺激位置18处的刺激(同时在第一刺激位置10处发生刺激)。心脏激活同步性再次提供了如何同步地激活整个心脏的指示。在一些实施例中,心脏激活同步性可以针对每个节点的刺激单独确定(同时在第一刺激位置10和第二刺激位置18发生刺激)。这为充当网状物6的第三刺激位置的每个节点提供了心脏激活同步性的测量。In the example shown in FIGS. 4C and 4D , specific electrical activation sequences of the entire heart are combined and shown as cardiac activation synchrony. In this example, the electrical activation sequence comprises stimulation at the second stimulation location 18 (simultaneously stimulation occurs at the first stimulation location 10). Cardiac activation synchrony again provides an indication of how the entire heart is activated synchronously. In some embodiments, cardiac activation synchrony may be determined separately for stimulation of each node (stimulation occurs simultaneously at first stimulation location 10 and second stimulation location 18). This provides a measure of cardiac activation synchrony for each node acting as a third stimulation site for the mesh 6 .

图4C示出了心脏同步性图的示例,其示出了如果在第一刺激位置10和第二刺激位置18处同时刺激,在这些位置刺激心脏,导致良好的心脏激活同步性的心脏上的位置,以及导致不良的心脏激活同步性的心脏上的位置。在图4C所示的示例中,当同时刺激第一刺激位置10和第二刺激位置18时,最不利的第三刺激位置S-具有大约41ms的最高心脏激活同步性值。在这个示例中,当同时刺激第一刺激位置10和第二刺激位置18时,最有利的第三刺激位置S+具有最低的心脏激活同步性值。在一些情况下,当从另一方向看同步性图15时,最有利的刺激位置S+可以被最佳地看到,如图4D中所示。FIG. 4C shows an example of a cardiac synchrony map showing that if the first stimulation location 10 and the second stimulation location 18 are simultaneously stimulated, stimulating the heart at these locations results in good cardiac activation synchrony over the heart. location, and locations on the heart that lead to poor synchronicity of cardiac activation. In the example shown in Fig. 4C, the third most unfavorable stimulation location S- has the highest cardiac activation synchrony value of approximately 41 ms when the first stimulation location 10 and the second stimulation location 18 are stimulated simultaneously. In this example, when the first stimulation site 10 and the second stimulation site 18 are stimulated simultaneously, the most favorable third stimulation site S+ has the lowest cardiac activation synchrony value. In some cases, the most favorable stimulation position S+ can be best seen when looking at the synchrony plot 15 from the other direction, as shown in FIG. 4D.

图5是用于提供同步性图的系统100的数据流表示。图6示出了一种根据一个实施例使用图3和图5中示出的系统100确定心脏同步性的方法。参考图3和图5,系统100包含从硬件模块接收数据的处理单元102。可选地,处理单元102可以从心电图系统106接收ECG数据。处理单元可以从医学成像系统108接收患者特定的解剖数据。FIG. 5 is a data flow representation of a system 100 for providing a synchronicity graph. FIG. 6 illustrates a method of determining cardiac synchrony using the system 100 shown in FIGS. 3 and 5 , according to one embodiment. Referring to Figures 3 and 5, the system 100 includes a processing unit 102 that receives data from hardware modules. Optionally, processing unit 102 may receive ECG data from electrocardiography system 106 . The processing unit may receive patient-specific anatomical data from the medical imaging system 108 .

处理单元102可以从定位系统109接收关于ECG导联相对于患者的解剖结构的位置的信息,诸如包含电极的患者胸部的3D图像。3D图像和躯干模型可以对齐,并且可以调整模型中电极的位置以与3D图像中电极的位置一致。ECG电极相对于心脏的位置的知识,特别是V1-6心前区电极的知识,对于准确计算PVC的发作位置可能特别重要。The processing unit 102 may receive information from the positioning system 109 about the position of the ECG leads relative to the patient's anatomy, such as a 3D image of the patient's chest containing the electrodes. The 3D image and torso model can be aligned, and the positions of the electrodes in the model can be adjusted to match the positions of the electrodes in the 3D image. Knowledge of the location of the ECG electrodes relative to the heart, especially the V1-6 precordial electrodes, may be particularly important for accurate calculation of the onset location of PVCs.

在一些实施例中,电极相对于其假设的理想位置的偏移,特别是V1-6电极的偏移,可以基于检测到的正常心脏搏动的ECG信号与理想ECG正常心脏搏动信号的比较来确定。例如,可以基于检测到的ECG信号将如何受到电极相对于理想电极位置的位置变化的影响来确定偏移。特别地,记录的ECG数据可以用于确定正常搏动的刺激发作位置。因为SA结点中的正常发作位置是已知的,所以可以将所确定的偏移位置与这个已知的发作位置进行比较,并且可以基于电极之间的变化来推断它们的偏移。因此,可以在不生成3D图的情况下确定电极偏移。In some embodiments, the offset of the electrodes relative to their assumed ideal position, particularly the offset of the V1-6 electrodes, may be determined based on a comparison of the detected ECG signal of a normal heart beat with the ideal ECG normal heart beat signal . For example, the offset may be determined based on how the detected ECG signal will be affected by changes in the position of the electrodes relative to the ideal electrode positions. In particular, the recorded ECG data can be used to determine the location of the stimulation onset of normal beating. Because the normal onset location in the SA node is known, the determined offset location can be compared to this known onset location, and their offset can be inferred based on the variation between electrodes. Thus, electrode offsets can be determined without generating a 3D map.

根据患者特定的解剖数据,处理单元102可以确定同步性图15。处理单元102可以包含以下单元,并且可以执行图6中所示和下面描述的方法200的操作,以生成同步性图。在方法200中,处理单元102可以使用患者的胸腔的患者特定的3D解剖模型以及胸腔内心脏的尺寸、方位和位置。可以在框201中选择这样的模型,以供处理单元102进一步使用。处理器可以在确定框202中确定这样的模型是否已经可用。如果模型还不可用(即,确定框202=N),则在确定框204中,检索单元103可以检查该患者的合适的解剖模型是否存在于数据库117中。From the patient-specific anatomical data, the processing unit 102 can determine the synchrony map 15 . The processing unit 102 may include the following units, and may perform the operations of the method 200 shown in FIG. 6 and described below to generate a synchronization graph. In the method 200, the processing unit 102 may use a patient-specific 3D anatomical model of the patient's thoracic cavity and the size, orientation and location of the heart within the thoracic cavity. Such a model may be selected in block 201 for further use by the processing unit 102 . The processor may determine whether such a model is already available in decision block 202 . If a model is not yet available (ie determination block 202 =N), then in determination block 204 the retrieval unit 103 may check whether a suitable anatomical model for the patient exists in the database 117 .

如果数据库117中没有合适的患者特定的解剖模型可用(即,确定框202=N),则检索单元103可以在框208中基于接收到的患者特定的解剖3D图像数据生成患者特定的解剖模型。If no suitable patient-specific anatomical model is available in the database 117 (ie determination block 202 =N), the retrieval unit 103 may generate a patient-specific anatomical model based on the received patient-specific anatomical 3D image data in block 208 .

如果数据库117中有合适的患者特定的解剖模型可用(即,确定框202=Y),则在框206中,检索单元103从数据库117中检索合适的解剖模型。同样在框206中,检索单元103可以将来自数据库的解剖模型适配于患者的3D图像,以便将选择的解剖模型转换成(准)患者特定的3D解剖模型。可选地,患者特定的3D模型还可以包含患者体内其它结构的尺寸、方位和/或位置,诸如肺部和/或其它器官。患者特定的3D模型可以是体积导体模型。If a suitable patient-specific anatomical model is available in the database 117 (ie determination block 202 =Y), then in block 206 the retrieval unit 103 retrieves a suitable anatomical model from the database 117 . Also in block 206, the retrieval unit 103 may adapt an anatomical model from the database to the 3D image of the patient in order to convert the selected anatomical model into a (quasi) patient-specific 3D anatomical model. Optionally, the patient-specific 3D model may also include the size, orientation and/or position of other structures within the patient's body, such as the lungs and/or other organs. The patient-specific 3D model may be a volume conductor model.

如果患者模型可用(即,确定框202=Y),或者使用在框208中创建的患者模型或在框206中适配于该患者的存储模型、ECG导联的位置以及患者特定的模型,则导联定位器模块105可以确定患者特定3D模型中ECG导联的相应位置,以在框210中提供增强的患者特定模型。If the patient model is available (i.e., determine block 202=Y), either using the patient model created in block 208 or a stored model adapted to the patient in block 206, the location of the ECG leads, and the patient-specific model, then The lead locator module 105 may determine the corresponding locations of the ECG leads in the patient-specific 3D model to provide an enhanced patient-specific model in block 210 .

在确定框212中,当患者特定的解剖模型和/或增强的患者特定模型可用时,确定代表内在或刺激激活的ECG数据是否可用。如果来自一个或多个已经存在的起搏器导联的内在激活数据或起搏刺激可用(即,确定框212=Y),则在框214中,激活单元107可以基于患者特定的模型和ECG数据生成示出患者的心脏的当前激活的3D电模型。In determination block 212, when a patient-specific anatomical model and/or an enhanced patient-specific model is available, it is determined whether ECG data representative of intrinsic or stimulus activation is available. If intrinsic activation data or pacing stimuli from one or more pre-existing pacemaker leads are available (i.e., determination block 212=Y), in block 214 the activation unit 107 may base the patient-specific model and ECG The data generates a 3D electrical model showing the current activation of the patient's heart.

如果没有关于内在或刺激激活的ECG数据可用(即,确定框212=N),则在框216中,虚拟刺激单元111可以基于先前确定的和/或假设的节点之间的转变速度,将初始虚拟刺激添加到心脏的电模型。例如,假设的转变速度可以是0.8ms。如上所述,电模型可以包含动脉、静脉和/或疤痕组织。在框218中,可以生成患者的心脏的虚拟激活的3D电模型。If no ECG data regarding intrinsic or stimulus activation is available (i.e., determination block 212=N), then in block 216, the virtual stimulation unit 111 may, based on previously determined and/or assumed transition velocities between nodes, Virtual stimuli added to the electrical model of the heart. For example, a hypothetical transition speed may be 0.8ms. As noted above, the electrical model may contain arteries, veins, and/or scar tissue. In block 218, a virtually activated 3D electrical model of the patient's heart may be generated.

如上所述,在框222中,同步性确定单元116可以从患者的心脏的内在、刺激或虚拟激活的3D电模型中生成同步性图15。基于同步性图,处理单元102可以在确定框230中确定人工刺激位置或虚拟刺激位置是否导致最佳激活和同步性。如果是(即,确定框230=Y),则处理单元可以在框234中计算患者心脏的最佳刺激位置。As described above, in block 222 the synchrony determination unit 116 may generate a synchrony map 15 from the intrinsic, stimulated, or virtual activated 3D electrical model of the patient's heart. Based on the synchrony map, the processing unit 102 may determine whether the artificial stimulation location or the virtual stimulation location results in optimal activation and synchrony in determination block 230 . If yes (ie, determination block 230 =Y), the processing unit may calculate an optimal stimulation position for the patient's heart in block 234 .

