CN110879389A - Multi-body target recognition and localization method based on multistatic IR-UWB bio-radar signal - Google Patents
Multi-body target recognition and localization method based on multistatic IR-UWB bio-radar signal Download PDFInfo
- Publication number
- CN110879389A CN110879389A CN201911018557.7A CN201911018557A CN110879389A CN 110879389 A CN110879389 A CN 110879389A CN 201911018557 A CN201911018557 A CN 201911018557A CN 110879389 A CN110879389 A CN 110879389A
- Authority
- CN
- China
- Prior art keywords
- target
- signal
- value
- channel
- radar
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
Description
技术领域technical field
本发明属于生物雷达技术领域,具体涉及一种基于多基地IR-UWB生物雷达信号的多人体目标识别定位方法。The invention belongs to the technical field of biological radar, and in particular relates to a multi-body target identification and positioning method based on a multi-base IR-UWB biological radar signal.
背景技术Background technique
生物雷达是一种通过提取雷达回波中与生命体征相关的信号,非接触、远距离、并且能穿透一定介质实现生命体探测、生命体征监测、生命体成像和定位等功能的技术。其原理是雷达对人体发射电磁波,电磁波经过呼吸、心跳、体动等人体生理活动的调制后反射回雷达接收天线,雷达接收后再通过一定的信号处理技术从雷达回波中获取关于人体目标的生理和生物信息,这些信息包括生理参数、波形、图像、目标位置等。因为具有以上优点,生物雷达技术在灾后救援、医学监测、反恐维稳、战场搜救等领域显示出了极大的优越性和广阔的应用前景。Bioradar is a non-contact, long-distance, and penetrating medium to realize the functions of life detection, vital sign monitoring, life imaging and positioning by extracting the signals related to vital signs in radar echoes. The principle is that the radar emits electromagnetic waves to the human body, and the electromagnetic waves are reflected back to the radar receiving antenna after modulation of human physiological activities such as breathing, heartbeat, and body movement. Physiological and biological information including physiological parameters, waveforms, images, target locations, etc. Because of the above advantages, bio-radar technology has shown great advantages and broad application prospects in the fields of post-disaster rescue, medical monitoring, anti-terrorism and stability maintenance, and battlefield search and rescue.
生物雷达探测中的多目标识别和定位是一个难点,也是制约生物雷达技术进一步走向实用的一项瓶颈技术,这影响了现有的生物雷达样机的实用价值。现有技术中缺乏对于基于生物雷达的多人体目标识别、定位的成果,因此,多人体目标识别定位问题的解决可以极大提高非接触生命探测中的探测效率,满足实际探测中多目标的探测定位问题,可以扩大生物雷达的应用范围,从而促进生物雷达产业的进一步发展。Multi-target recognition and positioning in bio-radar detection is a difficult point, and it is also a bottleneck technology that restricts the further development of bio-radar technology, which affects the practical value of existing bio-radar prototypes. The prior art lacks the achievement of multi-human target recognition and localization based on bio-radar. Therefore, the solution to the multi-human target recognition and localization problem can greatly improve the detection efficiency in non-contact life detection and meet the needs of multi-target detection in actual detection. The problem of positioning can expand the application scope of bio-radar, thereby promoting the further development of the bio-radar industry.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种基于多基地IR-UWB生物雷达信号的多人体目标识别定位方法,用以解决现有技术中缺乏对于通过生物雷达实现的多人体目标进行识别定位的问题。The purpose of the present invention is to provide a multi-body target identification and positioning method based on multi-base IR-UWB bio-radar signals, so as to solve the problem of lack of identification and positioning of multi-body targets realized by bio-radar in the prior art.
为了实现上述任务,本发明采用以下技术方案,包括如下步骤:In order to realize the above-mentioned tasks, the present invention adopts the following technical solutions, including the following steps:
步骤1:三通道的IR-UWB生物雷达的发射天线对目标位置发射雷达脉冲,所述三通道包括中间通道、左通道和右通道,雷达脉冲在目标位置处反射,通过三通道的IR-UWB生物雷达的三个接收天线获得中间通道雷达回波信号E(m,n)、左通道雷达回波信号Eleft(m,n)和右通道雷达回波信号Eright(m,n),其中,m为快时间方向的采样序数,n为慢时间方向的采样序数,且m和n为正整数;Step 1: The transmitting antenna of the three-channel IR-UWB bio-radar transmits radar pulses to the target position. The three channels include a middle channel, a left channel and a right channel. The radar pulses are reflected at the target position and pass through the three-channel IR-UWB. The three receiving antennas of the bioradar obtain the radar echo signal E(m,n) in the middle channel, the radar echo signal E left (m,n) in the left channel and the radar echo signal E right (m,n) in the right channel, where , m is the sampling sequence number in the fast time direction, n is the sampling sequence number in the slow time direction, and m and n are positive integers;
步骤2:将步骤1获得的E(m,n)、Eleft(m,n)和Eright(m,n)分别通过信号预处理得到中间通道能量信号E6(l)、左边通道能量信号E6left(l)和右边通道能量信号E6right(l);Step 2: Use E(m,n), E left (m,n) and E right (m,n) obtained in
步骤3:对步骤2获得的E6(l)、E6left(l)和E6right(l)均进行拐点提取,得到中间通道二次拐点信号E9(l)、左边通道二次拐点信号E9left(l)和右边通道二次拐点信号E9right(l);Step 3: Inflection point extraction is performed on E 6 (l), E 6left (l) and E 6right (l) obtained in
步骤4:获得步骤3得到的每个二次拐点信号的前三大值和前三大值的位置,所述前三大值包括最大值、第二大值和第三大值;Step 4: Obtain the position of the top three values and the top three values of each secondary inflection point signal obtained in
步骤5.1:计算E9(l)的前三大值的波峰-背景比值和相关系数均值,通过E9(l)的前三大值的波峰-背景比值和相关系数均值得到目标的个数,包括:Step 5.1: Calculate the peak-to-background ratio and the mean value of the correlation coefficient of the first three values of E 9 (1), obtain the number of targets by the peak-to-background ratio and mean value of the correlation coefficient of the first three values of E 9 (l), include:
A)如果VEtoB1<σ1N,或σ1N≤VEtoB1<σ1Y且rm1<σrm1,则判别结果为无目标;A) If V EtoB1 <σ 1N , or σ 1N ≤V EtoB1 <σ 1Y and r m1 <σ rm1 , the judgment result is no target;
B)如果σ1N≤VEtoB2<σ2N,或σ2N≤VEtoB2<σ2Y且rm2<σrm1,则判别结果为单目标;B) If σ 1N ≤V EtoB2 <σ 2N , or σ 2N ≤V EtoB2 <σ 2Y and r m2 <σ rm1 , the discrimination result is a single target;
C)如果rm3>σrm3,或σrm2<rm3≤σrm3且VEtoB3≥σ1Y,则判别结果为三目标;C) If r m3 >σ rm3 , or σ rm2 <r m3 ≤σ rm3 and V EtoB3 ≥σ 1Y , the discrimination result is three-objective;
D)除A)B)C)外其他情况,则判别结果为双目标;D) In addition to A) B) C) other cases, the discrimination result is a dual target;
其中,VEtoB1表示E9(l)最大值的波峰-背景比值,VEtoB2表示E9(l)第二大值的波峰-背景比值,VEtoB3表示E9(l)第三大值的波峰-背景比值,rm1表示最大值的相关系数均值,rm2表示第二大值的相关系数均值,rm3表示第三大值的相关系数均值,σ1N表示无目标阈值,σ1Y表示有目标阈值,σ2N表示双目标阈值,σ2Y表示多目标阈值且σ1N<σ2N<σ1Y<σ2Y,σrm1、σrm2和σrm3表示相关性阈值且σrm2<σrm1<σrm3;Wherein, V EtoB1 represents the peak-to-background ratio of the maximum value of E 9 (l), V EtoB2 represents the peak-to-background ratio of the second largest value of E 9 (l), and V EtoB3 represents the peak of the third largest value of E 9 (l) - Background ratio, r m1 means the mean value of the correlation coefficient of the largest value, r m2 means the mean value of the correlation coefficient of the second largest value, r m3 means the mean value of the correlation coefficient of the third largest value, σ 1N means no target threshold, σ 1Y means there is a target Threshold, σ 2N represents dual-target threshold, σ 2Y represents multi-target threshold and σ 1N <σ 2N <σ 1Y <σ 2Y , σ rm1 , σ rm2 and σ rm3 represent correlation threshold and σ rm2 <σ rm1 <σ rm3 ;
步骤5.2:根据步骤5.1识别到的目标个数,结合E9(l)、E9left(l)和E9right(l)前三大值的位置确定目标的径向距离和目标的方位,包括:Step 5.2: According to the number of targets identified in step 5.1, determine the radial distance of the target and the orientation of the target in combination with the positions of the first three values of E 9 (l), E 9left (l) and E 9right (l), including:
a)如果识别结果为单目标,则通过E9(l)的最大值的位置确定目标的径向距离,通过E9left(l)和E9right(l)的最大值的位置确定目标的方位;a) If the recognition result is a single target, the radial distance of the target is determined by the position of the maximum value of E 9 (1), and the orientation of the target is determined by the position of the maximum value of E 9left (1) and E 9right (1);
b)如果识别结果为双目标,则通过E9(l)的最大值的位置确定第一个目标的径向距离,通过E9left(l)和E9right(l)的最大值的位置确定第一个目标的方位,然后通过E9(l)的第二大值的位置确定第二个的目标径向距离,通过E9left(l)和E9right(l)的第二大值的位置确定第二个目标的方位;b) If the recognition result is a double target, the radial distance of the first target is determined by the position of the maximum value of E 9 (l), and the first target is determined by the position of the maximum value of E 9left (l) and E 9right (l). The bearing of one target, then the target radial distance of the second by the position of the second largest value of E9(l), determined by the position of the second largest value of E9left ( l) and E9right (l) the orientation of the second target;
c)如果识别结果为三目标,则通过E9(l)的最大值的位置确定第一个目标的径向距离,通过E9left(l)和E9right(l)的最大值的位置确定第一个目标的方位,然后通过E9(l)的第二大值的位置确定第二个的目标径向距离,通过E9left(l)和E9right(l)的第二大值的位置确定第二个目标的方位,最后通过E9(l)的第三大值的位置确定第三个目标的径向距离,通过E9left(l)和E9right(l)的第三大值的位置确定第三个目标的方位;c) If the recognition result is three targets, the radial distance of the first target is determined by the position of the maximum value of E 9 (l), and the first target is determined by the position of the maximum value of E 9left (l) and E 9right (l). The bearing of one target, then the target radial distance of the second by the position of the second largest value of E9(l), determined by the position of the second largest value of E9left ( l) and E9right (l) The bearing of the second target, and finally the radial distance of the third target is determined by the position of the third largest value of E9(l), by the position of the third largest value of E9left ( l) and E9right (l) determine the orientation of the third target;
根据目标的个数、目标径向距离和目标的方位实现目标的识别定位。Identify and locate the target according to the number of targets, the radial distance of the target and the orientation of the target.
进一步的,步骤5.1中,σ1N=2,σ1Y=3,σ2N=2.4,σ2Y=3.5,σrm1=0.8、σrm2=0.75和σrm3Y=0.88。Further, in step 5.1, σ 1N =2, σ 1Y =3, σ 2N =2.4, σ 2Y =3.5, σ rm1 =0.8, σ rm2 =0.75 and σ rm3Y =0.88.