如果在框230中确定没有达到最佳同步性(即,确定框230=N),则方法200前进到确定框232,其中确定是否需要或应该添加额外的虚拟刺激位置,或者虚拟刺激位置是否应该相对于定时参数移动或改变。这种确定可以由临床医生、处理单元或临床医生基于处理单元在显示器上呈现的信息或建议来做出。If it is determined in block 230 that optimal synchronization has not been achieved (i.e., determination block 230=N), method 200 proceeds to determination block 232, where it is determined whether additional virtual stimulation locations are needed or should be added, or whether virtual stimulation locations should Move or change relative to a timing parameter. This determination may be made by the clinician, the processing unit, or the clinician based on information or advice presented by the processing unit on the display.

如果确定需要额外的虚拟导联(即,确定框232=Y),则在框224中,可以根据所确定的同步性添加虚拟起搏位置。如果确定不需要额外的虚拟导联并且虚拟刺激位置应该被移动或改变(即,确定框232=N),则可以在框225中相应地调整人工或虚拟刺激位置。If it is determined that additional virtual leads are needed (ie, determination block 232 =Y), then in block 224, virtual pacing locations may be added based on the determined synchronicity. If it is determined that no additional virtual leads are needed and the virtual stimulation locations should be moved or changed (ie, determination block 232 =N), then the artificial or virtual stimulation locations may be adjusted accordingly in block 225 .

在框226中,可以生成新的激活。然后,在框222中可以重新计算同步性,并且可以重复该过程,直到在确定框230中确定实现期望的激活。In block 226, a new activation may be generated. Synchronization may then be recalculated in block 222 and the process may repeat until it is determined in decision block 230 that the desired activation is achieved.

系统100还可以相对于其当前刺激参数虚拟地调整当前人工刺激位置,即起搏器导联位置,以达到最佳同步性。The system 100 can also virtually adjust the current artificial stimulation position, ie, the pacemaker lead position, relative to its current stimulation parameters to achieve optimal synchronization.

系统100也可以用于评估多重刺激。例如,多重刺激可以是内在激活和刺激激活(起搏)的组合。例如,多重刺激可以是多重刺激激活(起搏)。用户或处理单元102有可能确定232是否需要附加刺激位置,诸如附加起搏器导联。System 100 can also be used to evaluate multiple stimuli. For example, multiple stimulation can be a combination of intrinsic activation and stimulus activation (pacing). For example, multiple stimulation may be multiple stimulation activation (pacing). It is possible for the user or the processing unit 102 to determine 232 whether additional stimulation locations are required, such as additional pacemaker leads.

如果期望附加刺激位置,可以通过插入单元114插入附加刺激位置。那么在框226中可以再次确定具有原始刺激位置和添加的虚拟刺激位置的情况的激活,并且在框222中可以重新计算同步性。基于同步性图,处理单元102可以在确定框230中确定附加虚拟刺激位置是否导致最佳同步性。如果没有达到最佳同步性,则方法200前进到框232,其中确定是否应该相对于定时参数添加额外的虚拟刺激位置,或者是否应该移动或移除虚拟刺激位置。在这种情况下,该过程可以重复一次或多次。If additional stimulation sites are desired, they can be inserted via the insertion unit 114 . The activation of the case with the original stimulus position and the added virtual stimulus position can then be determined again in box 226 and the synchronicity can be recalculated in box 222 . Based on the synchrony map, the processing unit 102 may determine in determination block 230 whether the additional virtual stimulus locations result in optimal synchrony. If optimal synchronization has not been achieved, method 200 proceeds to block 232, where it is determined whether additional virtual stimulation locations should be added relative to the timing parameters, or whether virtual stimulation locations should be moved or removed. In this case, the process can be repeated one or more times.

基于患者特定的心脏激活模型,可以生成心脏同步性模型。同步性模型可以是包含如上所述的等同步线的3D心脏表面模型,其中等同步线代表心脏的激活同步性。这种同步性可以基于特定的激活条件,诸如起搏器的导联位置处的右心室激活。Based on a patient-specific cardiac activation model, a cardiac synchrony model can be generated. The synchrony model may be a 3D heart surface model containing isosynchrony lines as described above, wherein the isosynchronous lines represent the activation synchrony of the heart. This synchronicity may be based on specific activation conditions, such as right ventricular activation at the lead location of a pacemaker.

作为示例,可以生成同步性模型,并且可以在以下框中确定内在LBBB模式的激活等时线。As an example, a synchronicity model can be generated and the activation isochrones of the intrinsic LBBB modes can be determined in the following box.

1A)心脏、肺部和胸腔的患者特定的解剖3D模型可以例如基于患者的MRI或CT图像来生成,或者例如使用3D照相机从取自适配患者尺寸的数据库的模型中导出。解剖3D模型可以包含心脏的3D表面模型、肺部的3D表面模型和胸腔的3D表面模型。3D表面模型可以是通过多个多边形(诸如三角形)的网状物对心脏的实际表面的接近近似,这些多边形在它们的拐角处连接。互连的角形成网状物的节点。1A) Patient-specific anatomical 3D models of the heart, lungs and thorax can be generated eg based on MRI or CT images of the patient, or derived from models taken from databases adapted to patient dimensions eg using a 3D camera. The anatomical 3D models may include a 3D surface model of the heart, a 3D surface model of the lungs, and a 3D surface model of the thorax. The 3D surface model may be a close approximation of the actual surface of the heart by a mesh of polygons, such as triangles, connected at their corners. The interconnected corners form the nodes of the mesh.

1B)可以测量ECG,例如12导联ECG。可以记录ECG设备的电极在胸腔上的准确位置。电极在3D解剖模型中的位置用于估计通过心脏组织的电活动的分布、波动和/或移动。记录导联或ECG设备的准确位置可以输入胸腔的解剖3D表示中。1B) An ECG, such as a 12-lead ECG, can be measured. The exact position of the electrodes of the ECG device on the chest can be recorded. The positions of the electrodes in the 3D anatomical model are used to estimate the distribution, fluctuations and/or movement of electrical activity through the heart tissue. The exact location of the recording leads or ECG equipment can be entered into an anatomical 3D representation of the chest cavity.

1C)可选地,疤痕组织可以并入到心脏的解剖3D表示中。疤痕组织的存在和位置可以从延迟增强MRI图像中导出。1C) Optionally, scar tissue can be incorporated into the anatomical 3D representation of the heart. The presence and location of scar tissue can be derived from delay-enhanced MRI images.

1D)ECG设备每条记录导联的测量值可能与心脏和躯干的几何形状有关。使用相反的过程,可以确定内在的激活。通过心脏组织的电活动的分布、波动和/或移动可以基于心肌距离函数、最快路径算法、最短路径算法和/或快速行进算法。1D) ECG device measurements for each recorded lead may be related to heart and torso geometry. Using the reverse process, intrinsic activation can be determined. The distribution, fluctuations and/or movement of electrical activity through cardiac tissue may be based on a myocardial distance function, a fastest path algorithm, a shortest path algorithm, and/or a fast marching algorithm.

2)一旦确定了内在LBBB模式的激活等时线,刺激部位可以被添加到心脏上每个节点的内在激活中,并且可以根据结果计算心脏的期望同步性。“节点”是指解剖3D心脏模型所基于的三角形的交点。2) Once the activation isochrones of the intrinsic LBBB pattern are determined, the stimulation sites can be added to the intrinsic activation of each node on the heart, and the expected synchrony of the heart can be calculated from the results. "Nodes" refer to the intersections of the triangles on which the anatomical 3D heart model is based.

上述方法也可以用于确定放置心脏起搏器电极的最佳位置。为了确定最佳起搏部位,可以计算同步性图。内在激活图,结合确定的刺激点,可以应用于新的心脏等时线定位图。The method described above can also be used to determine the optimal placement of pacemaker electrodes. To determine the optimal pacing site, a synchrony map can be calculated. Intrinsic activation maps, combined with identified stimulus points, can be applied to new cardiac isochronal localization maps.

图7A示出了心脏的LBBB激活模式的3D同步性图的示例。在左侧,图7A示出了左前斜(LOA)视图。在右侧,图7A示出了后前(PA)视图。图7B示出了图7A的心脏的同步性图。在左侧,图7B示出了LAO视图,以及在右侧,图7B示出了PA视图。Figure 7A shows an example of a 3D synchrony map of the LBBB activation pattern of the heart. On the left, Figure 7A shows a left oblique (LOA) view. On the right, Figure 7A shows a posterior anterior (PA) view. Figure 7B shows a synchrony map of the heart of Figure 7A. On the left, Figure 7B shows the LAO view, and on the right, Figure 7B shows the PA view.

图7B的同步性图示出了由于一个额外的刺激位置与心脏的内在激活相结合而导致的心脏的去极化时间的标准偏差。从图7B可以看出,在基底左自由壁20上选择附加的刺激位置最大程度地降低了心脏的去极化时间的标准偏差。因此,在这个示例中,基底左自由壁上的区域可以被选为起搏器电极的最佳位置。The synchrony plot of Figure 7B shows the standard deviation of the heart's depolarization time due to one additional stimulus location combined with the heart's intrinsic activation. As can be seen from Figure 7B, the choice of additional stimulation locations on the basal left free wall 20 minimized the standard deviation of the depolarization times of the heart. Therefore, in this example, an area on the left free wall of the base can be selected as the optimal location for the pacemaker electrode.

可以生成心脏的电激活的更新的3D模型,包含内在激活(同时在基底左自由壁上的区域中发生刺激)。然后,这个更新的3D图可以用于生成新的同步性图,以检查RV中的导联位置。通过这样做,临床医生可以确定导联是否也应该刺激,而不仅仅是感知。临床医生也可以确定是否应该移动导联。临床医生也可以确定是否应该添加额外的刺激导联。An updated 3D model of the electrical activation of the heart can be generated, including intrinsic activation (while stimulation occurs in the region on the basal left free wall). This updated 3D map can then be used to generate a new synchrony map to examine lead locations in the RV. By doing this, the clinician can determine whether the lead should also stimulate, rather than just sense. The clinician can also determine if the leads should be moved. Clinicians can also determine if additional stimulation leads should be added.

临床医生也可以确定内在AV传导是否有益。内在AV传导将通常传导至右束,之后需要通过刺激LV来激活LV。这也可以反过来,即RBBB等待LV激活,并且在最佳位置刺激RV自由壁。通过对左心室和右心室重复该过程,心脏起搏的准确位置和定时可以被微调。Clinicians can also determine whether intrinsic AV conduction is beneficial. Intrinsic AV conduction will usually be conducted to the right tract, after which activation of the LV is required by stimulation of the LV. This can also be reversed, whereby the RBBB waits for LV activation and stimulates the RV free wall in the optimal position. By repeating this process for the left and right ventricles, the exact location and timing of cardiac pacing can be fine-tuned.