进一步的,步骤2中的信号预处理包括如下子步骤:Further, the signal preprocessing in
步骤2.1:对E(m,n)、Eleft(m,n)和Eright(m,n)分别进行距离累积;Step 2.1: Accumulate distances for E(m,n), E left (m,n) and E right (m,n) respectively;
步骤2.2:将步骤2.1距离累积后的信号乘以式Ⅰ的指数增益曲线G(l),进行衰减补偿;Step 2.2: Multiply the accumulated signal in step 2.1 by the exponential gain curve G(l) of formula I to perform attenuation compensation;
其中,Vh表示雷达回波数据的最大值和人体目标反射回波的幅值的比值,Phuman是人体目标位置,l表示距离累积后的快时间序号,l=1,2,…,L且L为正整数;Among them, V h represents the ratio of the maximum value of the radar echo data to the amplitude of the reflected echo of the human target, P human is the position of the human target, l represents the fast time sequence number after distance accumulation, l=1,2,...,L and L is a positive integer;
步骤2.3:对步骤2.2衰减补偿后的信号移除静态杂波;Step 2.3: remove static clutter from the signal after attenuation compensation in step 2.2;
步骤2.4:对步骤2.3移除静态杂波后的信号进行线性趋势消除;Step 2.4: remove the linear trend of the signal after removing the static clutter in step 2.3;
步骤2.5:对步骤2.4线性趋势消除后的信号在慢时间维度上进行低通滤波;Step 2.5: perform low-pass filtering on the signal after the linear trend removal in step 2.4 in the slow time dimension;
步骤2.6:对步骤2.5低通滤波后的信号沿慢时间轴累加,得到中间通道能量信号E6(l)、左边通道能量信号E6left(l)和右边通道能量信号E6right(l)。Step 2.6: Accumulate the low-pass filtered signals in step 2.5 along the slow time axis to obtain the middle channel energy signal E 6 (1), the left channel energy signal E 6left (1) and the right channel energy signal E 6right (1).
进一步的,步骤3的拐点提取包括如下子步骤:Further, the inflection point extraction in
步骤3.1:对步骤2获得的E6(l)、E6left(l)和E6right(l)去除直达波,得到E7(l)、E7left(l)和E7right(l);Step 3.1: Remove the direct wave from E 6 (l), E 6left (l) and E 6right (l) obtained in
步骤3.2:对步骤3.1获得的信号提取拐点,得到一次拐点信号E8(l)、E8left(l)和E8right(l);Step 3.2: Extract the inflection point from the signal obtained in step 3.1, and obtain primary inflection point signals E 8 (l), E 8left (l) and E 8right (l);
步骤3.2:对步骤3.2获得的信号提取拐点,得到中间通道二次拐点信号E9(l)、左边通道二次拐点信号E9left(l)和右边通道二次拐点信号E9right(l)。Step 3.2: Extract the inflection point from the signal obtained in step 3.2, and obtain the secondary inflection point signal E 9 (l) of the middle channel, the secondary inflection point signal E 9left (l) of the left channel and the secondary inflection point signal E 9right (l) of the right channel.
进一步的,步骤4包括如下子步骤:Further,
步骤4.1:获得步骤3得到的每个二次拐点信号的最大值,并去除最大值的拖尾;Step 4.1: Obtain the maximum value of each secondary inflection point signal obtained in
步骤4.2:获得步骤3得到的每个二次拐点信号的第二大值,并去除第二大值的拖尾;Step 4.2: Obtain the second largest value of each quadratic inflection point signal obtained in
步骤4.3:获得步骤3得到的每个二次拐点信号的第三大值。Step 4.3: Obtain the third largest value of each quadratic inflection point signal obtained in
在获得前三大值时,将最大值位置和第二大值位置之后的相邻16个连续的幅值信号置零,去除最值拖尾。When the first three values are obtained, the adjacent 16 consecutive amplitude signals after the position of the maximum value and the position of the second maximum value are set to zero to remove the tail of the maximum value.
更进一步的,通过式Ⅱ计算得到最大值处的相关系数均值rm1、第二大值处的相关系数均值rm2和第三大值处的相关系数均值rm3:Further, the mean value r m1 of the correlation coefficient at the maximum value, the mean value r m2 of the correlation coefficient at the second largest value and the mean value r m3 of the correlation coefficient at the third largest value are calculated by formula II:
其中,i表示相关系数的序号且i=1,2,3,4,5,6,k表示前三大值的序号且k=1表示最大值的序号,k=2表示第二大值的序号,k=3表示第三大值的序号,rik表示前三大值的相关系数,rmk表示前三大值的相关系数均值,E5(l,q)表示步骤2.5得到的慢时间维度上进行低通滤波后的中间通道的信号,Emaxk(q)表示E5(l,q)的前三大值位置处的信号,E(maxk+(i-4))(q)表示与E5(l,q)的前三大值位置相邻的前三个位置的信号,(E(maxk+(i-3))(q)表示与E5(l,q)的前三大值位置相邻的后三个位置处的信号,Q表示E5(l,q)慢时间方向的信号总采样点数且Q为正整数,q表示慢时间方向的第q个信号采样点且q为正整数。Among them, i represents the serial number of the correlation coefficient and i=1,2,3,4,5,6, k represents the serial number of the first three values and k=1 represents the serial number of the maximum value, k=2 represents the second largest value Serial number, k=3 represents the serial number of the third largest value, r ik represents the correlation coefficient of the first three values, r mk represents the mean value of the correlation coefficient of the first three values, E 5 (l, q) represents the slow time obtained in step 2.5 The signal of the intermediate channel after low-pass filtering in the dimension, E maxk (q) represents the signal at the position of the first three values of E 5 (l, q), and E (maxk+(i-4)) (q) represents the same as The signal of the first three positions adjacent to the first three values of E 5 (l,q), (E (maxk+(i-3)) (q) represents the first three values of E 5 (l, q) Signals at the next three positions adjacent to each other, Q represents the total number of signal sampling points in the slow time direction of E 5 (l, q) and Q is a positive integer, q represents the qth signal sampling point in the slow time direction and q is positive integer.
更进一步的,步骤5中,通过E9left(l)前三大值的位置lleft-maxk和E9right(l)前三大值的位置lright-maxk确定目标的方位,包括:Further, in
a)如果|lleft-maxk-lright-maxk|≤2,则目标在中轴线上,所述中轴线为接收天线与中间通道发射天线的连线;a) If |l left-maxk -l right-maxk |≤2, then the target is on the central axis, and the central axis is the connection between the receiving antenna and the transmitting antenna of the middle channel;
b)如果(lleft-maxk-lright-maxk)≤-2,则目标在中轴线的左边区域,所述左边区域为中轴线一侧的左边通道发射天线所在的区域;b) If (l left-maxk -l right-maxk )≤-2, the target is in the left area of the central axis, and the left area is the area where the left channel transmit antenna on one side of the central axis is located;
c)如果(lleft-maxk-lright-maxk)>2,则目标在中轴线的右边区域,所述右边区域为中轴线一侧的右边通道发射天线所在的区域。c) If (l left-maxk -l right-maxk )>2, the target is in the right area of the central axis, and the right area is the area where the right channel transmit antenna on one side of the central axis is located.
本发明与现有技术相比具有以下技术特点:Compared with the prior art, the present invention has the following technical characteristics:
1、本发明根据人体呼吸等信号特征,采用能量噪声比、相关系数均值两个特征参数相结合的一套目标判别程序,实现了多人体目标的识别和距离向定位,提高了目标识别准确率。1. The present invention adopts a set of target discrimination procedures combining two characteristic parameters of energy-to-noise ratio and mean correlation coefficient according to the signal characteristics of human body breathing, etc., to realize the identification and distance orientation of multiple human targets, and to improve the accuracy of target recognition. .
2、本发明采用预先判定人体目标位置,再根据计算出来的指数增益曲线G(l),在距离向上对信号进行衰减补偿,解决了雷达信号在传输过程中随着距离的增加产生的能量衰减问题,有效降低了远端目标的漏判率,相比分段的线性增益补偿方式,本发明采用的增益补偿更加精确。2. The present invention uses pre-determined human target position, and then according to the calculated exponential gain curve G(l), the signal is attenuated and compensated in the distance direction, which solves the energy attenuation of the radar signal as the distance increases during the transmission process. The problem is that the missed judgment rate of the remote target is effectively reduced. Compared with the segmented linear gain compensation method, the gain compensation adopted in the present invention is more accurate.
3、本发明采用三通道雷达探测的方式,中间通道对最多三个人体目标进行识别和距离向定位,两边通道对目标进行方位向定位的方法,实现了三个目标的探测识别和定位(定位结果含有方位信息),提高了多目标二维定位的准确性。3. The present invention adopts the method of three-channel radar detection, the middle channel identifies and locates up to three human targets in the distance direction, and the two channels locate the target in the azimuth direction, which realizes the detection, identification and positioning (positioning) of the three targets. The result contains orientation information), which improves the accuracy of multi-target 2D positioning.
4、本发明通过研究影响VEtoBk的相关因素以及影响rmk的相关因素,找到了了最优的目标存在阈值和相关性阈值,通过最优阈值的设置,更好地提高了识别效果。4. The present invention finds the optimal target existence threshold and correlation threshold by studying the relevant factors affecting V EtoBk and the relevant factors affecting r mk , and the recognition effect is better improved by setting the optimal threshold.
附图说明Description of drawings
图1为三通道IR-UWB生物雷达系统原理框图;Figure 1 is a schematic block diagram of a three-channel IR-UWB bio-radar system;
图2为三通道IR-UWB生物雷达系统穿墙探测示意图;Figure 2 is a schematic diagram of a three-channel IR-UWB bioradar system for through-wall detection;
图3为雷达回波信号二维矩阵示意图;Figure 3 is a schematic diagram of a two-dimensional matrix of radar echo signals;
图4(a)为快时间信号波形图;Figure 4(a) is a waveform diagram of a fast time signal;
图4(b)为慢时间信号波形图;Figure 4(b) is a waveform diagram of a slow time signal;
图5为IR-UWB雷达探测人体呼吸示意图;Figure 5 is a schematic diagram of IR-UWB radar detecting human breathing;
图6为人体呼吸的脉冲回波示意图;Fig. 6 is the pulse echo schematic diagram of human respiration;
图7为信号预处理算法流程图;7 is a flowchart of a signal preprocessing algorithm;
图8为模拟的雷达回波信号示意图;8 is a schematic diagram of a simulated radar echo signal;
图9为静态杂波移除后的模拟回波信号示意图;9 is a schematic diagram of an analog echo signal after static clutter is removed;
图10为二次拐点信号E9(l)的三个最大值以及“拖尾”现象示意图;FIG. 10 is a schematic diagram of three maxima of the secondary inflection point signal E 9 (1) and the phenomenon of “smearing”;
图11为中间通道去除“拖尾”后的二次拐点信号E(l)示意图;Figure 11 is a schematic diagram of the secondary inflection point signal E(l) after the middle channel has removed "smearing";
图12为三目标识别定位结果图。Figure 12 is a three-target identification and positioning result diagram.
图13为多人体目标个数判别方法流程图;13 is a flowchart of a method for judging the number of multiple human targets;
具体实施方式Detailed ways
首先对本发明中出现的技术术语进行解释:First, the technical terms that appear in the present invention are explained:
生物雷达技术:包含连续波(Continuous Wave,CW)雷达和超宽谱雷达(Ultra-wideband,UWB),其中,超宽谱生物雷达因其具有高距离分辨率和目标识别能力等特点而成为目前生物雷达技术研究的主流。而冲击脉冲超宽谱雷达(Impulse-radio Ultra-wideband,IR-UWB)因为其性能优良、结构简单等特点而成为灾后搜救等领域内的研究热点,因此多人体目标的识别定位则需要采用多通道IR-UWB生物雷达系统来实现。Bioradar technology: including continuous wave (CW) radar and ultra-wideband (UWB) radar, among which, ultra-wideband bioradar has become the current The mainstream of bio-radar technology research. Impulse-radio Ultra-wideband (IR-UWB) has become a research hotspot in the field of post-disaster search and rescue due to its excellent performance and simple structure. channel IR-UWB bio-radar system to achieve.
慢时间:雷达对目标的探测时间,单位是秒(s)。Slow time: The detection time of the radar to the target, the unit is second (s).
快时间:脉冲传播所用时间,单位是纳秒(ns)。Fast time: The time it takes for a pulse to propagate, in nanoseconds (ns).
如图3所示,在实际探测中,IR-UWB雷达采样的回波信号经过采样、积分和放大后,存储在一个二维矩阵R(m,n)中,其中m为行向量,n为列向量,图中的横轴表示慢时间,纵轴表示快时间,快时间可根据电磁波在介质中的传播速度折算成探测距离,单位是米(m)。As shown in Figure 3, in the actual detection, the echo signal sampled by the IR-UWB radar is stored in a two-dimensional matrix R(m,n) after sampling, integration and amplification, where m is the row vector and n is the Column vector, the horizontal axis in the figure represents slow time, and the vertical axis represents fast time. Fast time can be converted into detection distance according to the propagation speed of electromagnetic waves in the medium, and the unit is meters (m).
快时间和距离的计算关系为:距离(m)=快时间(ns)×电磁波在介质中的传播速度(m/ns)/2。The calculation relationship between fast time and distance is: distance (m) = fast time (ns) × propagation speed of electromagnetic waves in the medium (m/ns)/2.
快时间信号:在某一时刻,沿着快时间维度的信号,即二维矩阵的列向量。Fast time signal: A signal along the fast time dimension at a certain moment, that is, a column vector of a two-dimensional matrix.
慢时间信号:在某一距离点,沿着慢时间维度的信号,即二维矩阵的行向量。Slow time signal: A signal along the slow time dimension at a distance point, i.e. a row vector of a two-dimensional matrix.
拐点:在数学上指改变曲线向上或向下方向的点,直观地说拐点是使切线穿越曲线的点(即曲线的凹凸分界点)。Inflection point: Mathematically refers to the point that changes the upward or downward direction of the curve. Intuitively, the inflection point is the point where the tangent line crosses the curve (ie, the concave-convex boundary of the curve).
本发明实现的原理为:当生物雷达的发射信号照射到静止物体时,雷达回波信号是稳定的固定值,但是当照射到人或者动物等生命体时,由于生命体呼吸等引起的体表微动起伏,导致雷达原始回波信号出现波动,因此我们可以通过这些微小波动对生命体进行检测。The principle realized by the invention is: when the emission signal of the biological radar is irradiated to a stationary object, the radar echo signal is a stable fixed value, but when it is irradiated to a living body such as a human or an animal, the body surface caused by the breathing of the living body will be Micro fluctuations cause fluctuations in the original radar echo signal, so we can detect living bodies through these small fluctuations.
本发明公开了一种一发三收的三通道生物雷达系统,系统结构框图如图1所示,在PRF震荡器的控制下,脉冲发生器以一定的脉冲重复频率(Pulse Repeat Frequency,PRF)产生脉冲信号。产生的脉冲信号分成两路:一路经过发射电路调理整形成双极性脉冲信号,通过发射天线辐射出去;另一路脉冲信号被送入延时单元在微处理器控制下产生一系列延时时间可调的距离门,距离门其实是一种采样脉冲信号,持续时间非常短,在该信号的触发下,接收电路能够对雷达回波进行选择性地接收采样。由发射天线辐射出去的信号在遇到物体时发生反射,反射的雷达回波被接收天线接收后送入接收电路在距离门的触发下进行选择性地采样、积分、放大,然后通过模数转换器(Analog to Digital Converter,ADC)形成雷达回波信号。雷达回波信号在微处理器控制下经由WiFi模块送到处理显示终端进行信号处理和结果显示。该IR-UWB生物雷达系统一共有三个通道组成:每个发射天线和一个接收天线组成一个收发通道,如图1所示的三个接收天线可分别与发射天线组合,形成三个通道。The invention discloses a three-channel bio-radar system with one transmitter and three receivers. The block diagram of the system is shown in Figure 1. Under the control of a PRF oscillator, the pulse generator operates at a certain Pulse Repeat Frequency (PRF). Generate a pulse signal. The generated pulse signal is divided into two channels: one channel is adjusted and adjusted by the transmitting circuit to form a bipolar pulse signal, which is radiated through the transmitting antenna; the other channel is sent to the delay unit to generate a series of delay time under the control of the microprocessor. The distance gate is actually a sampling pulse signal with a very short duration. Under the trigger of this signal, the receiving circuit can selectively receive and sample the radar echo. The signal radiated by the transmitting antenna is reflected when it encounters an object, and the reflected radar echo is received by the receiving antenna and sent to the receiving circuit for selective sampling, integration and amplification under the trigger of the distance gate, and then through analog-to-digital conversion. The ADC (Analog to Digital Converter, ADC) forms the radar echo signal. The radar echo signal is sent to the processing and display terminal through the WiFi module under the control of the microprocessor for signal processing and result display. The IR-UWB bio-radar system consists of three channels: each transmitting antenna and one receiving antenna form a transceiver channel. The three receiving antennas shown in Figure 1 can be combined with the transmitting antennas to form three channels.
图2是三通道IR-UWB生物雷达系统进行多目标穿墙探测识别的平面示意图,各雷达天线紧贴一堵24cm厚的砖墙放置(该多通道雷达的穿透范围为:200cm厚度以内的砖墙),距离地面1.15米(对应成年人胸部的平均高度,该高度可以自由调节,雷达探测区域为120度张角的圆锥体空间,只要目标在探测区域内均可以被探测到),其中发射天线Tx和接收天线Rx1紧挨放置于中间,组成雷达系统的中间通道,中间通道的数据主要用来进行目标个数的判别和个目标径向距离的确定;接收天线Rx2和接收天线Rx3分别置于发射天线Tx左侧1.2米处和右侧1.2米处(Rx2、Rx3与发射天线的距离为0.3m-1.2m可调,不同的距离对应不同的横向分辨率,该距离越大,多目标的横向分辨率越大,定位越准确),并与发射天线组成左边通道和右边通道,左边通道和右边通道的数据主要用来对目标进行方向定位。Figure 2 is a schematic plan view of the three-channel IR-UWB bioradar system for multi-target penetration detection and identification, each radar antenna is placed close to a 24cm thick brick wall (the penetration range of the multi-channel radar is: within 200cm thickness Brick wall), 1.15 meters from the ground (corresponding to the average height of an adult chest, the height can be adjusted freely, the radar detection area is a cone space with an opening angle of 120 degrees, as long as the target can be detected within the detection area), where The transmitting antenna Tx and the receiving antenna Rx1 are placed next to each other in the middle, forming the middle channel of the radar system. The data in the middle channel is mainly used to determine the number of targets and the radial distance of each target; the receiving antenna Rx2 and the receiving antenna Rx3 are respectively Placed at 1.2 meters on the left and 1.2 meters on the right of the transmitting antenna Tx (the distance between Rx2, Rx3 and the transmitting antenna is adjustable from 0.3m-1.2m, different distances correspond to different lateral resolutions, the larger the distance, the more The larger the lateral resolution of the target, the more accurate the positioning), and the left channel and the right channel are formed with the transmitting antenna. The data of the left channel and the right channel are mainly used to locate the direction of the target.
图4(a)和(b)分别显示了雷达回波快时间信号和慢时间信号的波形。IR-UWB雷达时窗的窗宽决定了快时间信号的长度,在本发明的实验设置中,一个快时间信号的时窗宽度设为80ns,对应的探测距离为12m范围。每个快时间信号由8192个采样点组成,每两个快时间信号之间的时间间隔Ts=0.0625s,也就是说,慢时间信号的采样频率fs=1/Ts=16Hz,满足奈奎斯特采样定律对人体呼吸信号采样的要求。Figure 4(a) and (b) show the waveforms of the radar echo fast time signal and slow time signal, respectively. The window width of the time window of the IR-UWB radar determines the length of the fast time signal. In the experimental setup of the present invention, the time window width of a fast time signal is set to 80ns, and the corresponding detection distance is 12m. Each fast time signal consists of 8192 sampling points, and the time interval between each two fast time signals is Ts=0.0625s, that is to say, the sampling frequency of the slow time signal is fs=1/Ts=16Hz, which satisfies Nyquis The requirements of the special sampling law for the sampling of human respiratory signals.
实施例1Example 1
本实施例公开了一种基于多基地IR-UWB生物雷达信号的多人体目标识别定位方法,包括如下步骤:This embodiment discloses a method for identifying and locating multiple human targets based on a multistatic IR-UWB biological radar signal, including the following steps:
步骤1:三通道的IR-UWB生物雷达的发射天线对目标位置发射雷达脉冲,所述三通道包括中间通道、左通道和右通道,雷达脉冲在目标位置处反射,通过三通道的IR-UWB生物雷达的三个接收天线获得中间通道雷达回波信号E(m,n)、左通道雷达回波信号Eleft(m,n)和右通道雷达回波信号Eright(m,n),其中,m为快时间方向的采样序数,n为慢时间方向的采样序数,且m和n为正整数;Step 1: The transmitting antenna of the three-channel IR-UWB bio-radar transmits radar pulses to the target position. The three channels include a middle channel, a left channel and a right channel. The radar pulses are reflected at the target position and pass through the three-channel IR-UWB. The three receiving antennas of the bioradar obtain the radar echo signal E(m,n) in the middle channel, the radar echo signal E left (m,n) in the left channel and the radar echo signal E right (m,n) in the right channel, where , m is the sampling sequence number in the fast time direction, n is the sampling sequence number in the slow time direction, and m and n are positive integers;
步骤2:将步骤1获得的E(m,n)、Eleft(m,n)和Eright(m,n)分别通过信号预处理得到中间通道能量信号E6(l)、左边通道能量信号E6left(l)和右边通道能量信号E6right(l);Step 2: Use E(m,n), E left (m,n) and E right (m,n) obtained in
步骤3:对步骤2获得的E6(l)、E6left(l)和E6right(l)均进行拐点提取,得到中间通道二次拐点信号E9(l)、左边通道二次拐点信号E9left(l)和右边通道二次拐点信号E9right(l);Step 3: Inflection point extraction is performed on E 6 (l), E 6left (l) and E 6right (l) obtained in
步骤4:获得步骤3得到的每个二次拐点信号的前三大值和前三大值的位置,所述前三大值包括最大值、第二大值和第三大值;Step 4: Obtain the position of the top three values and the top three values of each secondary inflection point signal obtained in
步骤5.1:计算E9(l)的前三大值的波峰-背景比值和相关系数均值,通过E9(l)的前三大值的波峰-背景比值和相关系数均值得到目标的个数,包括:Step 5.1: Calculate the peak-to-background ratio and the mean value of the correlation coefficient of the first three values of E 9 (1), obtain the number of targets by the peak-to-background ratio and mean value of the correlation coefficient of the first three values of E 9 (l), include:
A)如果VEtoB1<σ1N,或σ1N≤VEtoB1<σ1Y且rm1<σrm1,则判别结果为无目标;A) If V EtoB1 <σ 1N , or σ 1N ≤V EtoB1 <σ 1Y and r m1 <σ rm1 , the judgment result is no target;
B)如果σ1N≤VEtoB2<σ2N,或σ2N≤VEtoB2<σ2Y且rm2<σrm1,则判别结果为单目标;B) If σ 1N ≤V EtoB2 <σ 2N , or σ 2N ≤V EtoB2 <σ 2Y and r m2 <σ rm1 , the discrimination result is a single target;
C)如果rm3>σrm3,或σrm2<rm3≤σrm3且VEtoB3≥σ1Y,则判别结果为三目标;C) If r m3 >σ rm3 , or σ rm2 <r m3 ≤σ rm3 and V EtoB3 ≥σ 1Y , the discrimination result is three-objective;
D)除A)B)C)外其他情况,则判别结果为双目标;D) In addition to A) B) C) other cases, the discrimination result is a dual target;