当内在激活信号由于心脏的严重损伤而不可用时,整个过程可以仅使用模拟(起搏器)刺激而不是内在激活来执行。在这种情况下,上面的框1B和框1D可以省略。然后整个过程将基于人工激活。When intrinsic activation signals are not available due to severe damage to the heart, the entire procedure can be performed using only simulated (pacemaker) stimulation instead of intrinsic activation. In this case, Box 1B and Box 1D above can be omitted. Then the whole process will be based on manual activation.

图8A示出了LBBB模式的左刺激激活的示例。在左侧,图8A示出了LAO视图,在右侧示出了PA视图。图8B示出了图8A中所示的心脏的同步性图15的示例。在左侧,图8B示出了LAO视图,在右侧示出了PA视图。图8B的同步性图示出了由于一个额外的刺激位置与心脏的左刺激激活相结合而导致的心脏的去极化时间的标准偏差。从图8B可以看出,在基底左自由壁20上的区域中选择附加的刺激位置最大程度地降低了心脏的去极化时间的标准偏差。因此,在这个示例中,基底左自由壁上的区域可以被选为起搏器电极的最佳位置。可以生成心脏的电激活的更新的3D模型,包含内在激活(同时在基底左自由壁上的区域中发生刺激)。Figure 8A shows an example of left stimulus activation of the LBBB pattern. On the left, Figure 8A shows the LAO view, and on the right the PA view. FIG. 8B shows an example of the synchrony graph 15 for the heart shown in FIG. 8A. On the left, Figure 8B shows the LAO view, and on the right the PA view. The synchrony plot of Figure 8B shows the standard deviation of the heart's depolarization time due to one additional stimulation location combined with the left stimulation activation of the heart. As can be seen from Fig. 8B, the choice of additional stimulation locations in the region on the basal left free wall 20 minimized the standard deviation of the depolarization times of the heart. Therefore, in this example, an area on the left free wall of the base can be selected as the optimal location for the pacemaker electrode. An updated 3D model of the electrical activation of the heart can be generated, including intrinsic activation (while stimulation occurs in the region on the basal left free wall).

上述整个过程可以在植入过程中进行,以找到最佳起搏部位。The above-mentioned whole process can be carried out during the implantation process to find the best pacing site.

图9是根据各种实施例的心脏成像系统的框图。图10是示出根据各种实施例的使用图9的系统植入电极的方法300的流程图。参考图9和图10,在框301中,可以由系统的处理单元400生成患者的心脏的3D激活图。特别地,患者的胸部和/或心脏的3D模型可以由CT或MRI设备108生成,患者的ECG数据可以由ECG记录器106记录,并且患者的躯干的3D图像可以由3D照相机109生成。这个数据可以被提供给处理单元400的激活图生成器320。ECG数据可以包含从患者处接收的外在和/或内在刺激信号。Figure 9 is a block diagram of a cardiac imaging system according to various embodiments. FIG. 10 is a flowchart illustrating a method 300 of implanting electrodes using the system of FIG. 9 , according to various embodiments. Referring to FIGS. 9 and 10 , in block 301 a 3D activation map of the patient's heart may be generated by the processing unit 400 of the system. In particular, a 3D model of the patient's chest and/or heart may be generated by a CT or MRI device 108 , the patient's ECG data may be recorded by an ECG recorder 106 , and a 3D image of the patient's torso may be generated by a 3D camera 109 . This data may be provided to the activation map generator 320 of the processing unit 400 . ECG data may contain extrinsic and/or intrinsic stimulus signals received from the patient.

在框302中,可以识别一个或多个预测的最佳起搏位置的位置。例如,激活图可以被提供给同步性确定单元322以确定心脏同步性。然后,这个数据可以由虚拟刺激点生成器324使用,以识别一个或多个建议的起搏位置。In block 302, the location of one or more predicted optimal pacing locations may be identified. For example, the activation map may be provided to the synchrony determination unit 322 to determine cardiac synchrony. This data may then be used by virtual stimulation point generator 324 to identify one or more suggested pacing locations.

在CRT患者中,起搏位置可以位于心脏不同步发生的位置,从而预测其刺激以生成最大量的心脏激活和/或同步。起搏位置可以基于例如LV和RV激活时间之间的差异、LV和/或RV的最早和/或最晚激活、检测到的去极化波阻塞等。In CRT patients, the pacing site may be located where cardiac asynchrony occurs, thereby predicting its stimulation to generate the greatest amount of cardiac activation and/or synchronization. Pacing location may be based on, for example, the difference between LV and RV activation times, earliest and/or latest activation of LV and/or RV, detected blockage of depolarizing waves, and the like.

在框304中,可以显示一个或多个虚拟起搏位置。例如,一个或多个起搏位置可以作为虚拟起搏位置添加到激活图中。可选地,由实时成像设备328(诸如荧光镜、射线照相设备、x-光计算机断层摄影(CT)设备等)生成的激活图和图像可以被提供给图像积分器326。图像积分器326可以比较和/或对准激活图和实时图像。基于比较和/或对准,包含刺激点的激活图可以覆盖在实时图像上。在其它实施例中,虚拟刺激点可以被添加到实时图像,以产生修改的实时图像,该修改的实时图像可以被提供给显示器330用于渲染。In block 304, one or more virtual pacing locations may be displayed. For example, one or more pacing locations may be added to the activation map as virtual pacing locations. Optionally, activation maps and images generated by real-time imaging equipment 328 (such as fluoroscopy, radiographic equipment, x-ray computed tomography (CT) equipment, etc.) may be provided to image integrator 326 . Image integrator 326 may compare and/or align the activation map and real-time images. Based on the comparison and/or alignment, an activation map containing stimulus points can be overlaid on the live image. In other embodiments, virtual stimulus points may be added to the real-time image to generate a modified real-time image, which may be provided to display 330 for rendering.

在一些实施例中,除了显示激活图之外,框304可以包含向显示器330提供示出心脏的内部结构的参考图像。附加图像可以基于2D心脏图像,诸如用于生成激活图的MRI或CT图像之一。这种2D图像可以被修改以示出附加特征。例如,可以修改2D心脏图像以识别包含在最早激活的区域中的结构和/或包含在激活图中的起搏位置。因此,当使用实时成像设备328定位电极时,可以参照参考图像。下面参考图11B详细讨论参考图像。In some embodiments, in addition to displaying the activation map, block 304 may involve providing to display 330 a reference image showing the internal structure of the heart. The additional image may be based on a 2D cardiac image, such as one of the MRI or CT images used to generate the activation map. Such 2D images can be modified to show additional features. For example, a 2D cardiac image can be modified to identify structures contained in the earliest activated regions and/or pacing sites contained in the activation map. Thus, reference images can be referred to when positioning electrodes using the real-time imaging device 328 . Reference images are discussed in detail below with reference to FIG. 11B .

在框306中,一个或多个起搏电极可以位于所识别的虚拟刺激点。医生可以使用显示器330中所示的参考图像和/或激活图来将起搏电极与虚拟刺激点对准。然后可以对心脏进行起搏,并且可以收集得到的ECG数据。In block 306, one or more pacing electrodes may be located at the identified virtual stimulation points. The physician may use the reference image and/or activation map shown in display 330 to align the pacing electrodes with the virtual stimulation points. The heart can then be paced and the resulting ECG data can be collected.

在框308中,收集的ECG数据可用于生成更新的激活图,以示出刺激的效果。在一些实施例中,ECG数据可用于识别起搏位置,起搏位置可显示在激活图上。由于起搏电极设置在起搏位置处,起搏位置可以代表起搏电极的当前位置。因此,可以在导航到起搏位置时显示起搏电极位置。因此,可能不需要附加的标测应用来确定起搏电极的位置,从而显著降低起搏过程的成本。In block 308, the collected ECG data may be used to generate an updated activation map showing the effect of the stimulation. In some embodiments, ECG data can be used to identify pacing locations, which can be displayed on the activation map. Since the pacing electrode is disposed at the pacing location, the pacing location may represent the current location of the pacing electrode. Thus, pacing electrode locations can be displayed while navigating to a pacing location. Accordingly, additional mapping applications may not be required to determine the location of the pacing electrodes, thereby significantly reducing the cost of the pacing procedure.

在确定框310中,可以确定起搏电极是否设置在合适的心脏位置。例如,在CRT患者中,可以确定刺激是否是足够量的同步性和/或恢复了期望量的心脏功能。如果是这样(即,确定框310=是),则电极可以在框312中缝合到位。如果不是(即,确定框310=否),则可以基于在框308中生成的更新的激活图,在框302中生成新的心脏刺激点。例如,可以将一个或多个虚拟刺激点移动到新的位置,和/或可以添加附加的虚拟刺激点。然后,在框304中,虚拟刺激点可以被添加到实时心脏图像中。在一些实施例中,也可以调节刺激LV和RV的起搏间隔。In determination block 310, it may be determined whether a pacing electrode is placed in a proper cardiac location. For example, in a CRT patient, it can be determined whether the stimulation was a sufficient amount of synchrony and/or restored a desired amount of cardiac function. If so (ie, determination block 310 =Yes), the electrodes may be stitched into place in block 312 . If not (ie, determination block 310 =No), new cardiac stimulation points may be generated in block 302 based on the updated activation map generated in block 308 . For example, one or more virtual stimulus points can be moved to a new location, and/or additional virtual stimulus points can be added. Then, in block 304, virtual stimulation points may be added to the real-time cardiac image. In some embodiments, the pacing interval to stimulate the LV and RV may also be adjusted.

对于PVC和/或VT患者,确定框310可以包含使用更新的激活图来确定刺激是否复制了患者的PVC。换句话说,确定框310可以包含确定刺激点是否是合适的消融点。如果是这样(即,确定框310=是),则在框312中可以在刺激点处消融心脏。如果不是(即,确定框310=否),则在框302中可以基于在先前刺激期间收集的ECG数据来生成新的刺激点。For a PVC and/or VT patient, determination block 310 may involve using the updated activation map to determine whether the stimulus replicated the patient's PVC. In other words, determination block 310 may involve determining whether a stimulation point is a suitable ablation point. If so (ie, determination block 310 =Yes), then in block 312 the heart may be ablated at the stimulation point. If not (ie, determination block 310 =No), then in block 302 new stimulation points may be generated based on ECG data collected during previous stimulation.

在一些实施例中,激活图可用于确定CRT是否适合于患者。例如,如果在优化放置起搏器或起搏导联后,患者的心脏输出没有被预测为达到可接受的水平,则可以确定CRT不适合于患者。In some embodiments, an activation map can be used to determine whether CRT is appropriate for a patient. For example, if a patient's cardiac output is not predicted to be at an acceptable level following optimal placement of a pacemaker or pacing leads, it may be determined that CRT is not appropriate for the patient.