其中,VEtoB1表示E9(l)最大值的波峰-背景比值,VEtoB2表示E9(l)第二大值的波峰-背景比值,VEtoB3表示E9(l)第三大值的波峰-背景比值,rm1表示最大值的相关系数均值,rm2表示第二大值的相关系数均值,rm3表示第三大值的相关系数均值,σ1N表示无目标阈值,σ1Y表示有目标阈值,σ2N表示双目标阈值,σ2Y表示多目标阈值且σ1N<σ2N<σ1Y<σ2Y,σrm1、σrm2和σrm3表示相关性阈值且σrm2<σrm1<σrm3;Wherein, V EtoB1 represents the peak-to-background ratio of the maximum value of E 9 (l), V EtoB2 represents the peak-to-background ratio of the second largest value of E 9 (l), and V EtoB3 represents the peak of the third largest value of E 9 (l) - Background ratio, r m1 means the mean value of the correlation coefficient of the largest value, r m2 means the mean value of the correlation coefficient of the second largest value, r m3 means the mean value of the correlation coefficient of the third largest value, σ 1N means no target threshold, σ 1Y means there is a target Threshold, σ 2N represents dual-target threshold, σ 2Y represents multi-target threshold and σ 1N <σ 2N <σ 1Y <σ 2Y , σ rm1 , σ rm2 and σ rm3 represent correlation threshold and σ rm2 <σ rm1 <σ rm3 ;
步骤5.2:根据步骤5.1识别到的目标个数,结合E9(l)、E9left(l)和E9right(l)前三大值的位置确定目标的径向距离和目标的方位,包括:Step 5.2: According to the number of targets identified in step 5.1, determine the radial distance of the target and the orientation of the target in combination with the positions of the first three values of E 9 (l), E 9left (l) and E 9right (l), including:
a)如果识别结果为单目标,则通过E9(l)的最大值的位置确定目标的径向距离,通过E9left(l)和E9right(l)的最大值的位置确定目标的方位;a) If the recognition result is a single target, the radial distance of the target is determined by the position of the maximum value of E 9 (1), and the orientation of the target is determined by the position of the maximum value of E 9left (1) and E 9right (1);
b)如果识别结果为双目标,则通过E9(l)的最大值的位置确定第一个目标的径向距离,通过E9left(l)和E9right(l)的最大值的位置确定第一个目标的方位,然后通过E9(l)的第二大值的位置确定第二个的目标径向距离,通过E9left(l)和E9right(l)的第二大值的位置确定第二个目标的方位;b) If the recognition result is a double target, the radial distance of the first target is determined by the position of the maximum value of E 9 (l), and the first target is determined by the position of the maximum value of E 9left (l) and E 9right (l). The bearing of one target, then the target radial distance of the second by the position of the second largest value of E9(l), determined by the position of the second largest value of E9left ( l) and E9right (l) the orientation of the second target;
c)如果识别结果为三目标,则通过E9(l)的最大值的位置确定第一个目标的径向距离,通过E9left(l)和E9right(l)的最大值的位置确定第一个目标的方位,然后通过E9(l)的第二大值的位置确定第二个的目标径向距离,通过E9left(l)和E9right(l)的第二大值的位置确定第二个目标的方位,最后通过E9(l)的第三大值的位置确定第三个目标的径向距离,通过E9left(l)和E9right(l)的第三大值的位置确定第三个目标的方位;c) If the recognition result is three targets, the radial distance of the first target is determined by the position of the maximum value of E 9 (l), and the first target is determined by the position of the maximum value of E 9left (l) and E 9right (l). The bearing of one target, then the target radial distance of the second by the position of the second largest value of E9(l), determined by the position of the second largest value of E9left ( l) and E9right (l) The bearing of the second target, and finally the radial distance of the third target is determined by the position of the third largest value of E9(l), by the position of the third largest value of E9left ( l) and E9right (l) determine the orientation of the third target;
根据目标的个数、目标径向距离和目标的方位实现目标的识别定位。Identify and locate the target according to the number of targets, the radial distance of the target and the orientation of the target.
优选的,步骤5.1中,σ1N=2,σ1Y=3,σ2N=2.4,σ2Y=3.5,σrm1=0.8、σrm2=0.75和σrm3Y=0.88。Preferably, in step 5.1, σ 1N =2, σ 1Y =3, σ 2N =2.4, σ 2Y =3.5, σ rm1 =0.8, σ rm2 =0.75 and σ rm3Y =0.88.
具体的,步骤1获得雷达回波信号的方法为:Specifically, the method for obtaining the radar echo signal in
IR-UWB雷达探测人体呼吸示意图如图5所示,假设人体目标的胸壁表面与雷达之间的初始距离是d0,人体的呼吸会引起胸腔周期性的扩张和收缩,一般情况下,人体呼吸时胸腔壁的位移是一个关于慢时间的正弦函数x(t),那么人体目标的胸壁表面与雷达之间的实际距离d(t)将会根据人体的呼吸频率fr在d0附近周期性地变化:The schematic diagram of IR-UWB radar detecting human breathing is shown in Figure 5. Assuming that the initial distance between the chest wall surface of the human target and the radar is d 0 , the breathing of the human body will cause the thoracic cavity to expand and contract periodically. When the displacement of the chest wall is a sinusoidal function x (t) about the slow time, then the actual distance d( t ) between the chest wall surface of the human target and the radar will be periodic around d0 according to the breathing frequency fr of the human body ground changes:
d(t)=d0+x(t)=d0+Arsin(2πfrt)d(t)=d 0 +x(t)=d 0 +Arsin(2πf r t)
式中t表示慢时间,x(t)表示人体呼吸时胸壁位移的变化,Ar表示人体呼吸的最大幅度。In the formula, t represents the slow time, x(t) represents the change of the displacement of the chest wall when the human body is breathing, and Ar represents the maximum amplitude of the human body breathing.
因为探测范围内的环境是静态的,人体目标也保持静止,只有呼吸引起的胸壁运动,那么雷达系统的脉冲响应h(t,τ)将和呼吸运动一样随时间变化:Because the environment within the detection range is static, and the human target remains static, only the chest wall motion caused by breathing, then the impulse response h(t,τ) of the radar system will change with time like the breathing motion:
式中,t表示慢时间,τ表示快时间,表示静态背景目标的脉冲回波成分,其中αi和τi分别为第i个静态目标脉冲回波的幅度和在快时间维度上的延时,αvδ(τ-τv(t)表示人体目标呼吸运动的脉冲回波成分,其中αv为脉冲回波的幅度,τv(t)为人体目标脉冲回波在快时间维度上的延时变化,可以表示为:where t represents slow time, τ represents fast time, Represents the pulse echo component of the static background target, where α i and τ i are the amplitude of the ith static target pulse echo and the delay in the fast time dimension, respectively, α v δ(τ-τ v (t) represents The pulse echo component of the breathing motion of the human target, where α v is the amplitude of the pulse echo, and τ v (t) is the delay change of the human target pulse echo in the fast time dimension, which can be expressed as:
式中c为电磁波在真空中的传播速度,τr为呼吸运动在快时间维度上的最大延时,τ0为雷达波在人体胸壁表面与雷达之间(初始距离)的延时,即 where c is the propagation speed of the electromagnetic wave in the vacuum, τ r is the maximum delay of the breathing motion in the fast time dimension, τ 0 is the delay time between the radar wave on the surface of the human chest wall and the radar (initial distance), namely
如果忽略脉冲失真和其它非线性影响,就可以将雷达的回波信号看作是雷达发射脉冲和系统脉冲响应的卷积。那么在不考虑噪声存在的条件下,t时刻雷达的回波信号为:If impulse distortion and other nonlinear effects are ignored, the radar echo signal can be regarded as the convolution of the radar transmit impulse and the system impulse response. Then, without considering the existence of noise, the echo signal of the radar at time t is:
式中p(τ)为雷达的发射脉冲,“*”表示卷积运算。In the formula, p(τ) is the transmitted pulse of the radar, and "*" represents the convolution operation.
为了更加清楚地解释该信号模型,人体呼吸的脉冲回波示意图如图6所示。从图中可以看出,人体呼吸的脉冲回波在快时间维度上的延时是随着慢时间变化的,而静态目标的脉冲回波延时是不变的。In order to explain the signal model more clearly, the schematic diagram of the pulse echo of human respiration is shown in Figure 6. It can be seen from the figure that the delay of the pulse echo of human breathing in the fast time dimension changes with the slow time, while the delay of the pulse echo of the static target is unchanged.
实际探测中,IR-UWB雷达系统沿快时间方向在各离散时刻τ=mTf(m=1,2,...,M)对每个脉冲波形上的各点进行采样,而沿慢时间方向在每个离散时刻t=nTs(n=1,2,...,N)采样一次脉冲波形。采样后的回波信号存储为一个(M×N)二维数组E,数组E中的元素用E(m,n)表示:In actual detection, the IR-UWB radar system samples each point on each pulse waveform at each discrete time τ=mT f (m=1,2,...,M) along the fast time direction, while the slow time The direction samples the pulse waveform once at each discrete time instant t= nTs (n=1, 2, . . . , N). The sampled echo signal is stored as a (M×N) two-dimensional array E, and the elements in the array E are represented by E(m,n):
信号E(m,n)为一个二维信号,m为快时间方向的采样序数,其中n为慢时间方向的采样序数。The signal E(m,n) is a two-dimensional signal, m is the sampling sequence number in the fast time direction, and n is the sampling sequence number in the slow time direction.
具体的,步骤2中的信号预处理包括如下子步骤:Specifically, the signal preprocessing in
步骤2.1:对E(m,n)、Eleft(m,n)和Eright(m,n)分别进行距离累积,以中间通道为例:Step 2.1: Accumulate distances for E(m,n), E left (m,n) and E right (m,n) respectively, taking the middle channel as an example:
本研究采用的IR-UWB雷达系统,其采样点数为8192,时窗为80ns,如果直接对雷达原始回波数据进行处理,计算量大,运算缓慢,对探测识别的实时性不利。在IR-UWB雷达接收的二维原始回波数据E(m,n)中,由于快时间维度上邻近距离点处的雷达回波的调制方式大致相同,且具有一定的相关性,因此可以在不影响有用信息的前提下,首先对雷达的原始回波数据E(m,n)沿着快时间维度进行距离累积:The IR-UWB radar system used in this study has 8192 sampling points and a time window of 80ns. If the original radar echo data is directly processed, the calculation amount is large and the operation is slow, which is unfavorable for the real-time detection and identification. In the two-dimensional original echo data E(m,n) received by the IR-UWB radar, since the modulation methods of the radar echoes at the adjacent distance points in the fast time dimension are roughly the same and have a certain correlation, it can be On the premise of not affecting the useful information, the original echo data E(m,n) of the radar is firstly accumulated along the fast time dimension:
式中E1(l,n)(l=1,2,…L)为距离累积后的回波数据,Q为沿着快时间维度累积的窗宽,L为累积后在快时间维度的距离点数,且其中表示向下取整。通过大量的实验研究表明,窗宽Q=40时,算法取得最优效果。那么经过距离累积后,原始回波数据E(m,n)的8192个对应距离点上的慢时间信号,就减少到E1(l,n)的200个(即L=200)对应距离点上的快时间信号,大大降低了雷达数据处理过程的运算量,减少了探测所需的运算时间,提高了探测效率。同时,沿着快时间维度的距离累积,也相当于对雷达回波的快时间信号做平滑滤波,一定程度上可以抑制快时间信号上的高频干扰。In the formula, E 1 (l,n) (l=1,2,...L) is the echo data after distance accumulation, Q is the window width accumulated along the fast time dimension, and L is the accumulated distance in the fast time dimension points, and in Indicates rounded down. A large number of experimental studies show that the algorithm achieves the optimal effect when the window width Q=40. Then after distance accumulation, the slow time signals at the 8192 corresponding distance points of the original echo data E(m,n) are reduced to 200 corresponding distance points (ie L=200) of E 1 (l,n) The fast time signal on the radar greatly reduces the calculation amount of the radar data processing process, reduces the calculation time required for detection, and improves the detection efficiency. At the same time, the distance accumulation along the fast time dimension is also equivalent to smoothing and filtering the fast time signal of the radar echo, which can suppress the high frequency interference on the fast time signal to a certain extent.
步骤2.2:将步骤2.1距离累积后的信号乘以式Ⅰ的指数增益曲线G(l),进行衰减补偿;Step 2.2: Multiply the accumulated signal in step 2.1 by the exponential gain curve G(l) of formula I to perform attenuation compensation;
其中,Vh表示雷达回波数据的最大值和人体目标反射回波的幅值的比值,Phuman是人体目标位置,l表示距离累积后的快时间序号,l=1,2,…,L且L为正整数;Among them, V h represents the ratio of the maximum value of the radar echo data to the amplitude of the reflected echo of the human target, P human is the position of the human target, l represents the fast time sequence number after distance accumulation, l=1,2,...,L and L is a positive integer;
由于雷达波在介质传播过程中被严重衰减,这会使远端的物体界面反射回波幅值大幅减小,进而导致远端的物体很难被探测到,所以需要在识别界面反射回波之前,对距离累积后的雷达回波E1(l,n)进行补偿。目前的超宽谱雷达(主要是探地雷达)都带有自动增益调节功能,通过对雷达回波进行分段的线性或者指数增益调节,对远端回波数据进行放大,但是由于缺乏电磁波传播介质界面信息的先验知识,其增益计算的准确率不高,往往会因为不准确的增益而导致噪声被过度放大,而真正的界面反射回波却因为增益较小得不到适当的放大,最终导致目标被误判和漏判的概率大大增加。Since the radar wave is severely attenuated during the propagation of the medium, the amplitude of the reflected echo from the far-end object interface will be greatly reduced, which will make it difficult for the far-end object to be detected. Therefore, it is necessary to identify the reflected echo from the interface. , and compensate the radar echo E 1 (l,n) after distance accumulation. The current ultra-wide-spectrum radars (mainly ground penetrating radars) are equipped with automatic gain adjustment functions, which can amplify the far-end echo data through segmented linear or exponential gain adjustment of the radar echoes. However, due to the lack of electromagnetic wave propagation The prior knowledge of the medium interface information, the accuracy of the gain calculation is not high, and the noise is often excessively amplified due to the inaccurate gain, while the real interface reflection echo cannot be properly amplified because the gain is small. Ultimately, the probability of the target being misjudged and missed is greatly increased.
对衰减进行分段补偿的方式,需要根据各段回波可能的衰减来计算不同的增益,其计算过程过于复杂,但是很难准确地计算增益,容易受到噪声的影响,导致错误的补偿。在实际探测中,我们可以先采用无补偿的形式探测并计算出人体目标的位置,将人体目标位置信息作为先验知识,由于电磁波在介质内传播过程中呈指数衰减,因此我们以人体目标的位置和相应的反射回波幅值为补偿基准,采取指数增益补偿的方法对雷达回波数据在快时间维度进行衰减补偿,补偿后再次按照信号处理流程对信号进行处理,并对目标进行探测区分。The method of segmental compensation for attenuation needs to calculate different gains according to the possible attenuation of each segment of the echo. The calculation process is too complicated, but it is difficult to calculate the gain accurately, and it is easily affected by noise, resulting in erroneous compensation. In actual detection, we can first detect and calculate the position of the human target in an uncompensated form, and take the position information of the human target as prior knowledge. The position and the corresponding reflected echo amplitude are the compensation benchmarks, and the exponential gain compensation method is used to compensate the attenuation of the radar echo data in the fast time dimension. After compensation, the signal is processed again according to the signal processing process, and the target is detected and distinguished. .
增益曲线的计算方法如下:The gain curve is calculated as follows:
假设理想的指数增益曲线形如eK×τ,其中K为一未知常数。对于经过预处理的数据,用E1(l,n)的最大值Amax(通常也是雷达回波数据的最大值)除以人体目标反射回波的幅值Ahuman(即人体目标位置Phuman在雷达回波数据中对应的幅值),得到的比值计为Vh。将这个比值Vh作为雷达回波位置为Phuman处的理想增益值,便可以计算出随快时间序号l变化的指数增益曲线,将计算指数增益曲线与雷达回波数据在快时间轴上相乘,便实现了对雷达回波数据的衰减补偿,衰减补偿后的信号为E2(l,n),且E2(l,n)=G(l)E1(l,n)。Assume an ideal exponential gain curve of the form e K×τ , where K is an unknown constant. For the preprocessed data, divide the maximum value A max of E 1 (l,n) (usually the maximum value of radar echo data) by the amplitude A human of the reflected echo of the human target (that is, the position of the human target P human the corresponding amplitude in the radar echo data), the resulting ratio is counted as V h . Taking this ratio V h as the ideal gain value where the radar echo position is P human , the exponential gain curve that changes with the fast time sequence number l can be calculated, and the calculated exponential gain curve is correlated with the radar echo data on the fast time axis. Multiplication, the attenuation compensation for radar echo data is realized, the signal after attenuation compensation is E 2 (l,n), and E 2 (l,n)=G(l)E 1 (l,n).
步骤2.3:对步骤2.2衰减补偿后的信号移除静态杂波;Step 2.3: remove static clutter from the signal after attenuation compensation in step 2.2;
在雷达式生命探测过程中,雷达的直达波以及探测范围内静止物体的反射,都会在雷达回波信号中形成很强的背景杂波,由于人体目标的呼吸信号非常微弱,通常都被这些背景杂波所淹没,如图3所示,在雷达的原始回波中,几乎看不到人体目标的生命信号,只能看到背景杂波。但在理想条件下,这些背景杂波都是静止的,称为静态杂波,而只有人体目标的生命信号是随时间变化的,因此,可以通过减去回波的慢时间信号均值将静态杂波完全滤除,只留下人体生命信号:In the process of radar-type life detection, the direct wave of radar and the reflection of stationary objects within the detection range will form strong background clutter in the radar echo signal. Overwhelmed by clutter, as shown in Figure 3, in the original echo of the radar, almost no life signal of the human target can be seen, only background clutter can be seen. But under ideal conditions, these background clutters are static, called static clutter, and only the vital signal of the human target changes with time. The waves are completely filtered out, leaving only human vital signs:
其中E3(l,n)为去背景后的雷达回波信号。where E 3 (l,n) is the radar echo signal after background removal.
图8为用matlab软件模拟的二维雷达信号,从图中可以看出,15ns和65ns附近是静态杂波,不随慢时间变化,而40ns附近为人体目标的呼吸信号,沿着慢时间维度有规律的变化。对模拟的二维雷达信号用去均值法进行静态杂波消除后,回波中的静态杂波成分被完全移除,只留下人体目标的呼吸信号,如图9所示。Figure 8 shows the two-dimensional radar signal simulated by matlab software. It can be seen from the figure that the static clutter near 15ns and 65ns does not change with the slow time, while the breathing signal of the human target near 40ns is along the slow time dimension. regular changes. After the static clutter is eliminated by the de-averaging method on the simulated two-dimensional radar signal, the static clutter components in the echo are completely removed, leaving only the breathing signal of the human target, as shown in Figure 9.
步骤2.4:对步骤2.3移除静态杂波后的信号进行线性趋势消除;Step 2.4: remove the linear trend of the signal after removing the static clutter in step 2.3;
IR-UWB雷达系统的硬件在采集数据过程中往往伴随着回波基线的漂移。线性的基线漂移会导致回波数据在低频段出现能量泄露,从而影响人体目标呼吸信号的探测和识别。因此本发明采用线性趋势消除(Linear Trend Subtraction,LTS)来移除雷达回波信号中的线性基线漂移。LTS通过线性最小二乘拟合估计出回波信号E3(l,n)在慢时间维度上的直流分量和低频线性漂移趋势后,再从回波数据中减去:The hardware of the IR-UWB radar system is often accompanied by the drift of the echo baseline in the process of collecting data. Linear baseline drift will lead to energy leakage of echo data in low frequency bands, which will affect the detection and recognition of human target breathing signals. Therefore, the present invention adopts Linear Trend Subtraction (LTS) to remove the linear baseline drift in the radar echo signal. LTS estimates the DC component and low-frequency linear drift trend of the echo signal E 3 (l,n) in the slow time dimension by linear least squares fitting, and then subtracts it from the echo data:
式中E4表示LTS处理后的雷达数据,E3表示去均值后的雷达数据E3(l,n);E4 T和E3 T分别为它们的转置行列式。n=[0,1,2...,N-1]T,这里y为一个N行2列的行列式,1N为一个长度是N且元素都是1的列向量,N为E3中快时间信号的个数。线性趋势消除以后再将E4 T转置得到E4(l,n)。In the formula, E 4 represents the radar data processed by LTS, and E 3 represents the radar data E 3 (l,n) after de-averaging; E 4 T and E 3 T are their transposed determinants respectively. n=[0,1,2...,N-1] T , where y is a determinant with N rows and 2 columns, 1 N is a column vector of length N and all elements are 1, and N is E 3 The number of medium and fast time signals. E 4 (l, n) is obtained by transposing E 4 T after the linear trend is eliminated.
步骤2.5:对步骤2.4线性趋势消除后的信号在慢时间维度上进行低通滤波;Step 2.5: perform low-pass filtering on the signal after the linear trend removal in step 2.4 in the slow time dimension;
由于IR-UWB雷达系统的硬件在工作过程中不可避免地会产生噪声,这些噪声相对于人体呼吸信号来说属于高频噪声,而人体目标的呼吸信号又是一个窄带的低频准周期信号,因此,为了有效滤除高频干扰,进一步提高雷达回波的信噪比,本发明在慢时间维度上对雷达回波信号进行低通滤波:Since the hardware of the IR-UWB radar system will inevitably generate noise during the working process, these noises are high-frequency noises compared to the human breathing signal, and the breathing signal of the human target is a narrow-band low-frequency quasi-periodic signal, so , in order to effectively filter out high-frequency interference and further improve the signal-to-noise ratio of the radar echo, the present invention performs low-pass filtering on the radar echo signal in the slow time dimension:
E5(l,q)=E4(l,n)*h(t)E 5 (l,q)=E 4 (l,n)*h(t)
式中,E5(l,q)为滤波后的雷达数据,”*”表示卷积运算,h(t)为有限冲击响应(Finite Impulse Response,FIR)滤波器的冲击函数。根据人体的呼吸频率,低通滤波器的截止频率设为0.5Hz,滤波器的阶数为120阶。低通滤波后的雷达回波信号为E5(l,q)。In the formula, E 5 (l,q) is the filtered radar data, "*" represents the convolution operation, and h(t) is the impulse function of the Finite Impulse Response (FIR) filter. According to the breathing frequency of the human body, the cutoff frequency of the low-pass filter is set to 0.5Hz, and the order of the filter is 120. The low-pass filtered radar echo signal is E 5 (l,q).
步骤2.6:对步骤2.5低通滤波后的信号沿慢时间轴累加,得到中间通道能量信号E6(l)、左边通道能量信号E6left(l)和右边通道能量信号E6right(l)。Step 2.6: Accumulate the low-pass filtered signals in step 2.5 along the slow time axis to obtain the middle channel energy signal E 6 (1), the left channel energy signal E 6left (1) and the right channel energy signal E 6right (1).
在实验中,每次采实验数据ts=80秒,根据慢时间信号的采样频率fs=16Hz可知,每次采得数据包含16×80=1280个快时间信号,即低通滤波后的雷达回波信号为E5(l,q)中的Q=tsfs=1280,L为距离累积后的数值200(200是由快时间信号的8192个采样点通过距离累积得到的,主要是为了减小运算量,该数值可以自由确定,累积至200-1000点均可以较少运算,且不影响信号质量)。In the experiment, the experimental data t s = 80 seconds are collected each time. According to the sampling frequency of the slow time signal f s = 16 Hz, it can be known that the data collected each time contains 16 × 80 = 1280 fast time signals, that is, the low-pass filtered The radar echo signal is Q = t s f s = 1280 in E 5 (l, q), L is the value after distance accumulation 200 (200 is obtained from 8192 sampling points of the fast time signal through distance accumulation, mainly In order to reduce the amount of calculation, the value can be determined freely, and it can be accumulated to 200-1000 points with less calculation without affecting the signal quality).
因为预处理中去均值、低通滤波等步骤需要一个收敛过程,因此前200(这里的200跟预处理中去均值、低通滤波的阶数之和有关,阶数越低,该值可以取的越小,阶数越高,该值需要取得越大)个快时间信号不作为目标探测识别的依据,予以剔除。我们将E5(l,q)中的1000(这里的1000是由采样时间长短决定的,16Hz的采样频率对应约62.5秒的数据,信号采得时间越长,该值越大)个快时间信号(200-1200)取绝对值以后,沿慢时间轴累加,形成能量信号E6(l)。Because the steps of de-averaging and low-pass filtering in preprocessing require a convergence process, the first 200 (200 here is related to the sum of the orders of de-averaging and low-pass filtering in preprocessing. The lower the order, the value can be taken The smaller the value is, the higher the order is, and the larger the value needs to be.) The fast time signal is not used as the basis for target detection and identification, and is eliminated. We set 1000 in E 5 (l, q) (the 1000 here is determined by the length of the sampling time, the sampling frequency of 16Hz corresponds to about 62.5 seconds of data, the longer the signal is collected, the greater the value) fast time After the signal (200-1200) takes the absolute value, it is accumulated along the slow time axis to form the energy signal E 6 (l).
能量信号E6(l),(l=1,2,...,200)是一个一维信号,其横坐标为快时间,对应为距离(m),纵坐标为沿慢时间累加形成的能量幅值。经过前述一系列信号处理以后,能量信号的幅值与生命体的生命信号密切相关,幅值越大,表明该距离处生命微动信号越强,越有可能是一个人体或者生物目标。The energy signal E 6 (l), (l=1,2,...,200) is a one-dimensional signal, the abscissa is the fast time, corresponding to the distance (m), and the ordinate is formed by the accumulation along the slow time energy magnitude. After the aforementioned series of signal processing, the amplitude of the energy signal is closely related to the life signal of the living body.
进一步的,步骤3的拐点提取包括如下子步骤:Further, the inflection point extraction in
步骤3.1:对步骤2获得的E6(l)、E6left(l)和E6right(l)去除直达波,得到E7(l)、E7left(l)和E7right(l),以中间通道为例:Step 3.1: Remove the direct waves from E 6 (l), E 6left (l) and E 6right (l) obtained in
去除直达波以消除收发天线之间的直达波对目标判别造成的影响,即将E6(l)前50点数据置零(置零的范围为前10-50点),形成新的去除直达波以后的得到能量信号E7(l);Remove the direct wave to eliminate the influence of the direct wave between the transmitting and receiving antennas on the target discrimination, that is, set the data of the first 50 points of E 6 (l) to zero (the range of zero-setting is the first 10-50 points), and form a new after removal of the direct wave. The obtained energy signal E 7 (l);
步骤3.2:对步骤3.1获得的信号提取拐点,得到一次拐点信号E8(l)、E8left(l)和E8right(l),以中间通道为例:Step 3.2: Extract the inflection point from the signal obtained in Step 3.1, and obtain the primary inflection point signals E 8 (l), E 8left (l) and E 8right (l), taking the middle channel as an example:
找出能量信号E7(l)的所有一次拐点,所有满足下式条件的点,称为一次拐点,将不满足拐点条件的各点对应的数值置零,满足条件的各点按原幅值、原位置存储在新的一维数组中形成一次拐点信号E8(l);Find all the primary inflection points of the energy signal E 7 (l), all the points that satisfy the following conditions are called primary inflection points, set the values corresponding to the points that do not meet the conditions of the inflection points to zero, and the points that satisfy the conditions are based on the original amplitude value , the original position is stored in a new one-dimensional array to form an inflection point signal E 8 (l);
由于电磁波传播的复杂性,通过去除直达波后的能量信号E7(l),很难直接从该信号中找到被探测目标。因此需要去除干扰,雷达回波中一种影响目标识别的主要干扰是峰值附近的旁瓣干扰,并且峰值的旁瓣呈现出一种向两侧衰减的特点。因此在本步骤中我们通过拐点提取来识别峰值信号,即当某一点处的能量信号幅值比它左右两侧相邻点处的信号幅值都大时,则判别该点为一次拐点。一次拐点判别规则如下:Due to the complexity of electromagnetic wave propagation, by removing the energy signal E 7 (l) of the direct wave, it is difficult to directly find the detected target from the signal. Therefore, it is necessary to remove the interference. One of the main interferences in the radar echo that affects target recognition is the side lobe interference near the peak, and the side lobes of the peak show a characteristic of attenuation to both sides. Therefore, in this step, we identify the peak signal by inflection point extraction, that is, when the amplitude of the energy signal at a certain point is larger than that of the adjacent points on the left and right sides of it, the point is judged as a primary inflection point. The first inflection point discrimination rule is as follows:
E7(l)>E7(l+1)∩E7(l)>E7(l-1)E 7 (l)>E 7 (l+1)∩E 7 (l)>E 7 (l-1)
步骤3.2:对步骤3.2获得的信号提取拐点,得到中间通道二次拐点信号E9(l)、左边通道二次拐点信号E9left(l)和右边通道二次拐点信号E9right(l),以中间通道为例:Step 3.2: Extract the inflection point from the signal obtained in step 3.2, and obtain the secondary inflection point signal E 9 (l) of the middle channel, the secondary inflection point signal E 9left (l) of the left channel and the secondary inflection point signal E 9right (l) of the right channel, with For example, the middle channel:
找出一次拐点信号E8(l)的所有二次拐点,所有满足下式条件的点,称为二次拐点,将不满足二次拐点条件的各点对应的数值置零,满足条件的各点按原幅值、原位置存储在新的一维数组中形成二次拐点信号E9(l)。Find all the quadratic inflection points of the primary inflection point signal E 8 (l). All the points that satisfy the following conditions are called quadratic inflection points. Click the original amplitude and store the original position in a new one-dimensional array to form a secondary inflection point signal E 9 (l).
从实际处理结果来看,一次拐点信号E8(l)仍然有干扰存在,导致无法准确识别目标,尤其是无法准确识别多目标。因此作为一种优化的实施方式,对所述的一次拐点信号E8(l)进行二次拐点提取,获得二次拐点信号,即保留一次拐点信号E8(l)中所有满足以下条件的点,识别这些点为二次拐点:Judging from the actual processing results, the primary inflection point signal E 8 (l) still has interference, which makes it impossible to accurately identify targets, especially multiple targets. Therefore, as an optimized implementation, the primary inflection point signal E 8 (1) is extracted twice to obtain a secondary inflection point signal, that is, all points in the primary inflection point signal E 8 (1) that satisfy the following conditions are reserved , identify these points as quadratic inflection points:
E8(l)>E8(l+a)∩E8(l)>E8(l-b)E 8 (l)>E 8 (l+a)∩E 8 (l)>E 8 (lb)
其中E8(l+a)为E8(l)右边第一个不为零的值,E8(l-b)为E8(l)左边第一个不为零的值。where E 8 (l+a) is the first non-zero value to the right of E 8 (l), and E 8 (lb) is the first non-zero value to the left of E 8 (l).
经过取二次拐点提取之后的能量信号E9(l)去除了绝大部分峰值的旁瓣干扰,并最大程度地保留了各目标位置处的信号能量,可大大提高多目标识别能力。The energy signal E 9 (l) after taking the second inflection point extraction removes most of the peak side lobe interference, and preserves the signal energy at each target position to the greatest extent, which can greatly improve the multi-target recognition ability.
具体的,步骤4.1:通过冒泡排序算法获得步骤3得到的每个二次拐点信号的最大值,并通过将最大值位置之后的相邻16个连续的幅值信号置零,去除最大值的拖尾;Specifically, step 4.1: obtain the maximum value of each quadratic inflection point signal obtained in
步骤4.2:通过冒泡排序算法获得每个二次拐点信号的第二大值,并通过将第二大值位置之后的相邻16个连续的幅值信号置零,去除第二大值的拖尾;Step 4.2: Obtain the second largest value of each quadratic inflection point signal through the bubble sort algorithm, and remove the drag of the second largest value by setting the adjacent 16 consecutive amplitude signals after the second largest value position to zero. tail;
步骤4.3:通过冒泡排序算法获得每个二次拐点信号的第三大值。Step 4.3: Obtain the third largest value of each quadratic inflection point signal through the bubble sort algorithm.
通过冒泡排序算法,找出中间通道二次拐点信号E9(l)上的最大值E9-max1,位置记为lmax1,并将最大值位置lmax1之后相邻的16个连续的幅值信号置零,以去除最大值的“拖尾”,然后通过冒泡排序算法找出第二大值E9-max2,位置记为lmax2,将E9(l)位置之后相邻的16个连续的幅值信号置零,以去除第二大值的“拖尾”,通过冒泡排序算法找出第三大值E9-max3,位置为lmax3;Through the bubble sort algorithm, find the maximum value E 9-max1 on the secondary inflection point signal E 9 (l) of the intermediate channel, the position is recorded as l max1 , and the adjacent 16 consecutive amplitudes after the maximum position l max1 The value signal is set to zero to remove the "tail" of the maximum value, and then the second largest value E 9-max2 is found by the bubble sort algorithm, and the position is recorded as l max2 , and the adjacent 16 after the position of E 9 (l) The consecutive amplitude signals are set to zero to remove the "tail" of the second largest value, and the third largest value E 9-max3 is found by the bubble sort algorithm, and the position is l max3 ;
由于人体胸壁具有一定的厚度,所以其回波信号E9(l)不光在人体胸壁表面位置处有高能量幅值出现,而在该位置后面一段距离上的能量幅值都较高,我们将其称之为“拖尾”,“拖尾”现象影响了多目标的个数判别。因为标记的E9(l)最大值E9-max1所处位置lmax1一定距离范围内不可能是其他目标,而只能是该位置处目标所产生的“拖尾”,为了去除这种“拖尾”,在这里将最大值位置lmax1之后相邻的16个连续的幅值信号置零。Because the human chest wall has a certain thickness, the echo signal E 9 (l) not only has a high energy amplitude at the position of the human chest wall surface, but also has a higher energy amplitude at a distance behind the position. We will It is called "smearing", and the phenomenon of "smearing" affects the discrimination of the number of multiple targets. Because the marked E 9 (l) maximum value E 9-max1 is located at the position l max1 cannot be other targets within a certain distance range, but can only be the "smear" generated by the target at this position, in order to remove this "smear""Tailing", where the adjacent 16 consecutive amplitude signals after the maximum position l max1 are set to zero.
对于对左边通道、右边通道同样按照上述方法分别进行处理,陆续找出左边通道二次拐点信号E9left(l)上的前三个最大值E9left-max1、E9left-max2、E9left-max3(即信号E9left(l)中的最大值、第二大值和第三大值),其中最大值、第二大值在找到后需要去除“拖尾”再寻找下一个大值,找到的前三个大值位置分别记为E9left-max1、E9left-max2、E9left-max3。The left channel and the right channel are also processed according to the above method, and the first three maximum values E 9left-max1 , E 9left-max2 , and E 9left-max3 on the secondary inflection point signal E 9left (l) of the left channel are successively found. (that is, the maximum value, the second maximum value and the third maximum value in the signal E 9left (l)), where the maximum value and the second maximum value need to be removed after finding the "tail" and then look for the next maximum value. The first three large value positions are respectively recorded as E 9left-max1 , E 9left-max2 , and E 9left-max3 .
找出右边通道二次拐点信号E9right(l)上的前三个最大值E9rihgt-max1、E9rihgt-max2、E9rihgt-max3(即信号E9right(l)中的的最大值、第二大值和第三大值),其中最大值、第二大值在找到后需要去除“拖尾”再寻找下一个大值,找到的前三个大值位置分别记为E9right-max1、E9right-max2、E9right-max3。Find the first three maxima E 9rihgt-max1 , E 9rihgt-max2 , E 9rihgt-max3 on the secondary inflection point signal E 9right (l) of the right channel (that is, the maximum value in the signal E 9right (l), the second The largest value and the third largest value), where the largest value and the second largest value need to be removed after finding the "tail" and then look for the next large value. The positions of the first three large values found are recorded as E 9right-max1 , E 9right-max2 , E 9right-max3 .
具体的,获取E9(l)最大值的波峰-背景比值VEtoB1,第二大值的波峰-背景比值VEtoB2,第三大值的波峰-背景比值VEtoB3,其中,Bave表示背景均值,且E9-max1表示E9(l)的最大值、且E9-max2表示E9(l)的第二大值、且E9-max3表示E9(l)的第三大值;Specifically, obtain the peak-to-background ratio V EtoB1 of the maximum value of E 9 (1), the second-largest peak-to-background ratio V EtoB2 , and the third-largest peak-to-background ratio V EtoB3 , where Bave represents the background mean , And E 9-max1 represents the maximum value of E 9 (l), And E 9-max2 represents the second largest value of E 9 (l), And E 9-max3 represents the third largest value of E 9 (l);
优选的,通过式Ⅱ计算得到最大值处的相关系数均值rm1、第二大值处的相关系数均值rm2和第三大值处的相关系数均值rm3:Preferably, the mean correlation coefficient rm1 at the maximum value, the mean correlation coefficient rm2 at the second maximum value, and the mean correlation coefficient rm3 at the third maximum value are obtained through formula II:
其中,i表示相关系数的序号且i=1,2,3,4,5,6,k表示前三大值的序号且k=1表示最大值的序号,k=2表示第二大值的序号,k=3表示第三大值的序号,rik表示前三大值的相关系数,rmk表示前三大值的相关系数均值,E5(l,q)表示步骤2.5得到的慢时间维度上进行低通滤波后的中间通道的信号,Emaxk(q)表示E5(l,q)的前三大值位置处的信号,E(maxk+(i-4))(q)表示与E5(l,q)的前三大值位置相邻的前三个位置的信号,(E(maxk+(i-3))(q)表示与E5(l,q)的前三大值位置相邻的后三个位置处的信号,Q表示E5(l,q)慢时间方向的信号总采样点数且Q为正整数,q表示慢时间方向的第q个信号采样点且q为正整数。Among them, i represents the serial number of the correlation coefficient and i=1,2,3,4,5,6, k represents the serial number of the first three values and k=1 represents the serial number of the maximum value, k=2 represents the second largest value Serial number, k=3 represents the serial number of the third largest value, r ik represents the correlation coefficient of the first three values, r mk represents the mean value of the correlation coefficient of the first three values, E 5 (l, q) represents the slow time obtained in step 2.5 The signal of the intermediate channel after low-pass filtering in the dimension, E maxk (q) represents the signal at the position of the first three values of E 5 (l, q), and E (maxk+(i-4)) (q) represents the same as The signal of the first three positions adjacent to the first three values of E 5 (l,q), (E (maxk+(i-3)) (q) represents the first three values of E 5 (l, q) Signals at the next three positions adjacent to each other, Q represents the total number of signal sampling points in the slow time direction of E 5 (l, q) and Q is a positive integer, q represents the qth signal sampling point in the slow time direction and q is positive integer.
如果采样时长为60s的话,在本例的慢时间信号的采样频率为fs=16Hz的情况下,信号的总采样点数Q为16×60=960点。If the sampling duration is 60s, and the sampling frequency of the slow-time signal in this example is fs=16Hz, the total number of sampling points Q of the signal is 16×60=960 points.
通过前述步骤,我们计算出了中间通道二次拐点信号E9(l)上的前三个最大值E9-max1、E9-max2、E9-max3,以及他们对应的位置lmax1、lmax2、lmax3;计算出了目标的波峰-背景比VEtoBk,并计算出了该位置处的慢信号与其相邻的六个慢信号的相关系数均值rm1、rm2和rm3。 Through the aforementioned steps, we have calculated the first three maximum values E 9 -max1 , E 9-max2 , E 9-max3 on the secondary inflection point signal E 9 (l) of the intermediate channel, and their corresponding positions l max1 , l max2 , l max3 ; the peak-to-background ratio V EtoBk of the target is calculated, and the mean values r m1 , r m2 and r m3 of the correlation coefficients between the slow signal at this position and its six adjacent slow signals are calculated.
影响VEtoBk的相关因素的关系公式如下,目标的个数与前三大值的序号相关,每个大值都对应一个目标:The relationship formula of the relevant factors affecting V EtoBk is as follows. The number of targets is related to the serial number of the first three values, and each large value corresponds to a target:
ak为常系数,在背景能量水平(含噪声)相同的条件下,人体目标k的胸壁面积越大反射能量越强,呼吸幅度越大呼吸信号能量越强,人体目标k与雷达距离越近其呼吸信号能量越强,此时目标k的波峰-背景比VEtoBk就越大,反之VEtoBk就越小。在多目标场景下,二次拐点信号前几个最大值E9-max1、E9-max2、E9-max3幅值是依次递减的,而二次拐点信号背景均值Bave为同一个值,因此,针对不同目标,我们需要设定不同阈值进行识别。a k is a constant coefficient. Under the same background energy level (including noise), the larger the chest wall area of the human target k, the stronger the reflected energy, the larger the breathing amplitude, the stronger the breathing signal energy, and the closer the human target k is to the radar. The stronger the respiratory signal energy is, the larger the peak-to-background ratio V EtoBk of the target k is at this time, on the contrary, the smaller V EtoBk is. In the multi-target scenario, the amplitudes of the first few maximum values E 9- max1 , E 9-max2 , and E 9-max3 of the secondary inflection point signal decrease in turn, while the background mean value Bave of the secondary inflection point signal is the same value, Therefore, for different targets, we need to set different thresholds for identification.
影响rmk的相关因素的关系公式如下:The relational formula for the relevant factors affecting r mk is as follows:
bk为常系数,在噪声水平相同的条件下,人体目标k的胸壁厚度(从前胸到后背的距离)越厚,其对应各距离点的呼吸信号(慢时间信号)越反映为有规律的呼吸信号,即r1k~r6k均呈现为较高的值,较为一致,故均值rmk越高;而人体目标k的呼吸规律程度越高,则目标距离点处呼吸信号与其左右相邻的几个慢时间信号的相关性越高,均值rmk值越大。根据这些特点我们确定以下原则来进行人体目标个数判别。b k is a constant coefficient. Under the condition of the same noise level, the thicker the chest wall thickness (the distance from the front chest to the back) of the human target k, the more regular the breathing signal (slow time signal) corresponding to each distance point is reflected. The breathing signals of r 1k ~ r 6k are all high and consistent, so the average value r mk is higher; and the higher the degree of breathing regularity of the human target k, the breathing signal at the target distance point is adjacent to its left and right. The higher the correlation of several slow-time signals of , the larger the mean r mk value. According to these characteristics, we determine the following principles to discriminate the number of human targets.
具体的,步骤5中,通过E9left(l)前三大值的位置lleft-maxk和E9right(l)前三大值的位置lright-maxk确定目标的方位,包括:Specifically, in
a)如果|lleft-maxk-lright-maxk|≤2,则目标在中轴线上,所述中轴线为接收天线与中间通道发射天线的连线;a) If |l left-maxk -l right-maxk |≤2, then the target is on the central axis, and the central axis is the connection between the receiving antenna and the transmitting antenna of the middle channel;
b)如果(lleft-maxk-lright-maxk)≤-2,则目标在中轴线的左边区域,所述左边区域为中轴线一侧的左边通道发射天线所在的区域;b) If (l left-maxk -l right-maxk )≤-2, the target is in the left area of the central axis, and the left area is the area where the left channel transmit antenna on one side of the central axis is located;
c)如果(lleft-maxk-lright-maxk)>2,则目标在中轴线的右边区域,所述右边区域为中轴线一侧的右边通道发射天线所在的区域。c) If (l left-maxk -l right-maxk )>2, the target is in the right area of the central axis, and the right area is the area where the right channel transmit antenna on one side of the central axis is located.
具体的,以目标2为例说明其定位方法。前面我们已经分别计算出了中间通道、左边通道、右边通道的二次拐点信号第二大值的位置lmax2、lleft-max2、lright-max2。目标2的径向距离为lmax2对应的距离:12*lmax2/200米,下面按照以下原则确定目标2处于探测区域的左半区域、右半区域还是径向中轴上。Specifically, the positioning method is described by taking
a)如果|lleft-max2-lright-max2|≤2(即两个通道第二大值位置距离差的绝对值小于0.12米),则目标2在中轴线上;a) If |l left-max2 -l right-max2 |≤2 (that is, the absolute value of the distance difference between the second largest position of the two channels is less than 0.12 meters), then the
b)如果(lleft-max2-lright-max2)≤-2,则目标2在中轴线的左半区域;b) If (l left-max2 -l right-max2 )≤-2, then target 2 is in the left half area of the central axis;
c)如果(lleft-max2-lright-max2)>2,则目标2在中轴线的右半区域;c) If (l left-max2 -l right-max2 )>2, then target 2 is in the right half area of the central axis;
根据同样的原则,利用中间通道、左边通道、右边通道的二次拐点信号最大值的位置lmax1、lleft-max1、lright-max1对目标1进行定位,利用中间通道、左边通道、右边通道的二次拐点信号第三大值的位置lmax3、lleft-max3、lright-max3对目标3进行定位,这样就完成了对所有三个目标的定位。According to the same principle, use the positions l max1 , l left-max1 , l right-max1 of the maximum value of the secondary inflection point signal of the middle channel, left channel and right channel to locate
实施例2Example 2
本实施例采用多人体目标识别定位方法和三通道IR-UWB生物雷达,在实施例1的基础上,还公开了以下技术特征,在实验室进行穿墙探测定位验证实验。实验对象为三名健康青年男性(目标1、目标2和目标3)进行穿透单砖墙条件下的探测实验,并给出目标个数判别及定位结果。其中目标1静止站立于墙后2.3米远处偏右侧方向;目标2静止站立于墙后5.7米远处偏左侧方向;目标3静止站立于墙后7.8米远处中轴线方向。This embodiment adopts the multi-human target recognition and positioning method and the three-channel IR-UWB biological radar. On the basis of
采用三通道IR-UWB生物雷达穿墙探测后,对三个通道的雷达回波信号进行处理和计算,得到VEtoB1=4.01,VEtoB2=2.93,VEtoB=2.17,rm1=0.97,rm2=0.95,rm1=0.89。根据多目标人数判别方法流程可以判断该次探测结果为三个人体目标。根据中间通道去除“拖尾”后的二次拐点信号前个三最大值的位置lmax1、lmax2、lmax3可知三个目标的径向距离分别为2.34米、5.64米、7.86米。确定各目标径向距离以后,再结合左边通道前个三最大值位置和右边通道前三个最大值位置确定目标1位于探测区域右侧方向,目标2位于探测区域左侧方向,目标3位于探测区域中轴线方向。探测结果与实际三个目标站立分布情况相符,雷达识别定位结果正确,三目标识别定位结果如图13所示。After using the three-channel IR-UWB bio-radar to detect through the wall, the radar echo signals of the three channels are processed and calculated to obtain V EtoB1 = 4.01, V EtoB2 = 2.93, V EtoB = 2.17, r m1 = 0.97, r m2 =0.95, r m1 =0.89. According to the multi-target number identification method process, it can be determined that the detection result is three human targets. According to the positions l max1 , l max2 , and l max3 of the first three maximum values of the secondary inflection point signal after removing the "smear" in the middle channel, the radial distances of the three targets are 2.34 meters, 5.64 meters, and 7.86 meters, respectively. After determining the radial distance of each target, combine the position of the first three maximum values of the left channel and the first three maximum values of the right channel to determine that
Claims (7)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201911018557.7A CN110879389B (en) | 2019-10-24 | 2019-10-24 | Multi-human-body target identification and positioning method based on multi-base IR-UWB (infrared-ultra wide band) biological radar signals |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201911018557.7A CN110879389B (en) | 2019-10-24 | 2019-10-24 | Multi-human-body target identification and positioning method based on multi-base IR-UWB (infrared-ultra wide band) biological radar signals |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN110879389A true CN110879389A (en) | 2020-03-13 |
| CN110879389B CN110879389B (en) | 2022-09-16 |
Family
ID=69728476
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201911018557.7A Active CN110879389B (en) | 2019-10-24 | 2019-10-24 | Multi-human-body target identification and positioning method based on multi-base IR-UWB (infrared-ultra wide band) biological radar signals |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN110879389B (en) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN112255636A (en) * | 2020-09-04 | 2021-01-22 | 奥诚信息科技(上海)有限公司 | Distance measuring method, system and equipment |
| CN113179549A (en) * | 2021-04-25 | 2021-07-27 | 深圳大漠大智控技术有限公司 | Method for acquiring distance between base station and label under low signal-to-noise ratio and related components thereof |
| CN113786176A (en) * | 2021-08-17 | 2021-12-14 | 中国电子科技南湖研究院 | Accurate millimeter wave radar respiration heartbeat measuring method, system and storage medium |
| CN115089839A (en) * | 2022-08-25 | 2022-09-23 | 柏斯速眠科技(深圳)有限公司 | Head detection method and system and control method and system of sleep-assisting device |
| CN116594408A (en) * | 2023-07-17 | 2023-08-15 | 深圳墨影科技有限公司 | Mobile collaborative robot path planning system and method |
Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102073042A (en) * | 2010-10-27 | 2011-05-25 | 中国人民解放军第四军医大学 | Multichannel multi-human body target two-dimensional positioning method based on UWB (Ultra Wide Band) radar type life detector |
| US20130050011A1 (en) * | 2011-08-22 | 2013-02-28 | Industry-Academic Cooperation Foundation, Yonsei University | Ultrawideband radar |
| CN103308899A (en) * | 2013-05-23 | 2013-09-18 | 中国人民解放军第四军医大学 | Biological radar human body target identification method based on zero crossing point technology |
| CN103616729A (en) * | 2013-11-06 | 2014-03-05 | 中国人民解放军第四军医大学 | UWB bio-radar-based multiple-human body object estimation method and system |
| WO2014151133A1 (en) * | 2013-03-15 | 2014-09-25 | Kirill Mostov | Apparatus and methods for remote monitoring of physiological parameters |
| US20150054670A1 (en) * | 2010-10-27 | 2015-02-26 | Jianqi Wang | Multichannel UWB-based radar life detector and positioning method thereof |
| US20150369911A1 (en) * | 2014-05-16 | 2015-12-24 | Mohamed Mabrouk | Remote sensing of human breathing at a distance |
| CN106019254A (en) * | 2016-05-20 | 2016-10-12 | 中国人民解放军第四军医大学 | Separating and identifying method for multiple human body objects in distance direction of UWB impact biological radar |
| CN109521422A (en) * | 2018-10-15 | 2019-03-26 | 中国人民解放军第四军医大学 | A kind of multiple target life detection method and detection radar based on radar signal |
-
2019
- 2019-10-24 CN CN201911018557.7A patent/CN110879389B/en active Active
Patent Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102073042A (en) * | 2010-10-27 | 2011-05-25 | 中国人民解放军第四军医大学 | Multichannel multi-human body target two-dimensional positioning method based on UWB (Ultra Wide Band) radar type life detector |
| US20150054670A1 (en) * | 2010-10-27 | 2015-02-26 | Jianqi Wang | Multichannel UWB-based radar life detector and positioning method thereof |
| US20130050011A1 (en) * | 2011-08-22 | 2013-02-28 | Industry-Academic Cooperation Foundation, Yonsei University | Ultrawideband radar |
| WO2014151133A1 (en) * | 2013-03-15 | 2014-09-25 | Kirill Mostov | Apparatus and methods for remote monitoring of physiological parameters |
| CN103308899A (en) * | 2013-05-23 | 2013-09-18 | 中国人民解放军第四军医大学 | Biological radar human body target identification method based on zero crossing point technology |
| CN103616729A (en) * | 2013-11-06 | 2014-03-05 | 中国人民解放军第四军医大学 | UWB bio-radar-based multiple-human body object estimation method and system |
| US20150369911A1 (en) * | 2014-05-16 | 2015-12-24 | Mohamed Mabrouk | Remote sensing of human breathing at a distance |
| CN106019254A (en) * | 2016-05-20 | 2016-10-12 | 中国人民解放军第四军医大学 | Separating and identifying method for multiple human body objects in distance direction of UWB impact biological radar |
| CN109521422A (en) * | 2018-10-15 | 2019-03-26 | 中国人民解放军第四军医大学 | A kind of multiple target life detection method and detection radar based on radar signal |
Non-Patent Citations (12)
| Title |
|---|
| EUN CHONG LEE ET AL.: "Performande enhancement of multi-human detection using an IR-UWB radar by an adaptive thresholding algorithm", 《2016 IEEE INTERNATIONAL CONFERENCE ON NETWORK INFRASTRUCTURE AND DIGITAL CONTENT》 * |
| HAO LV ET AL.: "Multi-target human sensing via UWB bio-radar based on multiple antennas", 《2013 IEEE INTERNATIONAL CONFERENCE OF IEEE REGION 10》 * |
| HONGMING SHEN ET AL.: "Respiration and Heartbeat Rates Measurement Based on Autocorrelation Using IR-UWB Radar", 《IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS》 * |
| ZHAO LI ET AL.: "Detection of People Trapped under the Ruins Using Dual-frequency IR-UWB Radar", 《PROCEEDINGS OF THE 15TH EUROPEAN CONFERENCE》 * |
| 张扬等: "基于超宽谱雷达多目标穿墙探测定位技术的研究", 《医疗卫生装备》 * |
| 张杨等: "基于单基地生命探测雷达的多目标识别方法研究", 《医疗卫生装备》 * |
| 张芫蓓等: "基于双源IR-UWB生物雷达的强反射杂波抑制", 《中国医疗设备》 * |
| 殷悦等: "基于EEMD和频带能量比特性的人与动物雷达微动信号辨识", 《中国医疗设备》 * |
| 王芳芳等: "UWB信号的穿墙传播特性研究", 《南京邮电大学学报(自然科学版)》 * |
| 薛慧君等: "遮蔽情况下多人体目标的探测和识别研究", 《中国医疗设备》 * |
| 费翔宇等: "穿墙定位雷达静止人体目标的信号处理", 《信号处理》 * |
| 陈光等: "超宽带废墟搜救雷达的多生命体目标识别", 《现代电子技术》 * |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN112255636A (en) * | 2020-09-04 | 2021-01-22 | 奥诚信息科技(上海)有限公司 | Distance measuring method, system and equipment |
| CN113179549A (en) * | 2021-04-25 | 2021-07-27 | 深圳大漠大智控技术有限公司 | Method for acquiring distance between base station and label under low signal-to-noise ratio and related components thereof |
| CN113179549B (en) * | 2021-04-25 | 2022-02-18 | 深圳大漠大智控技术有限公司 | Method for acquiring distance between base station and label under low signal-to-noise ratio and related components thereof |
| CN113786176A (en) * | 2021-08-17 | 2021-12-14 | 中国电子科技南湖研究院 | Accurate millimeter wave radar respiration heartbeat measuring method, system and storage medium |
| CN113786176B (en) * | 2021-08-17 | 2024-03-15 | 中国电子科技南湖研究院 | Accurate millimeter wave radar breath and heartbeat measurement method, system and storage medium |
| CN115089839A (en) * | 2022-08-25 | 2022-09-23 | 柏斯速眠科技(深圳)有限公司 | Head detection method and system and control method and system of sleep-assisting device |
| CN115089839B (en) * | 2022-08-25 | 2022-11-11 | 柏斯速眠科技(深圳)有限公司 | Head detection method and system and control method and system of sleep-assisting device |
| CN116594408A (en) * | 2023-07-17 | 2023-08-15 | 深圳墨影科技有限公司 | Mobile collaborative robot path planning system and method |
| CN116594408B (en) * | 2023-07-17 | 2023-10-13 | 深圳墨影科技有限公司 | Mobile collaborative robot path planning system and method |
Also Published As
| Publication number | Publication date |
|---|---|
| CN110879389B (en) | 2022-09-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN110879389B (en) | Multi-human-body target identification and positioning method based on multi-base IR-UWB (infrared-ultra wide band) biological radar signals | |
| US11435470B2 (en) | Multi-target life detection method based on radar signal and detection radar | |
| US11525889B2 (en) | Non-contact method for detectiing and distinguishing human and animal based on IR-UWB bio-radar signal | |
| CN106019254B (en) | A kind of UWB impacts the more human body target distances of bioradar to separation discrimination method | |
| CN109143179B (en) | A frequency agile radar signal processing method and device based on variable repetition frequency technology | |
| CN110879388B (en) | Non-contact detection distinguishing method for human and animal based on IR-UWB (infrared-ultra wide band) biological radar signals | |
| CN103616729B (en) | A kind of multiple human body target evaluation methods and system based on UWB bioradar | |
| CN101509972B (en) | Wideband radar detection method based on high-resolution target range image correction correlation matrix | |
| WO2012055148A1 (en) | Multichannel ultra wide band based (uwb-based) radar life detector and positioning method thereof | |
| CN108490410B (en) | Two-coordinate radar sea target joint detection and tracking method | |
| CN106814353A (en) | A kind of Radar Signal Processing System | |
| CN102073042B (en) | Multichannel multi-human body target two-dimensional positioning method based on UWB (Ultra Wide Band) radar type life detector | |
| CN106127110B (en) | A kind of human body fine granularity motion recognition method based on UWB radar and optimal SVM | |
| CN106597429A (en) | Radar-signal-processing-system-based speed tracking subsystem | |
| CN110988834B (en) | A Pulse Arrival Time Measurement Method Based on Adaptive Threshold and Double Threshold | |
| CN106546979B (en) | A kind of ultra-wide spectrum radar type human body respiration enhancing detection method based on multi-antenna data fusion | |
| CN101881826A (en) | Scan-Mode Sea Clutter Local Multifractal Object Detector | |
| CN103454691A (en) | Scanning probing method and system based on UWB biological radar | |
| CN108776336A (en) | A kind of adaptive through-wall radar static human body object localization method based on EMD | |
| CN108872977B (en) | Life body double-station cooperative detection method based on single-channel ultra-wideband radar | |
| CN114545342B (en) | Radar pulse signal parameter measurement method using multichannel reconnaissance receiver | |
| CN105974375A (en) | Method of suppressing timing jitter in ultra-wideband through-wall radar | |
| CN106093868A (en) | A kind of strong reflection clutter removing method based on double source IR UWB bioradar | |
| CN106646451A (en) | Angle tracking subsystem based on radar signal processing system | |
| CN110161491A (en) | A kind of ranging and respiratory rate estimation method for faint life entity |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |
