在各种实施例中,可以使用的工作站包含处理单元400、显示器330以及到其它硬件的有线或无线连接,其它硬件诸如CT/MRI设备108、3D照相机109、ECG记录器106和/或实时成像设备328。工作站也可以包含用于控制手术设备的接口,诸如导管植入设备或其它机器人手术设备。In various embodiments, a workstation that may be used includes a processing unit 400, a display 330, and wired or wireless connections to other hardware, such as a CT/MRI device 108, a 3D camera 109, an ECG recorder 106, and/or real-time imaging device328. The workstation may also contain interfaces for controlling surgical equipment, such as catheter implantation equipment or other robotic surgical equipment.

图11A是示出根据各种实施例的使用图9的系统的心脏成像方法500的流程图。图11B和图11C示出了可以在图11A的方法期间生成的激活图。FIG. 11A is a flowchart illustrating a cardiac imaging method 500 using the system of FIG. 9 , according to various embodiments. 11B and 11C illustrate activation maps that may be generated during the method of FIG. 11A.

消融是对PVC和/或VT的有效治疗。然而,一些患者可能会经历阵发性VT和/或PVC,在这种情况下,当患者在进行导管插入术过程中在医院进行测试或在电生理学测试过程中在电生理学设施进行测试时,事件或症状可能不会发生。为了确保为表现出阵发性VT和/或PVC的症状的患者获得足够的ECG数据,可以使用便携式ECG记录设备106(诸如Holter型设备)来记录ECG数据。Ablation is an effective treatment for PVC and/or VT. However, some patients may experience paroxysmal VT and/or PVC, in which case when the patient is tested in a hospital during a catheterization procedure or at an electrophysiology facility during an electrophysiology test, Events or symptoms may not occur. To ensure that sufficient ECG data is obtained for patients exhibiting symptoms of paroxysmal VT and/or PVC, a portable ECG recording device 106, such as a Holter-type device, may be used to record ECG data.

参考图9和图11A,处理单元400可以生成PVC激活图,其示出了在框501中PVC过程中的电激活。例如,PVC激活图可以识别PVC过程中最早激活的区域。PVC激活图可以基于PVC过程中收集的ECG数据,以及如上所述的来自患者的CT和/或MRI数据。特别地,数据可以被提供给处理单元400的激活图生成器320。在一些实施例中,来自单个PVC搏动的ECG数据可能足以生成PVC激活图。PVC激活图可以识别心脏中PVC心脏搏动过程中最早激活的区域。Referring to FIGS. 9 and 11A , the processing unit 400 may generate a PVC activation map showing electrical activation during a PVC in block 501 . For example, PVC activation maps can identify the earliest activated regions in the PVC process. The PVC activation map can be based on ECG data collected during PVC, as well as CT and/or MRI data from the patient as described above. In particular, the data may be provided to the activation map generator 320 of the processing unit 400 . In some embodiments, ECG data from a single PVC beat may be sufficient to generate a PVC activation map. The PVC activation map identifies the earliest regions of the heart that are activated during PVC heartbeats.

在一些实施例中,该方法可以可选地包含框502。在框502中,处理器400可用于生成示出心脏的内部结构的参考图像。激活图和参考图像可以同时或在不同时间显示在同一显示器上或不同显示器上。换句话说,框501和框502可以包含向显示器330提供生成的激活图和参考图像。In some embodiments, the method may optionally include block 502 . In block 502, the processor 400 may be used to generate a reference image showing the internal structure of the heart. The activation map and the reference image can be displayed on the same display or on different displays simultaneously or at different times. In other words, blocks 501 and 502 may involve providing the generated activation map and reference image to display 330 .

参考图像可以基于心脏图像,诸如用于生成激活图的2D MRI或CT图像之一。除了心脏图像中所示的内部心脏结构之外,参考图像还可以包含附加特征。例如,为了形成参考图像,可以修改心脏图像以示出包含在最早激活区域中的结构和/或包含在激活图中的虚拟起搏位置。The reference image may be based on a cardiac image, such as one of the 2D MRI or CT images used to generate the activation map. In addition to the internal cardiac structures shown in the cardiac image, the reference image may contain additional features. For example, to form a reference image, the heart image may be modified to show structures contained in the earliest activation regions and/or virtual pacing locations contained in the activation map.

在一些实施例中,处理单元400可以被配置为选择最接近由实时成像设备328提供的图像的心脏图像,如框503中所讨论的。在其它实施例中,参考图像可以基于手动选择的心脏图像。因此,当使用实时成像设备328定位电极时,可以参照参考心脏图像。In some embodiments, the processing unit 400 may be configured to select the cardiac image closest to the image provided by the real-time imaging device 328 , as discussed in block 503 . In other embodiments, the reference image may be based on a manually selected cardiac image. Thus, reference heart images can be referenced when positioning electrodes using the real-time imaging device 328 .

图11B示出了PVC/VT患者的参考图像的示例。参考图11B,参考图像可以识别最早激活区域340(例如,可以识别包含在最早激活区域中的2D图像中的心脏结构)。参考图像还可以包含起搏位置342。起搏位置342可以是由刺激点生成器324生成的虚拟起搏位置。在一些实施例中,起搏位置342可以是实际的起搏/导管位置。例如,当心脏受起搏时,处理单元400可以分析所得ECG数据以识别相应的起搏位置342,从而识别起搏导管、起搏电极等的当前位置。FIG. 11B shows an example of a reference image of a PVC/VT patient. Referring to FIG. 11B , the reference image can identify the earliest activation region 340 (eg, cardiac structures contained in the 2D image in the earliest activation region can be identified). The reference image may also contain pacing locations 342 . Pacing location 342 may be a virtual pacing location generated by stimulation point generator 324 . In some embodiments, pacing site 342 may be an actual pacing/catheter site. For example, when the heart is paced, the processing unit 400 may analyze the resulting ECG data to identify the corresponding pacing location 342, thereby identifying the current location of the pacing catheter, pacing electrodes, and the like.

在一些实施例中,如果起搏位置342不提供期望的心脏响应(诸如模拟PVC或期望的心脏同步性),则引导信息生成器332可以提供引导信息(诸如示出电极应该移动的方向的向量344)。In some embodiments, if the pacing location 342 does not provide the desired cardiac response (such as a simulated PVC or desired cardiac synchrony), the guidance information generator 332 may provide guidance information (such as a vector showing the direction the electrodes should move 344).

在框503中,该方法包含执行电生理(EP)过程,该过程包含将导管插入心脏以分析电活动并且确定心律失常位于何处。在PVC患者中,EP过程的目标可能是在产生与患者的症状PVC非常接近的PVC的位置处起搏心脏。例如,EP过程可以包含在最早激活区域的位置使用导管对心脏起搏。在EP过程中,还可以插入附加的电极来内部检测ECG数据。例如,起搏数据可以通过在起搏期间记录ECG数据来记录。In block 503, the method includes performing an electrophysiological (EP) procedure that includes catheterizing the heart to analyze electrical activity and determine where the arrhythmia is located. In PVC patients, the goal of the EP procedure may be to pace the heart at a location that produces a PVC that closely approximates the patient's symptomatic PVC. For example, an EP procedure may involve pacing the heart with a catheter at the location of the earliest activated region. During EP, additional electrodes can also be inserted to internally detect ECG data. For example, pacing data can be recorded by recording ECG data during pacing.

EP过程还可以包含标测患者心脏的内部特征,诸如最早激活的PVC区域内和周围的特征。在一些实施例中,EP过程可以包含通过将心脏的不同点与导管接触来在逐点的基础上生成3D三角化内表面模型。执行EP过程的合适系统包含EnSite Precision标测系统和Carto 3标测系统。这种系统能够跟踪导管在体内的3D位置,并且在每次导管和心脏组织接触时记录心脏内表面的位置。这些3D位置的收集与心脏搏动同步,从而确保当心脏处于与其它记录点相同的状态时(即,与收缩相反的全容积),收集每个点。除了建立模型,相对ECG激活时间可以被记录并且标测到心脏模型上。The EP procedure may also involve mapping internal features of the patient's heart, such as features in and around the earliest activated PVC regions. In some embodiments, the EP procedure may involve generating a 3D triangulated inner surface model on a point-by-point basis by contacting different points of the heart with the catheter. Suitable systems for performing the EP process include the EnSite Precision Mapping System and the Carto 3 Mapping System. The system tracks the catheter's 3D position in the body and records the position of the inner surface of the heart each time the catheter makes contact with cardiac tissue. The collection of these 3D positions is synchronized with the heart beat, ensuring that each point is collected when the heart is in the same state as the other recorded points (ie, full volume as opposed to systolic). In addition to modeling, relative ECG activation times can be recorded and mapped onto the cardiac phantom.

如上所述,框503还可以包含使用实时成像设备328生成心脏的实时图像。在一些实施例中,可以在生成实时图像之后执行框502,使得参考图像可以基于近似于实时图像的心脏图像。Block 503 may also involve generating a real-time image of the heart using the real-time imaging device 328, as described above. In some embodiments, block 502 may be performed after the real-time image is generated, such that the reference image may be based on a cardiac image that approximates the real-time image.

EP过程还可以包含将导管定位成与最早激活区域中的位置接触。在框504中,导管然后可用于通过电刺激来起搏心脏。起搏的目标可能是在产生与患者症状PVC非常接近的PVC的位置处起搏心脏。在EP过程中,还可以插入附加的电极来内部检测ECG数据。例如,起搏数据可以通过在起搏期间记录ECG数据来记录。The EP procedure may also involve positioning the catheter in contact with a location in the earliest activation region. In block 504, the catheter may then be used to pace the heart through electrical stimulation. The goal of pacing may be to pace the heart at a location that produces a PVC very close to the patient's symptomatic PVC. During EP, additional electrodes can also be inserted to internally detect ECG data. For example, pacing data can be recorded by recording ECG data during pacing.

尽管EP过程和起搏在图11A中显示为单独的框,但是本公开不限于此。例如,EP过程和起搏都可以在单个过程中发生。Although EP procedures and pacing are shown as separate boxes in FIG. 11A , the present disclosure is not so limited. For example, both EP procedures and pacing can occur in a single procedure.

在一些实施例中,框504可以包含使用收集的ECG数据来生成更新的激活图,以显示刺激的效果。在一些实施例中,ECG数据可用于识别起搏位置,起搏位置可显示在激活图上。由于起搏电极设置在起搏位置处,起搏位置可以代表起搏电极的当前位置。因此,可以在导航到起搏位置时显示起搏电极位置。因此,可能不需要附加的标测应用来确定起搏电极的位置,从而显著降低起搏过程的成本。In some embodiments, block 504 may involve using the collected ECG data to generate an updated activation map to show the effect of the stimulation. In some embodiments, ECG data can be used to identify pacing locations, which can be displayed on the activation map. Since the pacing electrode is disposed at the pacing location, the pacing location may represent the current location of the pacing electrode. Thus, pacing electrode locations can be displayed while navigating to a pacing location. Accordingly, additional mapping applications may not be required to determine the location of the pacing electrodes, thereby significantly reducing the cost of the pacing procedure.

在确定框506中,可以分析起搏数据,以确定起搏电极是否设置在合适的心脏位置,用于实现期望的心脏响应。例如,起搏数据可以与用于生成激活图的ECG数据进行比较。在PVC中,可对起搏进行分析,以确定起搏数据是否与患者的PVC呈现期间记录的PVC ECG数据充分匹配。换句话说,对起搏数据进行分析,以确定导管是否已经识别出可以消融以减轻患者的PVC和/或VT的位置。在CRT患者中,可以分析起搏数据以确定是否已经实现了足够的心脏同步和/或激活。In determination block 506, the pacing data may be analyzed to determine whether the pacing electrodes are placed in the proper cardiac location for achieving a desired cardiac response. For example, pacing data can be compared to ECG data used to generate an activation map. In a PVC, the pacing may be analyzed to determine whether the pacing data adequately matches the PVC ECG data recorded during the presentation of the patient's PVC. In other words, the pacing data is analyzed to determine whether the catheter has identified a location that can be ablated to relieve the patient's PVC and/or VT. In CRT patients, pacing data can be analyzed to determine whether sufficient cardiac synchronization and/or activation has been achieved.

如果确定已经实现了期望的心脏响应(即,确定框506=是),则在框510中,导管可以用于在PVC患者的消融位置处消融心脏。在CRT患者中,在框510中,起搏电极和/或微型起搏器可以缝合到位。If it is determined that the desired cardiac response has been achieved (ie, determination block 506 = Yes), then in block 510 the catheter may be used to ablate the heart at the PVC patient's ablation site. In a CRT patient, at block 510, pacing electrodes and/or a micropacemaker may be sewn into place.

如果确定没有实现期望的心脏响应(即,确定框506=否),则在框508中,处理单元400可以使用起搏数据、PVC ECG数据和/或导管位置数据来识别导管应该移动的方向,以便更好地模拟患者的PVC。例如,起搏数据和导管位置数据可以被提供给处理单元400的引导信息生成器332。引导信息生成器332可以包含算法,该算法被配置为将起搏数据和/或位置数据与PVC ECG数据进行比较,以便确定导管应该移动的方向和/或距离,从而正确模拟患者的PVC。这个信息可以使用图标和/或文本来呈现。在CRT患者中,可以分析起搏数据以确定是否应该移动一个或多个起搏电极来实现期望的心脏响应。If it is determined that the desired cardiac response has not been achieved (i.e., determination block 506=No), then in block 508, the processing unit 400 may use the pacing data, PVC ECG data, and/or catheter position data to identify the direction in which the catheter should be moved, In order to better simulate the patient's PVC. For example, pacing data and catheter position data may be provided to guidance information generator 332 of processing unit 400 . Guidance information generator 332 may contain an algorithm configured to compare pacing data and/or position data with PVC ECG data in order to determine the direction and/or distance that the catheter should be moved to correctly simulate the patient's PVC. This information can be presented using icons and/or text. In CRT patients, pacing data may be analyzed to determine whether one or more pacing electrodes should be moved to achieve a desired cardiac response.

引导信息生成器332可以向激活图生成器320提供引导信息。激活图生成器320可以基于由引导信息生成器332提供的引导信息来更新激活图,如下面参考图11B和图11C所讨论的。在其它实施例中,引导信息生成器332可以向图像积分器326提供引导信息,用于与由实时成像设备328提供的图像集成。在其它实施例中,引导信息可以被提供给EP系统,并显示在由此生成的EP图上。Guidance information generator 332 may provide guidance information to activation map generator 320 . The activation map generator 320 may update the activation map based on the guidance information provided by the guidance information generator 332, as discussed below with reference to FIGS. 11B and 11C. In other embodiments, guidance information generator 332 may provide guidance information to image integrator 326 for integration with images provided by real-time imaging device 328 . In other embodiments, guidance information may be provided to the EP system and displayed on the resulting EP map.

在框508中显示了引导信息之后,该方法返回到框504以再次起搏心脏。然而,在一些实施例中,该方法可以返回到框503,执行EP过程。因此,在PVC/VT患者中,可以刺激多个位置,直到起搏产生精确复制患者的PVC的PVC,并且识别相应的消融位置。在CRT患者中,可以调整刺激位置,直到达到期望的心脏响应。此外,可以向医生提供引导信息,以帮助识别刺激点。After the guidance information is displayed in block 508, the method returns to block 504 to pace the heart again. However, in some embodiments, the method may return to block 503 to perform the EP process. Thus, in PVC/VT patients, multiple sites can be stimulated until pacing produces a PVC that accurately replicates the patient's PVC, and the corresponding ablation sites are identified. In CRT patients, the stimulation position can be adjusted until the desired cardiac response is achieved. In addition, guidance information can be provided to the doctor to help identify the point of irritation.

在一些实施例中,框503可以包含使用图9的标测系统在心脏起搏期间外部记录ECG数据。进一步,框504还可以包含使用标测系统基于记录的ECG数据来确定心脏内的起搏位置。例如,起搏位置可以通过在心脏起搏期间识别最早激活的区域来确定。进一步,框508还可以包含将起搏位置添加到PVC激活图中。这样,至少导管的起搏电极的位置可以在PVC激活图上识别,因为起搏电极在起搏期间设置在起搏位置处。In some embodiments, block 503 may involve externally recording ECG data during cardiac pacing using the mapping system of FIG. 9 . Further, block 504 may also include using a mapping system to determine a pacing location within the heart based on the recorded ECG data. For example, pacing locations can be determined by identifying the earliest activated regions during cardiac pacing. Further, block 508 may also include adding pacing locations to the PVC activation map. In this way, at least the location of the catheter's pacing electrode can be identified on the PVC activation map because the pacing electrode is placed at the pacing site during pacing.

参考图11C,更新的激活图可以包含第一点700,其示出了对应于最近起搏位置和/或导管位置的起搏/刺激位置。更新的激活图还可以包含最早激活的区域710,其可以是消融的目标区域。在一些实施例中,激活图可以包含向量712,其示出了用于将导管移动到最早激活区域710中的新刺激位置的方向和距离建议。Referring to Figure 11C, the updated activation map may contain a first point 700 showing the pacing/stimulation location corresponding to the most recent pacing location and/or catheter location. The updated activation map may also contain the earliest activated region 710, which may be the target region for ablation. In some embodiments, the activation map may contain a vector 712 showing direction and distance recommendations for moving the catheter to a new stimulation location in the earliest activation region 710 .

在一些实施例中,如图11D中所示,更新的激活图可以包含显示先前起搏位置的一个或多个第三点704。例如,更新的激活图可以包含代表第一刺激位置的第一点700、代表第二刺激位置的第二点702、代表第三(例如,当前)刺激位置的第三点704以及代表建议刺激位置的第四点706。在一些实施例中,可以基于来自每个起搏的ECG数据来重新计算最早激活区域710。In some embodiments, as shown in Figure 1 ID, the updated activation map may contain one or more third points 704 showing previous pacing locations. For example, an updated activation map may contain a first point 700 representing a first stimulus location, a second point 702 representing a second stimulus location, a third point 704 representing a third (e.g., current) stimulus location, and a proposed stimulus location The fourth point 706. In some embodiments, earliest activation region 710 may be recalculated based on ECG data from each pacemaker.

点700-706可以是不同的颜色、阴影和/或形状,以提供时序信息。例如,点700-706可以阴影化以表示创建点的顺序,从而识别导管的路径。例如,点700-706可以逐渐变亮或变暗。在一些实施例中,第四点706可以比其它点亮。一旦起搏发生在由第四点706表示的位置,点700-706中的每一个都可以变暗,或者被修改以指示这些点表示先前的起搏位置。Dots 700-706 may be of different colors, shades and/or shapes to provide timing information. For example, points 700-706 may be shaded to indicate the order in which the points were created to identify the path of the catheter. For example, points 700-706 may gradually become brighter or darker. In some embodiments, the fourth dot 706 may be brighter than the others. Once pacing occurs at the location represented by the fourth dot 706, each of the dots 700-706 may be dimmed, or otherwise modified to indicate that the dots represent a previous pacing location.

在其它实施例中,点可以通过线708连接,以表示在EP过程中导管的路径。在一些实施例中,除了第四点706之外,或者代替第四点,图11B的向量712也可以应用于图11C的激活图。In other embodiments, the points may be connected by a line 708 to represent the path of the catheter during EP. In some embodiments, the vector 712 of FIG. 11B may also be applied to the activation map of FIG. 11C in addition to or instead of the fourth point 706 .

图12是示出根据各种实施例的图像集成方法800的框图。方法800可以使用图9的系统来执行。参考图9和图12,在框801中,如上所述,可以使用处理器400生成患者的心脏的PVC激活图。FIG. 12 is a block diagram illustrating an image integration method 800 according to various embodiments. Method 800 may be performed using the system of FIG. 9 . Referring to Figures 9 and 12, in block 801, a PVC activation map of a patient's heart may be generated using processor 400, as described above.

在框802中,可以通过3D三角化在逐点的基础上生成心脏的3D内表面模型。特别地,可以通过心脏的内表面和EP导管之间的点接触,在逐点的基础上标测患者的心脏的内表面特征,诸如心室表面特征。执行EP过程的合适系统包含EnSite Precision标测系统和Carto 3标测系统。这种系统能够跟踪导管在体内的3D位置,并且在每次导管和心脏组织接触时记录心脏表面的位置。这种逐点接触数据的收集与心脏搏动同步,从而确保当心脏处于与其它记录的接触点相同的状态时(即,心脏的体积基本相同),收集每个点。例如,当进行点接触时,心脏可能处于完全容积或完全收缩。In block 802, a 3D inner surface model of the heart may be generated on a point-by-point basis by 3D triangulation. In particular, inner surface features of the patient's heart, such as ventricular surface features, may be mapped on a point-by-point basis through point contact between the inner surface of the heart and the EP catheter. Suitable systems for performing the EP process include the EnSite Precision Mapping System and the Carto 3 Mapping System. The system tracks the catheter's 3D position in the body and records the location of the heart's surface each time the catheter makes contact with cardiac tissue. The collection of this point-by-point contact data is synchronized with the beating of the heart, ensuring that each point is collected when the heart is in the same state as the other recorded contact points (ie, the volume of the heart is substantially the same). For example, the heart may be at full volume or fully contracted when point contact is made.

在常规EP系统中,内表面模型与采集的MRI或CT数据集合并以形成心脏模型。特别地,合并可以包含调整内表面模型数据以更准确地表示心脏的真实几何形状,以及显示在EP过程中未被标测的附加的心脏特征。这个过程包含计算在CT或MR中哪个点的大小代表组织对血液。然后可以进行调整以更好地表示心脏几何形状。In conventional EP systems, an inner surface model is merged with an acquired MRI or CT data set to form a heart model. In particular, merging may involve adjusting the inner surface model data to more accurately represent the true geometry of the heart, as well as revealing additional cardiac features that were not mapped during EP. This process involves calculating which point size represents tissue versus blood in CT or MR. Adjustments can then be made to better represent the heart geometry.

EP过程还可以包含在逐点接触期间记录相对ECG数据(例如,激活时间)。在一些实施例中,这个ECG数据可以被标测到内表面模型上。这可能包含标测正常ECG信号,因为这允许在心脏/导管接触发生时快速收集点。The EP procedure may also involve recording relative ECG data (eg, activation time) during point-by-point contact. In some embodiments, this ECG data can be mapped onto the inner surface model. This may involve mapping the normal ECG signal, as this allows rapid collection of points when heart/catheter contact occurs.

为了确定消融点,可以生成PVC激活图,因为PVC激活图包含PVC期间最早激活的区域。然而,当使用常规EP系统生成PVC激活图时,导管必须在PVC期间与心脏接触。由于PVC可能只是间歇性出现,与使用无症状ECG数据相比,使用常规方法生成PVC激活图可能需要明显更长的时间。这增加了病人的压力和手术资源的使用。To determine the ablation point, a PVC activation map can be generated, since a PVC activation map contains the earliest activated regions during PVC. However, when generating PVC activation maps using conventional EP systems, the catheter must be in contact with the heart during the PVC. Since PVCs may appear only intermittently, it may take significantly longer to generate PVC activation maps using conventional methods compared to using asymptomatic ECG data. This increases patient stress and usage of surgical resources.

这样,在框804中,框802中生成的内表面模型可以与框801中生成的PVC激活图合并,以形成PVC激活表面模型。特别地,包含在PVC激活图中的PVC激活数据可以应用于内表面模型。进一步,包含在PVC激活图中的表面特征(其已经包含MRI或CT数据)可以与包含在内表面模型中的三角化的逐点数据合并。这样,PVC内表面模型可以在不执行将三角化的逐点数据和MRI或CT数据合并的常规过程的情况下生成,这进一步简化了过程。Thus, in block 804, the interior surface model generated in block 802 may be merged with the PVC activation map generated in block 801 to form a PVC activation surface model. In particular, the PVC activation data contained in the PVC activation map can be applied to the interior surface model. Further, the surface features contained in the PVC activation map (which already contain MRI or CT data) can be merged with the triangulated pointwise data contained in the inner surface model. In this way, the PVC inner surface model can be generated without performing the conventional process of merging triangulated point-wise data with MRI or CT data, which further simplifies the process.

在框806中,导管可以位于EP PVC激活模型上显示的PVC最早激活区域,并且可以起搏心脏。起搏期间可以记录起搏ECG数据。In block 806, the catheter may be located in the area of earliest PVC activation shown on the EP PVC activation phantom, and the heart may be paced. Pacing ECG data can be recorded during pacing.

在框808中,可以分析起搏数据以确定消融位置是否已经被识别。特别地,可对起搏数据进行分析,以确定起搏数据是否与患者的PVC发作期间记录的ECG数据充分匹配。换句话说,对起搏数据进行分析,以确定导管是否已经起搏出可以消融以减轻患者的PVC和/或VT的位置。In block 808, the pacing data may be analyzed to determine whether an ablation site has been identified. In particular, the pacing data may be analyzed to determine whether the pacing data adequately matches ECG data recorded during the patient's PVC episode. In other words, the pacing data is analyzed to determine if the catheter has been paced out of position where it can be ablated to relieve the patient's PVC and/or VT.

在确定框810中,确定消融位置是否已经被识别。如果消融位置已经被识别(即,确定框810=是),则在框814中,导管用于在识别的消融位置处消融心脏。In determination block 810, it is determined whether an ablation location has been identified. If an ablation location has been identified (ie, determination block 810 = Yes), then in block 814 the catheter is used to ablate the heart at the identified ablation location.

如果消融位置没有被识别(即,确定框810=否),则可以在框812中提供引导信息,如以上关于图11A的方法所讨论的。该方法然后可以前进到框806。然而,在一些实施例中,当消融位置未被识别时(即,确定框810=否),可以省略框812,并且该方法可以直接从确定框810前进到框806。方法800然后可以重复,直到在框814中识别并且消融消融位置。If an ablation location is not identified (ie, determination block 810 =No), guidance information may be provided in block 812, as discussed above with respect to the method of FIG. 11A. The method may then proceed to block 806 . However, in some embodiments, when an ablation location is not identified (ie, determination block 810 =No), block 812 may be omitted, and the method may proceed directly from determination block 810 to block 806 . Method 800 may then repeat until an ablation location is identified and ablated in block 814 .

在一些实施例中,该方法可以包含在PVC激活图上显示起搏位置。例如,PVC激活表面模型可以与PVC激活图配准,并且起搏位置可以被添加到PVC激活图中。起搏位置也可以代表起搏期间EP导管的位置。在其它实施例中,处理器400可以分析起搏期间记录的ECG数据,以确定起搏和/或起搏导管位置,然后将其添加到PVC激活图中。In some embodiments, the method can include displaying pacing locations on the PVC activation map. For example, a PVC activation surface model can be registered with the PVC activation map, and pacing locations can be added to the PVC activation map. The pacing site can also represent the position of the EP catheter during pacing. In other embodiments, processor 400 may analyze ECG data recorded during pacing to determine pacing and/or pacing catheter location, which is then added to the PVC activation map.

在一些实施例中,方法800可以包含生成并且显示具有PVC激活图的参考图像和/或显示引导信息,如以上参考图11A-11D所讨论的。In some embodiments, method 800 may include generating and displaying a reference image with a PVC activation map and/or displaying guidance information, as discussed above with reference to FIGS. 11A-11D .

一些实施例包含硬件系统,硬件系统包含配置有软件的处理单元,以接收患者特定的数据,基于ECG成像数据以患者的心脏的同步性图的形式生成和显示心脏电激活的3D模型,并且使用身体上用作基准参考点的可识别标记物(本文称为“基准标记物”)将3D模型/图与患者的身体相关联或配准。外部成像系统,诸如3D照相机,可用于获得患者的身体(例如躯干或胸部)的3D图像数据,其具有关键解剖参考点(例如锁骨、肩部、肋骨等,由临床医生作为CRT过程设置的一部分应用于患者的标记物来指示)。患者特定的3D解剖模型可以通过将识别的解剖位置与从CT或MRI扫描获得的成像中的相应解剖位置配准,将图像数据与患者的胸部的3D解剖模型合并。Some embodiments comprise a hardware system comprising a processing unit configured with software to receive patient-specific data, generate and display a 3D model of the heart's electrical activity in the form of a synchrony map of the patient's heart based on the ECG imaging data, and use Identifiable markers on the body that serve as fiducial reference points (referred to herein as "fiducial markers") associate or register the 3D model/map with the patient's body. An external imaging system, such as a 3D camera, can be used to obtain 3D image data of the patient's body (e.g., torso or chest) with key anatomical reference points (e.g., clavicle, shoulder, ribs, etc.) by the clinician as part of the CRT procedure setup indicated by markers applied to the patient). Patient-specific 3D anatomical model The image data can be merged with the 3D anatomical model of the patient's chest by registering the identified anatomical locations with the corresponding anatomical locations in the imaging obtained from the CT or MRI scan.

图13是根据各种实施例的心脏成像系统1000的系统框图。参考图13,系统1000包含处理单元102,该处理单元可以电连接到硬件模块,诸如心电图系统106、内部成像系统1080、外部成像系统1090和输出单元1200。FIG. 13 is a system block diagram of a cardiac imaging system 1000 according to various embodiments. Referring to FIG. 13 , system 1000 includes processing unit 102 which may be electrically connected to hardware modules such as electrocardiography system 106 , internal imaging system 1080 , external imaging system 1090 and output unit 1200 .

处理单元1020从硬件模块接收患者特定的数据。根据患者特定的解剖数据,处理单元1020可以生成患者的心脏的同步性图,该同步性图可以被输出到输出单元1200。输出单元1200可以被配置为向用户输出同步性图和/或替代数据。输出单元可以是显示单元、打印机、消息单元等。The processing unit 1020 receives patient-specific data from the hardware modules. From the patient-specific anatomical data, the processing unit 1020 may generate a synchrony map of the patient's heart, which may be output to the output unit 1200 . The output unit 1200 may be configured to output a synchronization map and/or substitute data to a user. The output unit may be a display unit, a printer, a message unit, and the like.

例如,处理单元1020可以从心电图系统1060(诸如12导联ECG设备)接收心电图(ECG)成像数据。处理单元1020可以使用ECG数据来确定心脏的电激活的3D模型4。特别地,为了计算心脏等时线的位置,ECG信号可以与心脏、肺和/或躯干的患者特定3D解剖模型相结合。For example, processing unit 1020 may receive electrocardiogram (ECG) imaging data from electrocardiogram system 1060 , such as a 12-lead ECG device. The processing unit 1020 may use the ECG data to determine a 3D model 4 of the electrical activation of the heart. In particular, the ECG signal may be combined with a patient-specific 3D anatomical model of the heart, lungs and/or torso in order to calculate the position of the isochrone of the heart.

患者特定的3D解剖模型可以从内部成像系统1080获得,诸如MRI设备或CT设备。可替代地或附加地,可以从包含多个3D解剖模型的数据库中选择并且可选地修改显示与患者最接近一致性的3D解剖模型。所选择的并且可选地修改的3D解剖模型可以用作患者特定的3D解剖模型。A patient-specific 3D anatomical model may be obtained from an internal imaging system 1080, such as an MRI device or a CT device. Alternatively or additionally, the 3D anatomical model exhibiting the closest conformity to the patient may be selected from a database containing a plurality of 3D anatomical models and optionally modified. The selected and optionally modified 3D anatomical model can be used as the patient-specific 3D anatomical model.

进一步,处理单元1020可以从外部成像系统1090接收患者图像数据。例如,外部成像系统1090可以是3D照相机,并且处理单元1020可以接收患者的胸部表面的3D图像数据,如图14A或图14B中所示。Further, the processing unit 1020 may receive patient image data from an external imaging system 1090 . For example, the external imaging system 1090 may be a 3D camera, and the processing unit 1020 may receive 3D image data of the patient's chest surface, as shown in Figure 14A or Figure 14B.

参考图14A,3D图像数据可以包含ECG导联相对于患者的解剖结构的位置,诸如图14A中所示的V1-6心前区电极。ECG电极相对于心脏的位置的知识,特别是V1-6心前区电极的知识,对于准确计算PVC的发作位置可能特别重要。Referring to FIG. 14A , the 3D image data may contain the location of ECG leads relative to the patient's anatomy, such as the V1-6 precordial electrodes shown in FIG. 14A . Knowledge of the location of the ECG electrodes relative to the heart, especially the V1-6 precordial electrodes, may be particularly important for accurate calculation of the onset location of PVCs.

在一些实施例中,电极相对于其假设的理想位置的偏移,特别是V1-6电极的偏移,可以基于检测到的正常心脏搏动的ECG信号与理想ECG正常心脏搏动信号的比较来确定。例如,可以基于检测到的ECG信号将如何受到电极相对于理想电极位置的位置变化的影响来确定偏移。特别地,记录的ECG数据可以用于确定正常搏动的刺激发作位置。因为SA结点中的正常发作位置是已知的,所以可以将所确定的偏移位置与这个已知的发作位置进行比较,并且可以基于电极之间的变化来推断它们的偏移。因此,可以在不生成3D图的情况下确定电极偏移。In some embodiments, the offset of the electrodes relative to their assumed ideal position, particularly the offset of the V1-6 electrodes, may be determined based on a comparison of the detected ECG signal of a normal heart beat with the ideal ECG normal heart beat signal . For example, the offset may be determined based on how the detected ECG signal will be affected by changes in the position of the electrodes relative to the ideal electrode positions. In particular, the recorded ECG data can be used to determine the location of the stimulation onset of normal beating. Because the normal onset location in the SA node is known, the determined offset location can be compared to this known onset location, and their offset can be inferred based on the variation between electrodes. Thus, electrode offsets can be determined without generating a 3D map.

处理单元1020可以配置为对准和/或合并由外部成像系统1090生成的3D图像数据和由内部成像系统1080生成的解剖躯干和/或心脏模型,并且躯干模型中的电极位置可以被调整为与3D图像数据中的电极位置一致。然而,如果外部成像系统1090没有与躯干正确对准,可能难以正确地对准3D图像数据和解剖模型。The processing unit 1020 may be configured to align and/or merge the 3D image data generated by the external imaging system 1090 with the anatomical torso and/or heart model generated by the internal imaging system 1080, and electrode positions in the torso model may be adjusted to match The electrode positions in the 3D image data are consistent. However, if the external imaging system 1090 is not properly aligned with the torso, it may be difficult to properly align the 3D image data and anatomical model.

为了便于3D图像数据和解剖躯干模型的对准,系统100可以包含在由外部成像系统109生成的3D图像数据中捕获的之前放置在(例如粘附到)患者的躯干上的基准标记物。临床医生可以在躯干模型中识别的设定解剖位置将基准标记物放置在患者身上,以便于患者的3D图像与解剖躯干模型对准。在一些实施例中,基准标记物可以是具有被配置为粘附到皮肤上的粘性背衬的贴纸,具有能够通过处理3D图像数据的处理器自动识别和定位标记物的形状、颜色和/或表面材料(例如,反射或回射材料)。To facilitate alignment of the 3D image data and the anatomical torso model, the system 100 may include fiducial markers captured in the 3D image data generated by the external imaging system 109 that were previously placed on (eg, adhered to) the patient's torso. Clinicians can place fiducial markers on the patient at set anatomical locations identified in the torso model to facilitate alignment of the 3D image of the patient with the anatomical torso model. In some embodiments, the fiducial marker may be a sticker with an adhesive backing configured to adhere to the skin, having a shape, color, and/or shape, color, and/or Surface materials (eg, reflective or retroreflective materials).

例如,第一基准标记物900可以放置在患者的肩部的设定解剖位置,诸如每个锁骨的远端。第二基准标记物902可以放置在第一基准标记物902之间的设定解剖位置处,诸如患者的胸骨上的设定位置处。For example, first fiducial markers 900 may be placed at set anatomical locations on the patient's shoulder, such as the distal ends of each clavicle. The second fiducial markers 902 may be placed between the first fiducial markers 902 at a set anatomical location, such as on the patient's sternum.

处理单元1020可以配置为基于由外部成像设备收集的3D图像数据中包含的基准标记物900、902的一个或多个识别特征来识别这两个基准标记物及其对应的解剖位置。在一些实施例中,处理单元1020可以配置为基于图像数据中包含的相应解剖标记物的颜色、形状和/或反射率来识别对应于基准标记物900、902的解剖位置。The processing unit 1020 may be configured to identify the two fiducial markers and their corresponding anatomical locations based on one or more identifying features of the fiducial markers 900, 902 contained in the 3D image data collected by the external imaging device. In some embodiments, the processing unit 1020 may be configured to identify the anatomical locations corresponding to the fiducial markers 900, 902 based on the color, shape and/or reflectivity of the corresponding anatomical markers contained in the image data.

在一些实施例中,基准标记物900、902可以配置为反射特定波长的光。例如,第一基准标记物900可以具有第一颜色,并且第二基准标记物902可以具有第二颜色。在一些实施例中,每个标记900、902可以具有不同的颜色。In some embodiments, fiducial markers 900, 902 may be configured to reflect specific wavelengths of light. For example, first fiducial marker 900 may have a first color and second fiducial marker 902 may have a second color. In some embodiments, each indicium 900, 902 may have a different color.

在一些实施例中,基准标记物900、902可以包含反射材料,其可以是反射涂层的形式。在一些实施例中,反射材料可以配置为反射一个或多个特定波长或波长范围的光。例如,在一些实施例中,基准标记物900、902可以由配置为反射可见光、红外光、紫外光或其组合的材料形成。在一些实施例中,外部成像系统1090可以包含光源,并且反射材料可以配置为反射从光源发射的全部或部分光。例如,基准标记物900、902可以配置为选择性地反射特定波长或波长范围的发射光。处理单元1020可以配置为基于由此反射的光来识别基准标记物900、902。In some embodiments, the fiducial markers 900, 902 may comprise a reflective material, which may be in the form of a reflective coating. In some embodiments, a reflective material may be configured to reflect one or more particular wavelengths or ranges of wavelengths of light. For example, in some embodiments, fiducial markers 900, 902 may be formed from a material configured to reflect visible light, infrared light, ultraviolet light, or combinations thereof. In some embodiments, external imaging system 1090 may contain a light source, and the reflective material may be configured to reflect all or a portion of light emitted from the light source. For example, fiducial markers 900, 902 may be configured to selectively reflect emitted light at a particular wavelength or range of wavelengths. The processing unit 1020 may be configured to identify the fiducial markers 900, 902 based on the light reflected thereby.

在一些实施例中,基准标记物300、302可以包含回射材料。特别地,回射材料可以配置为以基本上等于入射光的入射角的角度反射入射光或其一部分(即,直接返回入射光的源)。例如,众所周知,回射材料用于安全背心和交通标志。在这样的实施例中,处理单元102可以配置为检测从外部成像系统接收的图像数据中的亮度峰值这样的光。In some embodiments, fiducial markers 300, 302 may comprise retroreflective material. In particular, the retroreflective material may be configured to reflect incident light, or a portion thereof, at an angle substantially equal to the angle of incidence of the incident light (ie, directly back to the source of the incident light). For example, retroreflective materials are known to be used in safety vests and traffic signs. In such an embodiment, the processing unit 102 may be configured to detect light as peaks in brightness in image data received from an external imaging system.

在一些实施例中,基准标记物可以具有一种或多种不同的形状。例如,如图14B中所示,系统1000可以包含三角形基准标记物904、十字形基准标记物906和/或梯形基准标记物908。处理单元1020可以配置为基于基准标记物的形状来识别对应于基准标记物的解剖位置。In some embodiments, fiducial markers may have one or more different shapes. For example, as shown in FIG. 14B , system 1000 may include triangular-shaped fiducial markers 904 , cross-shaped fiducial markers 906 , and/or trapezoidal-shaped fiducial markers 908 . The processing unit 1020 may be configured to identify an anatomical location corresponding to the fiducial marker based on the shape of the fiducial marker.

然而,各种实施例不限于识别特性的任何特定基准标记物,只要基准标记物包含可由处理单元1020识别并且可由外部成像系统1090检测的特性。进一步,虽然在图14A和图14B中示出了三个基准标记物,但是可以使用任何合适数量的基准标记物。However, the various embodiments are not limited to any particular fiducial marker for identifying properties, so long as the fiducial marker comprises a property that is identifiable by the processing unit 1020 and detectable by the external imaging system 1090 . Further, although three fiducial markers are shown in FIGS. 14A and 14B , any suitable number of fiducial markers may be used.

前述方法描述和过程流程图仅作为说明性示例提供,并不旨在要求或暗示各种实施例的步骤必须以呈现的顺序执行。如本领域技术人员将理解的,前述实施例中的步骤顺序可以以任何顺序执行。诸如“后文”、“然后”、“下一步”等词并不旨在限制步骤的顺序;这些单词只是用来引导读者完成方法的描述。进一步,任何对权利要求元件的单数引用,例如,使用冠词“一”、“一个”或“该”不应被解释为将元件限制为单数。The foregoing method descriptions and process flow diagrams are provided as illustrative examples only, and are not intended to require or imply that the steps of the various embodiments must be performed in the order presented. As will be appreciated by those skilled in the art, the sequence of steps in the foregoing embodiments may be performed in any order. Words such as "then," "then," "next," etc. are not intended to limit the order of the steps; these words are simply used to guide the reader through the description of the method. Further, any singular reference to claim elements, eg, use of the articles "a," "an," or "the," should not be construed as limiting the element to the singular.

结合本文公开的实施例描述的各种说明性逻辑块、模块、电路和算法步骤可以实现为电子硬件、计算机软件或两者的组合。为了清楚说明硬件与软件的这种可互换性,已经在上文根据其功能大体描述了各种说明性组件、框、模块、电路和步骤。这种功能实现为硬件还是软件取决于特定的应用和对整个系统的设计约束。本领域技术人员可以为个特定应用以不同方式实现描述的功能,但这种实现决定不应被解释为导致偏离本发明的范围。The various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the embodiments disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints placed on the overall system. Skilled artisans may implement the described functionality in varying ways for a particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present invention.

用于实现结合本文所公开的方面描述的各种说明性逻辑、逻辑块、模块和电路的硬件可以用通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或其它可编程逻辑器件、分立门或晶体管逻辑、分立硬件组件或设计用于执行本文所述功能的它们的任意组合来实现或执行。通用处理器可以是微处理器,但是可替代地,处理器可以是任何常规处理器、控制器、微控制器或状态机。处理器也可以被实现为计算设备的组合(例如,DSP和微处理器的组合、多个微处理器、一个或多个微处理器与DSP内核的结合或者任何其它这样的配置)。可替代地,一些步骤或方法可以由特定于给定功能的电路来执行。Hardware for implementing the various illustrative logics, logic blocks, modules, and circuits described in connection with aspects disclosed herein can be implemented using general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), field programmable gates, FPGAs (FPGAs) or other programmable logic devices, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (eg, a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in combination with a DSP core, or any other such configuration). Alternatively, some steps or methods may be performed by circuitry specific to a given function.

在一个或多个示例性方面中,所描述的功能可以用硬件、软件、固件或其任意组合来实现。如果以软件实现,这些功能可以作为一个或多个指令或代码存储在非暂时性计算机可读介质或非暂时性处理器可读介质上。本文公开的方法或算法的步骤可以体现在处理器可执行软件模块和/或处理器可执行指令中,其可以驻留在非暂时性计算机可读或非暂时性处理器可读存储介质上。非暂时性服务器可读、计算机可读或处理器可读存储介质可以是可由计算机或处理器访问的任何存储介质。作为示例而非限制,这种非暂时性服务器可读、计算机可读或处理器可读介质可以包含RAM、ROM、EEPROM、闪存设备、CD-ROM或其它光盘存储装置、磁盘存储装置或其它磁存储设备,或者可以用于以指令或数据结构的形式存储期望的程序代码并且可以由计算机访问的任何其它介质。如本文使用的碟和盘,包含致密盘(CD)、激光盘、光盘、数字化通用盘(DVD)、软盘以及蓝光光盘,其中碟通常以磁方式复制数据,而盘利用激光器以光学方式复制数据。上述的组合也包含在非暂时性服务器可读、计算机可读和处理器可读介质的范围内。另外,方法或算法的操作可以作为代码和/或指令的一个或任何组合或集合驻留在非暂时性服务器可读、处理器可读介质和/或计算机可读介质上,它们可以被包含在计算机程序产品中。In one or more exemplary aspects, the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored as one or more instructions or code on a non-transitory computer-readable medium or a non-transitory processor-readable medium. The steps of a method or algorithm disclosed herein may be embodied in processor-executable software modules and/or processor-executable instructions, which may reside on a non-transitory computer-readable or non-transitory processor-readable storage medium. A non-transitory server-readable, computer-readable, or processor-readable storage medium may be any storage medium that can be accessed by a computer or a processor. By way of example and not limitation, such non-transitory server-readable, computer-readable, or processor-readable media may comprise RAM, ROM, EEPROM, flash memory devices, CD-ROM or other optical disk storage, magnetic disk storage, or other magnetic storage device, or any other medium that can be used to store desired program code in the form of instructions or data structures and that can be accessed by a computer. Disc and disc, as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disc, and blu-ray disc where discs usually reproduce data magnetically, while discs reproduce data optically using lasers . Combinations of the above are also included within the scope of non-transitory server-readable, computer-readable and processor-readable media. Additionally, the operations of a method or algorithm may reside on a non-transitory server-readable, processor-readable, and/or computer-readable medium as one or any combination or set of codes and/or instructions, which may be embodied in in computer program products.

对所公开实施例的以上描述被提供为使任何本领域技术人员都能够实现或使用本发明。对这些实施例的各种修改对于本领域技术人员而言将是显而易见的,并且在不脱离本权利要求书精神和范围的前提下在本文中限定的一般性原理可以应用于其它实施例。因此,本发明并不旨在受限于本文所示的实施例,而是应当被赋予符合以下权利要求书以及本文公开的原理和新颖特征的最宽泛的范围。The above description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the spirit and scope of the claims. Thus, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the following claims and the principles and novel features disclosed herein.

Claims (3)

1.一种心脏标测的方法,包括:1. A method for cardiac mapping, comprising: 将心电图(ECG)设备的12个电极附接到患者的胸部;attaching the 12 electrodes of an electrocardiogram (ECG) device to the patient's chest; 将至少三个基准标记物施加到所述患者的身体上,并使所述基准标记物中的两个标记物设置在所述患者的肩膀上且所述基准标记物中的一个标记物设置在所述患者的胸骨上,其中所述基准标记物反射不同波长的光、具有不同形状,或反射不同波长的光且具有不同形状,使得所述基准标记物是使用图像处理可区分的;applying at least three fiducial markers to the patient's body with two of the fiducial markers positioned on the patient's shoulders and one of the fiducial markers positioned on on the patient's sternum, wherein the fiducial markers reflect different wavelengths of light, have different shapes, or reflect different wavelengths of light and have different shapes, such that the fiducial markers are distinguishable using image processing; 生成所述患者的身体的外部图像数据,包含对所述基准标记物和所述电极成像;generating external image data of the patient's body comprising imaging the fiducial markers and the electrodes; 通过分析所述图像数据以检测从所述基准标记物反射的所述光、所述标记物的所述不同形状或者从所述基准标记物反射的所述光和所述基准标记物的所述不同形状两者,来识别对应于所述基准标记物的解剖位置;以及by analyzing the image data to detect the light reflected from the fiducial marker, the different shape of the marker or the light reflected from the fiducial marker and the Both different shapes to identify anatomical locations corresponding to the fiducial markers; and 通过将所述识别的解剖位置与从CT或MRI扫描获得的成像中的相应解剖位置配准并且通过将所述图像数据与使用二维(2D)图像生成的所述患者的胸部的三维(3D)解剖模型合并来生成3D胸部模型;By registering the identified anatomical locations with corresponding anatomical locations in imaging obtained from CT or MRI scans and by combining the image data with three-dimensional (3D) images of the patient's chest generated using two-dimensional (2D) images, ) anatomical models are merged to generate a 3D chest model; 使用心电图(ECG)设备记录ECG数据;Use an electrocardiogram (ECG) device to record ECG data; 基于所述心脏的所述ECG数据、所述3D胸部模型和2D图像生成所述患者心脏的室性期前收缩(PVC)激活图,所述PVC激活图包含最早激活区域;generating a premature ventricular systole (PVC) activation map of the patient's heart based on the ECG data of the heart, the 3D chest model, and 2D images, the PVC activation map including regions of earliest activation; 基于所述PVC激活图中所述最早的激活区域和最早激活的已知正常区域的比较,确定所述3D胸部模型中包含的每个电极的实际位置和所述每个电极的理想位置之间的偏移;以及determining the relationship between the actual location of each electrode included in the 3D chest model and the ideal location of each electrode based on a comparison of the earliest activated region in the PVC activation map to the earliest activated known normal region offset by ; and 基于所述确定的偏移调整所述PVC激活图。The PVC activation map is adjusted based on the determined offset. 2.根据权利要求1所述的方法,其中所述ECG数据在所述心脏的PVC期间记录。2. The method of claim 1, wherein the ECG data is recorded during a PVC of the heart. 3.根据权利要求1所述的方法,其中:3. The method of claim 1, wherein: 所述基准标记物中的两个标记物设置在所述患者的肩膀上;以及two of the fiducial markers are positioned on the patient's shoulders; and 所述基准标记物中的一个标记物设置在所述患者的胸骨上。One of the fiducial markers is disposed on the patient's sternum.
CN201880052802.3A 2017-08-01 2018-08-01 Method for combining heart mapping and model Active CN110996776B (en)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US201762539740P 2017-08-01 2017-08-01
US201762539787P 2017-08-01 2017-08-01
US201762539802P 2017-08-01 2017-08-01
US62/539,787 2017-08-01
US62/539,802 2017-08-01
US62/539,740 2017-08-01
US201862711777P 2018-07-30 2018-07-30
US62/711,777 2018-07-30
PCT/US2018/044746 WO2019028103A2 (en) 2017-08-01 2018-08-01 Methods of cardiac mapping and model merging

Publications (2)

Publication Number Publication Date
CN110996776A CN110996776A (en) 2020-04-10
CN110996776B true CN110996776B (en) 2023-07-14

Family

ID=65233040

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880052802.3A Active CN110996776B (en) 2017-08-01 2018-08-01 Method for combining heart mapping and model

Country Status (4)

Country Link
EP (1) EP3661406A2 (en)
JP (1) JP7244108B2 (en)
CN (1) CN110996776B (en)
WO (1) WO2019028103A2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111973172B (en) * 2020-08-28 2021-10-08 北京航空航天大学 A cardiac structure imaging system and method based on MCG and ECG fusion
US11338131B1 (en) * 2021-05-05 2022-05-24 Vektor Medical, Inc. Guiding implantation of an energy delivery component in a body
JP7773629B2 (en) * 2021-10-19 2025-11-19 カパット、リッカルド Systems, devices, and methods for determining the location of arrhythmogenic foci

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5687737A (en) * 1992-10-09 1997-11-18 Washington University Computerized three-dimensional cardiac mapping with interactive visual displays
US9339194B2 (en) * 2010-03-08 2016-05-17 Cernoval, Inc. System, method and article for normalization and enhancement of tissue images
US9220430B2 (en) * 2013-01-07 2015-12-29 Alivecor, Inc. Methods and systems for electrode placement
US11172860B2 (en) * 2014-05-06 2021-11-16 Peacs Investments B.V. Estimating distribution fluctuation and/or movement of electrical activity through a heart tissue
US10779743B2 (en) * 2014-05-06 2020-09-22 Peacs B.V. Estimating distribution, fluctuation and/or movement of electrical activity through a heart tissue
US11289207B2 (en) * 2015-07-09 2022-03-29 Peacs Investments B.V. System for visualizing heart activation

Also Published As

Publication number Publication date
EP3661406A2 (en) 2020-06-10
WO2019028103A3 (en) 2019-03-14
WO2019028103A2 (en) 2019-02-07
JP2020529879A (en) 2020-10-15
CN110996776A (en) 2020-04-10
JP7244108B2 (en) 2023-03-22

Similar Documents

Publication Publication Date Title
US10932863B2 (en) Methods of cardiac mapping and directional guidance
US10713790B2 (en) Methods of cardiac mapping and directional guidance
US11246662B2 (en) Methods of cardiac mapping and model merging
EP3319521B1 (en) System for visualizing heart activation
CN108712878B (en) Non-invasive method and system for determining the extent of tissue capture due to cardiac pacing
CN108697895B (en) System for optimizing right ventricular only pacing for a patient relative to atrial and left ventricular events
CN103561642B (en) Activation pattern in evaluate cardiac
US8326419B2 (en) Therapy optimization via multi-dimensional mapping
US10471263B2 (en) System and method for cardiac resynchronization
US11458320B2 (en) Method of cardiac resynchronization therapy
JP2008523920A (en) Method and system for treating heart failure using 4D imaging
US20200029817A1 (en) Cardiac mapping systems, methods, and kits including fiducial markers
US20180303345A1 (en) System and Method for Imaging Episodic Cardiac Conditions
CN110996776B (en) Method for combining heart mapping and model
US20240099643A1 (en) Systems and Methods of Cardiac Mapping
US12369836B2 (en) Propagation patterns method and related systems and devices
WO2021034546A1 (en) Method of cardiac resynchronization therapy

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: south carolina

Applicant after: Catheter Precision, Inc.

Address before: new jersey

Applicant before: Catheter Precision, Inc.

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant