CN108461154B - A hospital infection monitoring and management device and monitoring and management method - Google Patents

A hospital infection monitoring and management device and monitoring and management method Download PDF

Info

Publication number
CN108461154B
CN108461154B CN201810126014.6A CN201810126014A CN108461154B CN 108461154 B CN108461154 B CN 108461154B CN 201810126014 A CN201810126014 A CN 201810126014A CN 108461154 B CN108461154 B CN 108461154B
Authority
CN
China
Prior art keywords
hospital
infection
information
server
monitoring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810126014.6A
Other languages
Chinese (zh)
Other versions
CN108461154A (en
Inventor
陈潇君
姚静
唐炜
刘妍
孙艳
石磊
邢虎
郭剑峰
潘瑞蓉
徐小阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Affiliated Hospital of Jiangsu University
Original Assignee
Affiliated Hospital of Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Affiliated Hospital of Jiangsu University filed Critical Affiliated Hospital of Jiangsu University
Priority to CN201810126014.6A priority Critical patent/CN108461154B/en
Publication of CN108461154A publication Critical patent/CN108461154A/en
Application granted granted Critical
Publication of CN108461154B publication Critical patent/CN108461154B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/80ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for detecting, monitoring or modelling epidemics or pandemics, e.g. flu
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Databases & Information Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Pathology (AREA)
  • Epidemiology (AREA)
  • Biomedical Technology (AREA)
  • Primary Health Care (AREA)
  • Computing Systems (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

The invention discloses a kind of Hospital Infection managing device and method for managing and monitoring, including Hospital Infection management server, information for hospital integrated platform, hospital information system, laboratory information system, Picture Archiving and Communication System, electronic medical record system, nosocomial infection detection service device, wechat enterprise number server, smart phone;It is pushed by new media information, picture and text propaganda and education, the various aspects interaction function such as questionnaire survey realizes plan (Plan), executes (Do), check (Check), adjusts the nosocomial infection overall flow management of (Action) closed loop.The present invention improves doubtful institute's sense detection accuracy, reduces doctor's workload, optimizes Hospital Infection management process, can be applied to Hospital Infection.

Description

一种医院感染监控管理装置及监控管理方法A hospital infection monitoring and management device and monitoring and management method

技术领域technical field

本发明属于医疗卫生技术领域,具体涉及一种医院感染监控管理装置及监控管理方法。The invention belongs to the technical field of medical and health care, and in particular relates to a hospital infection monitoring and management device and a monitoring and management method.

背景技术Background technique

医院感染是指住院病人在医院内获得的感染,包括在住院期间发生的感染和在医院内获得出院后发生的感染,很多医院实施了信息化医院感染监控管理工作。随着机器学习、微信企业号和医院信息平台的发展,医院感染信息管理工作迎来了进一步改善的机会。传统的医院感染信息系统实现了医院感染的基本监控和管理功能。公开号CN201410658773(授权公告日:2017.05.17)公开了一种院感设备远程监控管理系统以及监控管理方法,该发明通过前端装置监控到院感设备的运行数据以及院感设备工作完成情况的数据,解决了需要人工采集数据的方式才能获得院感设备运行情况和工作完成状况,减少了监控时间,并提高了监控效率,但是缺乏对院感事件的流程化管理。公开号CN201410636914(申请日:2014.11.13)公开了一种医院感染预防与控制全流程管理系统及其方法,采用硬件结构的设计,通过设定好的院感预警判读条件信息进行全面、快速、准确的检索,极大的缩小了感控工作人员所需查阅病例的范围,提高了感控工作效率,但是缺乏新媒体具备的信息推送,图文宣教,问卷调查等多方面互动功能,而且预警判读主要基于采集数据的基本方法,缺少机器学习的分析判断方式。公开号CN 201611214892(申请日:2016.12.26)公开了预测、诊断、治疗和控制医院感染的智能决策辅助系统,可以根据患者的病历情况以及医院管理工作人员采取的措施结合流行病学模型有效的预判患者发生感染的概率,并作出相应的诊断和治疗建议,但是也缺乏新媒体具备的信息推送,图文宣教,问卷调查等多方面互动功能,对于院感的预测方法采用固定权重范围的方式,具有一定的误差,也没有针对不同的感染类别分类处理,没有计算分析出可能造成各类别医院感染的主成分因素,会影响预判患者发生感染的概率计算。Nosocomial infection refers to the infection acquired by inpatients in the hospital, including the infection that occurs during hospitalization and the infection that occurs after discharge in the hospital. Many hospitals have implemented information-based hospital infection monitoring and management. With the development of machine learning, WeChat enterprise account and hospital information platform, hospital infection information management has ushered in opportunities for further improvement. The traditional nosocomial infection information system realizes the basic monitoring and management functions of nosocomial infection. Publication No. CN201410658773 (Authorization Announcement Date: 2017.05.17) discloses a remote monitoring and management system and monitoring and management method for hospital-sensing equipment. The invention monitors the operation data of the hospital-sensing equipment and the data of the completion of the hospital-sensing equipment work through the front-end device , solves the need to manually collect data to obtain the operation status of hospital infection equipment and work completion status, reduces monitoring time, and improves monitoring efficiency, but lacks the process management of hospital infection events. Publication No. CN201410636914 (application date: 2014.11.13) discloses a hospital infection prevention and control whole-process management system and a method thereof, which adopts the design of hardware structure and conducts comprehensive, rapid, Accurate retrieval greatly reduces the scope of cases that the infection control staff need to consult, and improves the efficiency of infection control work. Interpretation is mainly based on the basic method of collecting data, and lacks the analysis and judgment method of machine learning. Publication No. CN 201611214892 (application date: 2016.12.26) discloses an intelligent decision-making assistance system for predicting, diagnosing, treating and controlling nosocomial infections, which can be effectively combined with epidemiological models according to patients' medical records and measures taken by hospital management staff. Predict the probability of infection in patients, and make corresponding diagnosis and treatment recommendations, but it also lacks the interactive functions of information push, graphic education, questionnaire survey and other interactive functions that new media have. The method has certain errors, and it does not classify and deal with different infection categories, and does not calculate and analyze the principal component factors that may cause various types of nosocomial infections, which will affect the calculation of the probability of predicting the occurrence of infection in patients.

发明内容SUMMARY OF THE INVENTION

本发明的目的在于提供一种医院感染监控管理装置及监控管理方法,以进一步推进医院感染检测的技术,实现医院感染监控管理功能。The purpose of the present invention is to provide a nosocomial infection monitoring and management device and a monitoring and management method, so as to further advance the technology of nosocomial infection detection and realize the function of nosocomial infection monitoring and management.

为了解决上述技术问题,本发明所使用现有的成熟的机器学习、微信企业号相关功能和医院信息平台技术等,通过信息化手段和硬件设备的设计,整合信息推送,图文宣教,问卷调查等功能,实现发明目的。采用的具体技术方案如下:In order to solve the above technical problems, the present invention uses the existing mature machine learning, WeChat enterprise account related functions and hospital information platform technology, etc., through the design of information technology and hardware equipment, integrated information push, graphic propaganda and education, questionnaire survey and other functions to achieve the purpose of the invention. The specific technical solutions adopted are as follows:

一种医院感染监控管理装置,包括医院感染监控管理服务器、医院信息集成平台、医院信息系统、实验室信息系统、医学影像存档与通讯系统、电子病历系统、医院感染检测服务器、微信企业号服务器、智能手机;A hospital infection monitoring and management device, comprising a hospital infection monitoring and management server, a hospital information integration platform, a hospital information system, a laboratory information system, a medical image archiving and communication system, an electronic medical record system, a hospital infection detection server, a WeChat enterprise account server, smart phone;

所述的医院感染监控管理服务器与所述的医院信息集成平台通过医院LAN连接;The hospital infection monitoring and management server is connected with the hospital information integration platform through the hospital LAN;

所述的医院信息集成平台与所述的医院信息系统通过医院LAN连接;The hospital information integration platform is connected with the hospital information system through the hospital LAN;

所述的医院信息集成平台与所述的实验室信息系统通过医院LAN连接;The hospital information integration platform is connected with the laboratory information system through the hospital LAN;

所述的医院信息集成平台与所述的医学影像存档与通讯系统通过医院LAN连接;The hospital information integration platform is connected with the medical image archiving and communication system through the hospital LAN;

所述的医院信息集成平台与所述的电子病历系统通过医院LAN连接;The hospital information integration platform is connected with the electronic medical record system through the hospital LAN;

所述的医院感染监控管理服务器与所述的医院感染检测服务器通过医院LAN连接;The hospital infection monitoring and management server is connected with the hospital infection detection server through the hospital LAN;

所述的医院感染监控管理服务器与所述的微信企业号服务器通过医院LAN连接;The hospital infection monitoring and management server is connected with the WeChat enterprise account server through the hospital LAN;

所述的微信企业号服务器与所述的智能手机通过医院无线网络连接;The WeChat enterprise number server is connected with the smart phone through the hospital wireless network;

所述的医院信息系统用于采集患者的姓名,住院号等住院基本信息以及抗生素药品医嘱等医疗信息。The hospital information system is used to collect basic hospitalization information such as the patient's name, hospitalization number, etc., as well as medical information such as antibiotic drug orders.

所述的实验室信息系统用于采集患者血液检查和耐药菌检测等信息。The laboratory information system is used for collecting information such as patient blood test and drug resistance bacteria detection.

所述的医学影像存档与通讯系统用于采集患者胸部X线检查、CT检查报告结果信息。The medical image archiving and communication system is used for collecting the result information of the patient's chest X-ray examination and CT examination report.

所述的电子病历系统用于采集患者体温状态信息。The electronic medical record system is used to collect the patient's body temperature state information.

所述的医院信息集成平台用于管理连接医院信息系统,实验室信息系统,医学影像存档与通讯系统,电子病历系统。The hospital information integration platform is used for managing and connecting hospital information systems, laboratory information systems, medical image archiving and communication systems, and electronic medical record systems.

所述的医院感染检测服务器用于分析处理患者的基本医疗数据,并且检测出疑似医院感染的患者。The nosocomial infection detection server is used for analyzing and processing the basic medical data of the patients, and detecting the patients suspected of nosocomial infection.

所述的微信企业号服务器用于提供信息推送,图文宣教,问卷调查等多方面互动功能。The WeChat enterprise account server is used to provide various interactive functions such as information push, graphic propaganda and education, and questionnaire survey.

所述的智能手机用于接收和显示微信企业号服务器提供的各类服务信息,并发送相关回馈信息给微信企业号服务器。The smart phone is used to receive and display various service information provided by the WeChat enterprise account server, and send relevant feedback information to the WeChat enterprise account server.

所述的医院感染监控管理服务器用于管理连接医院信息集成平台,医院感染检测服务器,微信企业号服务器,管理医院感染的整体流程。The hospital infection monitoring and management server is used to manage and connect the hospital information integration platform, the hospital infection detection server, and the WeChat enterprise account server, and to manage the overall process of hospital infection.

所述的一种医院感染监控管理方法如下:The described a hospital infection monitoring and management method is as follows:

步骤A1,院感工作人员整理医院感染相关检测方法和政策,通过微信企业号服务器提供的图文宣教功能发送给医生的智能手机;Step A1, the hospital infection staff organizes the detection methods and policies related to hospital infection, and sends them to the doctor's smartphone through the image and text education function provided by the WeChat enterprise account server;

步骤A2,医院感染监控管理服务器使用医院感染模型建立方法在医院感染检测服务器建立医院感染模型,医院感染监控管理服务器使用医院感染检测方法检测疑似医院感染事件,并推送给医生,医生使用医院感染上报方法上报医院感染事件;Step A2, the hospital infection monitoring and management server uses the hospital infection model establishment method to establish a hospital infection model on the hospital infection detection server, the hospital infection monitoring and management server uses the hospital infection detection method to detect the suspected hospital infection event, and pushes it to the doctor, and the doctor reports the hospital infection using the hospital infection detection method. Methods to report nosocomial infection events;

步骤A3,院感工作人员接收并处理医院感染事件;Step A3, the hospital infection staff receives and handles the nosocomial infection event;

步骤A4,院感工作人员整理医院感染监控管理服务器中相关感染病例,生成问卷调查,通过微信企业号服务器提供的问卷调查功能发送给医生的智能手机,医生填写完毕后发送回医院感染监控管理服务器,院感工作人员分析医生上报数据,问卷调查数据,形成整改意见,重新调整医院感染相关检测方法和政策。Step A4, the hospital infection staff organizes the relevant infection cases in the hospital infection monitoring and management server, generates a questionnaire, and sends it to the doctor's smartphone through the questionnaire function provided by the WeChat enterprise account server. After the doctor completes the filling, it is sent back to the hospital infection monitoring and management server , the hospital infection staff analyzes the data reported by doctors and the questionnaire survey data, forms rectification opinions, and readjusts the detection methods and policies related to hospital infection.

所述的医院感染上报方法如下:The methods for reporting nosocomial infections are as follows:

步骤B1,在医院感染监控管理服务器中设置感染类别集合为{C1,C2...Cj...CJ},其中Cj为第j个感染类别,1≤j≤J,J为感染类别总数,Cj={D1,D2...Dk...DK},其中Dk为第j个感染类别的第k个病例,1≤k≤K,K为第j个感染类别的病例总数;Step B1, set the infection category set in the hospital infection monitoring and management server as {C 1 , C 2 ... C j ... C J }, where C j is the j-th infection category, 1≤j≤J, J is the total number of infection categories, C j = {D 1 , D 2 ... D k ... D K }, where D k is the kth case of the jth infection category, 1≤k≤K, K is the kth case The total number of cases in j infection categories;

步骤B2,医生自行查看在院患者病例信息,或者查看医院感染监控管理服务器推送的医院感染检测方法检测出的疑似医院感染病例信息;Step B2, the doctor checks the case information of the patient in the hospital by himself, or checks the information of the suspected hospital infection case detected by the hospital infection detection method pushed by the hospital infection monitoring and management server;

步骤B3,医生判断该病例是否为医院感染病例,如果是转入B4,否则转入B8;Step B3, the doctor judges whether the case is a nosocomial infection case, if it is transferred to B4, otherwise transferred to B8;

步骤B4,生成感染案例DfindStep B4, generating infection case D find ;

步骤B5,通过微信企业号服务器提供的信息推送功能,推送Dfind给院感工作人员;Step B5, push D find to the hospital staff through the information push function provided by the WeChat enterprise account server;

步骤B6,院感工作人员分析该感染病例Dfind,如果确认为感染类别Cj转到B7,否则转到B8;Step B6, the hospital infection staff analyzes the infection case D find , if it is confirmed to be the infection category C j , go to B7, otherwise go to B8;

步骤B7,将该感染病例Dfind存储到对应的感染类别Cj中;Step B7, store the infection case D find in the corresponding infection category C j ;

步骤B8,上报结束。Step B8, the reporting ends.

所述的医院感染模型建立方法如下:The nosocomial infection model establishment method is as follows:

步骤C1,医院感染监控管理服务器载入全部感染类别作为主成分分析的训练集,初始化j=0;Step C1, the hospital infection monitoring and management server loads all infection categories as the training set of principal component analysis, and initializes j=0;

步骤C2,j=j+1;Step C2, j=j+1;

步骤C3,医院感染监控管理服务器向医院信息集成平台申请抽取Cj={D1,D2...Dk...DK}中所有病例的医疗指标信息;Step C3, the hospital infection monitoring and management server applies to the hospital information integration platform to extract the medical index information of all cases in C j = {D 1 , D 2 ... D k ... D K };

步骤C4,医院信息集成平台从医院信息系统中抽取抗生素药品信息{drugk,1,drugk,2,...drugk,a,...drugk,A},其中drugk,a为第k份病例的第a个抗生素使用剂量,1≤a≤A,A为第k份病例的抗生素种类数;Step C4, the hospital information integration platform extracts antibiotic drug information {drug k, 1 , drug k, 2 , ... drug k, a , ... drug k, A } from the hospital information system, where drug k, a is The a-th antibiotic dose of the k-th case, 1≤a≤A, A is the number of antibiotics in the k-th case;

步骤C5,医院信息集成平台从实验室信息系统抽取血液检查信息{bloodk,1,bloodk,2,...bloodk,b,...bloodk,B},其中bloodk,b为第k份病例的第b个血液检查数值,1≤b≤B,B为第k份病例的血液检查种类数,医院信息集成平台从实验室信息系统抽取耐药菌检测信息{cellk,1,cellk,2,...cellk,c,...cellk,C},其中cellk,c为第k份病例的第c个耐药菌检测数值,1≤c≤C,C为第k份病例的耐药菌检测种类数;Step C5, the hospital information integration platform extracts blood test information {blood k, 1 , blood k, 2 , ... blood k, b , ... blood k, B } from the laboratory information system, where blood k, b is The bth blood test value of the kth case, 1≤b≤B, B is the number of blood test types of the kth case, the hospital information integration platform extracts the drug-resistant bacteria detection information from the laboratory information system {cell k, 1 , cell k, 2 ,...cell k,c ,...cell k,C }, where cell k,c is the detection value of the c-th drug-resistant bacteria in the k-th case, 1≤c≤C,C is the number of drug-resistant bacteria detected in the kth case;

步骤C6,医院信息集成平台从医学影像存档与通讯系统抽取胸部X线检查报告结果信息xrayk、CT检查报告结果信息CTkStep C6, the hospital information integration platform extracts the chest X-ray examination report result information xray k and the CT examination report result information CT k from the medical image archiving and communication system;

步骤C7,医院信息集成平台从电子病历系统抽取近期体温信息{temk,1,temk,2,...temk,d,...temk,D},其中temk,d为第k份病例的第d次体温测量数值,1≤d≤D,D为第k份病例的体温测量次数;Step C7, the hospital information integration platform extracts recent body temperature information {tem k, 1 , tem k, 2 ,...tem k,d ,...tem k,D } from the electronic medical record system, where tem k,d is the first The value of the d-th body temperature measurement of the k cases, 1≤d≤D, D is the number of body temperature measurements of the k-th case;

步骤C8,将所有医疗指标信息标准化之后,按列排列,形成所有病例的所有指标的矩阵 Step C8, after standardizing all medical index information, arrange in columns to form a matrix of all indexes of all cases

其中{xk,1,xk,2,...xk,p,...xk,P}由{drugk,1,drugk,2,...drugk,a,...drugk,A},{bloodk,1,bloodk,2,...bloodk,b,...bloodk,B},{cellk,1,cellk,2,...cellk,c,...cellk,C},xrayk,CTk,{temk,1,temk,2,...temk,d,...temk,D}从左至右整合到同一个集合中,P=A+B+C+1+1+D;where { xk,1 , xk,2 ,... xk,p ,... xk,P } is given by {drugk ,1 ,drugk ,2 ,...drugk ,a ,.. .drug k,A },{blood k,1 ,blood k,2 ,...blood k,b ,...blood k,B },{cell k,1 ,cell k,2 ,...cell k,c ,...cell k ,C },xrayk, CTk ,{temk ,1 ,temk ,2 ,...temk ,d ,...temk ,D } from left to right Integrated into the same set, P=A+B+C+1+1+D;

步骤C9,医院感染检测服务器计算X的相关系数矩阵Step C9, the hospital infection detection server calculates the correlation coefficient matrix of X

其中 in

其中 in

步骤C10,医院感染检测服务器求矩阵R的特征根{λ12…λp…λP},并使其按大小顺序排列,λ1≥λ2≥…λp…≥λP≥0;Step C10, the hospital infection detection server finds the eigenvalues {λ 12 ...λ p ...λ P } of the matrix R, and arranges them in order of magnitude, λ 1 ≥λ 2 ≥...λ p ...≥λ P ≥0 ;

步骤C11,医院感染检测服务器生成{λ12…λp…λP}对应的主成分 Step C11, the hospital infection detection server generates principal components corresponding to {λ 12 ...λ p ...λ P }

步骤C12,设定累计比例阈值STEP,i=0,i为累加变量;Step C12, set the cumulative proportion threshold STEP, i=0, i is the cumulative variable;

步骤C13,i=i+1;Step C13, i=i+1;

步骤C14,医院感染检测服务器计算主成分累计贡献率 Step C14, the hospital infection detection server calculates the cumulative contribution rate of the principal components

步骤C15,如果setp<STEP,转入C13,否则转入C16;Step C15, if setp<STEP, go to C13, otherwise go to C16;

步骤C16,医院感染检测服务器确定主成分对应的特征向量为感染类别Cj的检测阈值Testj=setp;Step C16, the nosocomial infection detection server determines that the feature vector corresponding to the principal component is Detection threshold Test j =setp of infection category C j ;

步骤C17,医院感染检测服务器生成感染类别Cj的检测模型Step C17, the hospital infection detection server generates a detection model of infection category C j

步骤C18,如果j<J,转入C2,否则转入C19;Step C18, if j<J, go to C2, otherwise go to C19;

步骤C19,医院感染模型建立完毕。Step C19, the establishment of the hospital infection model is completed.

所述的医院感染检测方法如下:The nosocomial infection detection methods described are as follows:

步骤D1,选择在院患者病例作为医院感染模型的检测集,在院全部患者的病例集为{D1,D2...Df...DF},Df为第f个住院患者病例,1≤f≤F,F为当前在院患者总数,初始化f=0;Step D1, select the cases of patients in the hospital as the detection set of the hospital infection model, the case set of all patients in the hospital is {D 1 , D 2 ... D f ... D F }, and D f is the fth inpatient Cases, 1≤f≤F, F is the total number of patients currently in the hospital, initialized f=0;

步骤D2,f=f+1;Step D2, f=f+1;

步骤D3,判断该患者病例是否已经判断为院感病例;如果是转入D12,否则转入D4;Step D3, judge whether the patient's case has been judged as a nosocomial infection case; if it is, transfer to D12, otherwise transfer to D4;

步骤D4,初始化j=0;Step D4, initialize j=0;

步骤D5,j=j+1;Step D5, j=j+1;

步骤D6,医院感染监控管理服务器向医院信息集成平台申请抽取Df病例中的相关信息,医院信息集成平台从医院信息系统中抽取抗生素药品信息{drugf,1,drugf,2,...drugf,a,...drugf,A},医院信息集成平台从实验室信息系统抽取血液检查信息{bloodf,1,bloodf,2,...bloodf,b,...bloodf,B},耐药菌检测信息{cellf,1,cellf,2,...cellf,c,...cellf,C},医院信息集成平台从医学影像存档与通讯系统抽取胸部X线检查报告结果信息xrayf、CT检查报告结果信息CTf,医院信息集成平台从电子病历系统抽取近期体温信息{temf,1,temf,2,...temf,d,...temf,D};Step D6, the hospital infection monitoring and management server applies to the hospital information integration platform to extract relevant information from the D f cases, and the hospital information integration platform extracts antibiotic drug information {drug f, 1 , drug f, 2 , ... drug f, a ,...drug f, A }, the hospital information integration platform draws blood test information from the laboratory information system {blood f, 1 , blood f, 2 ,...blood f,b ,...blood f, B }, drug-resistant bacteria detection information {cell f, 1 , cell f, 2 , ... cell f, c , ... cell f, C }, the hospital information integration platform extracts from the medical image archiving and communication system Chest X-ray examination report result information xray f , CT examination report result information CT f , the hospital information integration platform extracts recent body temperature information from the electronic medical record system {tem f, 1 , tem f, 2 ,...tem f, d ,. ..tem f, D };

步骤D7,将所有医疗指标信息标准化之后,依次排列为{xf,1,xf,2,...xf,p,...xf,P};Step D7, after standardizing all medical index information, arrange them in sequence as {x f, 1 , x f, 2 ,...x f, p ,...x f, P };

步骤D8,将医疗指标信息输入感染类别Cj对应的医院感染检测服务器中的检测模型进行计算,current=e1,1×xf,1+...ep,1×xf,p...+eP,1×xf,PStep D8, input the medical index information into the detection model in the hospital infection detection server corresponding to the infection category C j for calculation, current=e 1 , 1 ×x f,1 +...e p,1 ×x f,p . ..+e P,1 × x f,P ;

步骤D9,判断current是否大于Testj,是转入D10,否则转入D11;Step D9, judging whether current is greater than Test j , it is transferred to D10, otherwise it is transferred to D11;

步骤D10,医院感染监控管理服务器通过微信企业号服务器提供的信息推送功能,推送检测出的疑似医院感染病例给相关医生,j=J;Step D10, the hospital infection monitoring and management server pushes the detected suspected hospital infection cases to the relevant doctors through the information push function provided by the WeChat enterprise account server, j=J;

步骤D11,如果j<J,转入D5,否则转入D12;Step D11, if j<J, go to D5, otherwise go to D12;

步骤D12,如果f<F,转入D2,否则转入D13;Step D12, if f<F, go to D2, otherwise go to D13;

步骤D13,医院感染检测完毕。In step D13, the nosocomial infection detection is completed.

本发明具有有益效果。本发明通过医院感染监控管理服务器整合了医院感染监控管理的全过程,通过新媒体信息推送,图文宣教,问卷调查等多方面互动功能,实现了计划(Plan),执行(Do),检查(Check),调整(Action)闭环的医院感染整体流程管理。医院感染监控管理服务器采用医院信息集成平台连接医院其他信息系统部件的方式,规范了数据的采集方式,使得其他信息系统进行升级或者调整的时候,只需要和医院信息集成平台进行接口的改变,而不影响医院感染监控管理服务器的使用。采用机器学习的方法建立医院感染模型,针对不同的感染类别分类处理,分别计算出不同分类的不同权重,分析出各类别医院感染的主成分因素,可以精确化计算患者发生感染的概率。采用相关医生上报的医院感染案例,不断迭代计算更新医院感染模型,得到更精确的计算结果。本发明提高了疑似院感检测准确性,减少了医生工作量,优化了医院感染监控管理流程。The present invention has beneficial effects. The present invention integrates the whole process of hospital infection monitoring and management through the hospital infection monitoring and management server, and realizes the planning (Plan), execution (Do), inspection ( Check), adjust (Action) closed-loop hospital infection overall process management. The hospital infection monitoring and management server uses the hospital information integration platform to connect other hospital information system components to standardize the data collection method, so that when other information systems are upgraded or adjusted, they only need to change the interface with the hospital information integration platform. Does not affect the use of hospital infection monitoring and management server. The machine learning method is used to establish a nosocomial infection model, and for different infection categories, different weights of different categories are calculated respectively, and the principal component factors of each category of nosocomial infection can be analyzed, which can accurately calculate the probability of a patient's infection. Using the nosocomial infection cases reported by relevant doctors, iteratively calculates and updates the nosocomial infection model to obtain more accurate calculation results. The invention improves the detection accuracy of suspected hospital infection, reduces the workload of doctors, and optimizes the monitoring and management process of hospital infection.

附图说明Description of drawings

图1是一种医院感染监控管理装置的总体结构示意图。FIG. 1 is a schematic diagram of the overall structure of a hospital infection monitoring and management device.

图中:1-医院感染监控管理服务器、2-医院信息集成平台、3-医院信息系统、4-实验室信息系统、5-医学影像存档与通讯系统、6-电子病历系统、7-医院感染检测服务器、8-微信企业号服务器、9-智能手机。In the picture: 1-Hospital infection monitoring and management server, 2-Hospital information integration platform, 3-Hospital information system, 4-Laboratory information system, 5-Medical image archiving and communication system, 6-Electronic medical record system, 7-Hospital infection Detection server, 8-WeChat enterprise number server, 9-Smart phone.

图2是医院感染监控管理方法的流程图。Fig. 2 is a flow chart of a hospital infection monitoring and management method.

图3是医院感染上报方法的流程图。FIG. 3 is a flow chart of a method for reporting nosocomial infections.

图4是医院感染模型建立方法的流程图。Figure 4 is a flow chart of a method for establishing a hospital infection model.

图5是医院感染检测方法的流程图。Figure 5 is a flow chart of a nosocomial infection detection method.

图6是医院感染监控管理方法运行闭环的示意图。FIG. 6 is a schematic diagram of a closed-loop operation of a hospital infection monitoring and management method.

具体实施方式Detailed ways

下面结合附图和具体实施方式对本发明作进一步详细地说明。The present invention will be described in further detail below with reference to the accompanying drawings and specific embodiments.

由图1所示的一种医院感染监控管理装置的总体结构示意图可知,它包括医院感染监控管理服务器1、医院信息集成平台2、医院信息系统3、实验室信息系统4、医学影像存档与通讯系统5、电子病历系统6、医院感染检测服务器7、微信企业号服务器8、智能手机9;It can be seen from the schematic diagram of the overall structure of a hospital infection monitoring and management device shown in Figure 1 that it includes a hospital infection monitoring and management server 1, a hospital information integration platform 2, a hospital information system 3, a laboratory information system 4, medical image archiving and communication. System 5, electronic medical record system 6, hospital infection detection server 7, WeChat enterprise account server 8, smart phone 9;

所述的医院感染监控管理服务器1与所述的医院信息集成平台2通过医院LAN连接;The hospital infection monitoring and management server 1 is connected with the hospital information integration platform 2 through the hospital LAN;

所述的医院信息集成平台2与所述的医院信息系统3通过医院LAN连接;The hospital information integration platform 2 is connected with the hospital information system 3 through the hospital LAN;

所述的医院信息集成平台2与所述的实验室信息系统4通过医院LAN连接;The hospital information integration platform 2 is connected with the laboratory information system 4 through the hospital LAN;

所述的医院信息集成平台2与所述的医学影像存档与通讯系统5通过医院LAN连接;The hospital information integration platform 2 is connected with the medical image archiving and communication system 5 through the hospital LAN;

所述的医院信息集成平台2与所述的电子病历系统6通过医院LAN连接;The hospital information integration platform 2 is connected with the electronic medical record system 6 through the hospital LAN;

所述的医院感染监控管理服务器1与所述的医院感染检测服务器7通过医院LAN连接;The hospital infection monitoring and management server 1 is connected with the hospital infection detection server 7 through the hospital LAN;

所述的医院感染监控管理服务器1与所述的微信企业号服务器8通过医院LAN连接;The hospital infection monitoring and management server 1 is connected with the WeChat enterprise account server 8 through the hospital LAN;

所述的微信企业号服务器8与所述的智能手机9通过医院无线网络连接;The WeChat enterprise number server 8 is connected with the smart phone 9 through the hospital wireless network;

本发明在使用时,各部件的功能描述如下。When the present invention is in use, the functions of the various components are described below.

所述的医院信息系统3用于采集患者的姓名,住院号等住院基本信息以及抗生素药品医嘱等医疗信息。The hospital information system 3 is used to collect basic hospitalization information such as the patient's name, hospitalization number, etc., and medical information such as antibiotic drug orders.

所述的实验室信息系统4用于采集患者血液检查和耐药菌检测等信息。The laboratory information system 4 is used for collecting information such as patient blood test and drug-resistant bacteria detection.

所述的医学影像存档与通讯系统5用于采集患者胸部X线检查、CT检查报告结果信息。The medical image archiving and communication system 5 is used to collect the result information of the patient's chest X-ray examination and CT examination report.

所述的电子病历系统6用于采集患者体温状态信息。The electronic medical record system 6 is used to collect the patient's body temperature state information.

所述的医院信息集成平台2用于管理连接医院信息系统,实验室信息系统,医学影像存档与通讯系统,电子病历系统。The hospital information integration platform 2 is used to manage and connect the hospital information system, the laboratory information system, the medical image archiving and communication system, and the electronic medical record system.

所述的医院感染检测服务器7用于分析处理患者的基本医疗数据,并且检测出疑似医院感染的患者。The nosocomial infection detection server 7 is used for analyzing and processing the basic medical data of the patient, and detecting the patient suspected of nosocomial infection.

所述的微信企业号服务器8用于提供信息推送,图文宣教,问卷调查等多方面互动功能。The WeChat enterprise account server 8 is used to provide various interactive functions such as information push, graphic propaganda and education, and questionnaire survey.

所述的智能手机9用于接收和显示微信企业号服务器8提供的各类服务信息,并发送相关回馈信息给微信企业号服务器。The smart phone 9 is used for receiving and displaying various service information provided by the WeChat enterprise account server 8, and sending relevant feedback information to the WeChat enterprise account server.

所述的医院感染监控管理服务器1用于管理连接医院信息集成平台2,医院感染检测服务器7,微信企业号服务器8,管理医院感染的整体流程。The hospital infection monitoring and management server 1 is used to manage and connect the hospital information integration platform 2, the hospital infection detection server 7, and the WeChat enterprise account server 8, and manage the overall process of hospital infection.

由图1所示的一种医院感染监控管理装置的总体结构示意图中的各个部件结合图2所示的医院感染监控管理方法的流程图描述如下:The various components in the schematic diagram of the overall structure of a hospital infection monitoring and management device shown in FIG. 1 are described as follows in conjunction with the flowchart of the hospital infection monitoring and management method shown in FIG. 2 :

步骤A1,院感工作人员整理医院感染相关检测方法和政策,通过微信企业号服务器8提供的图文宣教功能发送给医生的智能手机9;In step A1, the hospital infection staff organizes the detection methods and policies related to hospital infection, and sends them to the doctor's smartphone 9 through the image and text propaganda and education function provided by the WeChat enterprise account server 8;

步骤A2,医院感染监控管理服务器1使用医院感染模型建立方法在医院感染检测服务器7建立医院感染模型,医院感染监控管理服务器1使用医院感染检测方法检测疑似医院感染事件,并推送给医生,医生使用医院感染上报方法上报医院感染事件;Step A2, the hospital infection monitoring and management server 1 uses the hospital infection model establishment method to establish a hospital infection model on the hospital infection detection server 7, the hospital infection monitoring and management server 1 uses the hospital infection detection method to detect the suspected hospital infection event, and pushes it to the doctor, the doctor uses Nosocomial infection reporting method to report nosocomial infection incidents;

步骤A3,院感工作人员接收并处理医院感染事件;Step A3, the hospital infection staff receives and handles the nosocomial infection event;

步骤A4,院感工作人员整理医院感染监控管理服务器1中相关感染病例,生成问卷调查,通过微信企业号服务器8提供的问卷调查功能发送给医生的智能手机9,医生填写完毕后发送回医院感染监控管理服务器1,院感工作人员分析医生上报数据,问卷调查数据,形成整改意见,重新调整医院感染相关检测方法和政策。In step A4, the hospital infection staff organizes the relevant infection cases in the hospital infection monitoring and management server 1, generates a questionnaire, and sends it to the doctor's smartphone 9 through the questionnaire survey function provided by the WeChat enterprise account server 8, and the doctor sends it back to the hospital after completing the filling. Monitoring and management server 1, the hospital infection staff analyzes the data reported by the doctor and the questionnaire survey data, forms rectification opinions, and readjusts the detection methods and policies related to hospital infection.

由图1所示的一种医院感染监控管理装置的总体结构示意图中的各个部件结合图3所示的医院感染上报方法的流程图描述如下:The various components in the schematic diagram of the overall structure of a hospital infection monitoring and management device shown in FIG. 1 are described as follows in conjunction with the flowchart of the hospital infection reporting method shown in FIG. 3 :

步骤B1,在医院感染监控管理服务器1中设置感染类别集合为{C1,C2...Cj...CJ},其中Cj为第j个感染类别,1≤j≤J,J为感染类别总数,Cj={D1,D2...Dk...DK},其中Dk为第j个感染类别的第k个病例,1≤k≤K,K为第j个感染类别的病例总数;Step B1, set the infection category set in the hospital infection monitoring and management server 1 as {C 1 , C 2 ... C j ... C J }, where C j is the j-th infection category, 1≤j≤J, J is the total number of infection categories, C j = {D 1 , D 2 ... D k ... D K }, where D k is the k-th case of the j-th infection category, 1≤k≤K, K is The total number of cases in the jth infection category;

步骤B2,医生自行查看在院患者病例信息,或者查看医院感染监控管理服务器1推送的医院感染检测方法检测出的疑似医院感染病例信息;In step B2, the doctor checks the case information of the patient in the hospital by himself, or checks the information of the suspected hospital infection case detected by the hospital infection detection method pushed by the hospital infection monitoring and management server 1;

步骤B3,医生判断该病例是否为医院感染病例,如果是转入B4,否则转入B8;Step B3, the doctor judges whether the case is a nosocomial infection case, if it is transferred to B4, otherwise transferred to B8;

步骤B4,生成感染案例DfindStep B4, generating infection case D find ;

步骤B5,通过微信企业号服务器8提供的信息推送功能,推送Dfind给院感工作人员;Step B5, through the information push function provided by the WeChat enterprise number server 8, push D find to the hospital staff;

步骤B6,院感工作人员分析该感染病例Dfind,如果确认为感染类别Cj转到B7,否则转到B8;Step B6, the hospital infection staff analyzes the infection case D find , if it is confirmed to be the infection category C j , go to B7, otherwise go to B8;

步骤B7,将该感染病例Dfind存储到对应的感染类别Cj中;Step B7, store the infection case D find in the corresponding infection category C j ;

步骤B8,上报结束。Step B8, the reporting ends.

由图1所示的一种医院感染监控管理装置的总体结构示意图中的各个部件结合图4所示的医院感染模型建立方法的流程图描述如下:The various components in the schematic diagram of the overall structure of a hospital infection monitoring and management device shown in FIG. 1 are described as follows in conjunction with the flowchart of the method for establishing a hospital infection model shown in FIG. 4 :

步骤C1,医院感染监控管理服务器1载入全部感染类别作为主成分分析的训练集,初始化j=0;Step C1, the hospital infection monitoring and management server 1 loads all infection categories as the training set of principal component analysis, and initializes j=0;

步骤C2,j=j+1;Step C2, j=j+1;

步骤C3,医院感染监控管理服务器1向医院信息集成平台2申请抽取Cj={D1,D2...Dk...DK}中所有病例的医疗指标信息;Step C3, the hospital infection monitoring and management server 1 applies to the hospital information integration platform 2 to extract the medical index information of all cases in C j = {D 1 , D 2 ... D k ... D K };

步骤C4,医院信息集成平台2从医院信息系统3中抽取抗生素药品信息{drugk,1,drugk,2,...drugk,a,...drugk,A},其中drugk,a为第k份病例的第a个抗生素使用剂量,1≤a≤A,A为第k份病例的抗生素种类数;Step C4, the hospital information integration platform 2 extracts antibiotic drug information {drug k, 1 , drug k, 2 , ... drug k, a , ... drug k, A } from the hospital information system 3, where drug k, a is the dose of antibiotic used in the kth case, 1≤a≤A, and A is the number of antibiotics in the kth case;

步骤C5,医院信息集成平台2从实验室信息系统4抽取血液检查信息{bloodk,1,bloodk,2,...bloodk,b,...bloodk,B},其中bloodk,b为第k份病例的第b个血液检查数值,1≤b≤B,B为第k份病例的血液检查种类数,医院信息集成平台2从实验室信息系统4抽取耐药菌检测信息{cellk,1,cellk,2,...cellk,c,...cellk,C},其中cellk,c为第k份病例的第c个耐药菌检测数值,1≤c≤C,C为第k份病例的耐药菌检测种类数;Step C5, the hospital information integration platform 2 extracts blood test information {blood k, 1 , blood k, 2 , ... blood k, b , ... blood k, B } from the laboratory information system 4, where blood k, b is the value of the bth blood test of the kth case, 1≤b≤B, B is the number of blood test types of the kth case, the hospital information integration platform 2 extracts the drug-resistant bacteria detection information from the laboratory information system 4 { cell k, 1 , cell k, 2 , ... cell k, c , ... cell k, C }, where cell k, c is the c-th drug-resistant bacteria detection value of the k-th case, 1≤c ≤C, C is the number of drug-resistant bacteria detected in the kth case;

步骤C6,医院信息集成平台2从医学影像存档与通讯系统5抽取胸部X线检查报告结果信息xrayk、CT检查报告结果信息CTkStep C6, the hospital information integration platform 2 extracts the chest X-ray examination report result information xray k and the CT examination report result information CT k from the medical image archiving and communication system 5;

步骤C7,医院信息集成平台2从电子病历系统6抽取近期体温信息{temk,1,temk,2,...temk,d,...temk,D},其中temk,d为第k份病例的第d次体温测量数值,1≤d≤D,D为第k份病例的体温测量次数;Step C7, the hospital information integration platform 2 extracts recent body temperature information {tem k, 1 , tem k, 2 , ... tem k, d , ... tem k, D } from the electronic medical record system 6, where tem k, d is the d-th body temperature measurement value of the kth case, 1≤d≤D, and D is the number of body temperature measurements of the kth case;

步骤C8,将所有医疗指标信息标准化之后,按列排列,形成所有病例的所有指标的矩阵 Step C8, after standardizing all medical index information, arrange in columns to form a matrix of all indexes of all cases

其中{xk,1,xk,2,...xk,p,...xk,P}由{drugk,1,drugk,2,...drugk,a,...drugk,A},{bloodk,1,bloodk,2,...bloodk,b,...bloodk,B},{cellk,1,cellk,2,...cellk,c,...cellk,C},xrayk,CTk,{temk,1,temk,2,...temk,d,...temk,D}从左至右整合到同一个集合中,P=A+B+C+1+1+D;where { xk,1 , xk,2 ,... xk,p ,... xk,P } is given by {drugk ,1 ,drugk ,2 ,...drugk ,a ,.. .drug k,A },{blood k,1 ,blood k,2 ,...blood k,b ,...blood k,B },{cell k,1 ,cell k,2 ,...cell k,c ,...cell k ,C },xrayk, CTk ,{temk ,1 ,temk ,2 ,...temk ,d ,...temk ,D } from left to right Integrated into the same set, P=A+B+C+1+1+D;

步骤C9,医院感染检测服务器计算X的相关系数矩阵Step C9, the hospital infection detection server calculates the correlation coefficient matrix of X

其中 in

其中 in

步骤C10,医院感染检测服务器求矩阵R的特征根{λ12…λp…λP},并使其按大小顺序排列,λ1≥λ2≥…λp…≥λP≥0;Step C10, the hospital infection detection server finds the eigenvalues {λ 12 ...λ p ...λ P } of the matrix R, and arranges them in order of magnitude, λ 1 ≥λ 2 ≥...λ p ...≥λ P ≥0 ;

步骤C11,医院感染检测服务器生成{λ12…λp…λP}对应的主成分Step C11, the hospital infection detection server generates principal components corresponding to {λ 12 ...λ p ...λ P }

步骤C12,设定累计比例阈值STEP,i=0,i为累加变量;Step C12, set the cumulative proportion threshold STEP, i=0, i is the cumulative variable;

步骤C13,i=i+1;Step C13, i=i+1;

步骤C14,医院感染检测服务器计算主成分累计贡献率 Step C14, the hospital infection detection server calculates the cumulative contribution rate of the principal components

步骤C15,如果setp<STEP,转入C13,否则转入C16;Step C15, if setp<STEP, go to C13, otherwise go to C16;

步骤C16,医院感染检测服务器确定主成分对应的特征向量为感染类别Cj的检测阈值Testj=setp;Step C16, the nosocomial infection detection server determines that the feature vector corresponding to the principal component is Detection threshold Test j =setp of infection category C j ;

步骤C17,医院感染检测服务器生成感染类别Cj的检测模型Step C17, the hospital infection detection server generates a detection model of infection category C j

步骤C18,如果j<J,转入C2,否则转入C19;Step C18, if j<J, go to C2, otherwise go to C19;

步骤C19,医院感染模型建立完毕。Step C19, the establishment of the hospital infection model is completed.

由图1所示的一种医院感染监控管理装置的总体结构示意图中的各个部件结合图5所示的医院感染检测方法的流程图描述如下:The various components in the schematic diagram of the overall structure of a hospital infection monitoring and management device shown in FIG. 1 are described as follows in conjunction with the flowchart of the hospital infection detection method shown in FIG. 5 :

步骤D1,选择在院患者病例作为医院感染模型的检测集,在院全部患者的病例集为{D1,D2...Df...DF},Df为第f个住院患者病例,1≤f≤F,F为当前在院患者总数,初始化f=0;Step D1, select the cases of patients in the hospital as the detection set of the hospital infection model, the case set of all patients in the hospital is {D 1 , D 2 ... D f ... D F }, and D f is the fth inpatient Cases, 1≤f≤F, F is the total number of patients currently in the hospital, initialized f=0;

步骤D2,f=f+1;Step D2, f=f+1;

步骤D3,判断该患者病例是否已经判断为院感病例;如果是转入D12,否则转入D4;Step D3, judge whether the patient's case has been judged as a nosocomial infection case; if it is, transfer to D12, otherwise transfer to D4;

步骤D4,初始化j=0;Step D4, initialize j=0;

步骤D5,j=j+1;Step D5, j=j+1;

步骤D6,医院感染监控管理服务器1向医院信息集成平台2申请抽取Df病例中的相关信息,医院信息集成平台2从医院信息系统3中抽取抗生素药品信息{drugf,1,drugf,2,...drugf,a,...drugf,A},医院信息集成平台2从实验室信息系统4抽取血液检查信息{bloodf,1,bloodf,2,...bloodf,b,...bloodf,B},耐药菌检测信息{cellf,1,cellf,2,...cellf,c,...cellf,C},医院信息集成平台2从医学影像存档与通讯系统5抽取胸部X线检查报告结果信息xrayf、CT检查报告结果信息CTf,医院信息集成平台2从电子病历系统6抽取近期体温信息{temf,1,temf,2,...temf,d,...temf,D};In step D6, the hospital infection monitoring and management server 1 applies to the hospital information integration platform 2 to extract relevant information from the case D f , and the hospital information integration platform 2 extracts antibiotic drug information {drug f, 1 , drug f, 2 from the hospital information system 3 . , ...drug f, a , ...drug f, A }, the hospital information integration platform 2 draws blood test information from the laboratory information system 4 {blood f, 1 , blood f, 2 , ...blood f, b ,...blood f,B }, drug-resistant bacteria detection information {cell f,1 ,cell f,2 ,...cell f,c ,...cell f,C }, hospital information integration platform 2 from The medical image archiving and communication system 5 extracts the result information xray f of the chest X-ray examination report and the result information CT f of the CT examination report, and the hospital information integration platform 2 extracts the recent body temperature information {tem f, 1 , tem f, 2 from the electronic medical record system 6 . ,...tem f,d ,...tem f,D };

步骤D7,将所有医疗指标信息标准化之后,依次排列为{xf,1,xf,2,...xf,p,...xf,P};Step D7, after standardizing all medical index information, arrange them in sequence as {x f, 1 , x f, 2 ,...x f, p ,...x f, P };

步骤D8,将医疗指标信息输入感染类别Cj对应的医院感染检测服务器7中的检测模型进行计算,current=e1,1×xf,1+...ep,1×xf,p...+eP,1×xf,PStep D8, input the medical index information into the detection model in the hospital infection detection server 7 corresponding to the infection category C j for calculation, current=e 1 , 1 ×x f,1 +...e p,1 ×x f,p ...+e P,1 × x f,P ;

步骤D9,判断current是否大于Testj,是转入D10,否则转入D11;Step D9, judging whether current is greater than Test j , it is transferred to D10, otherwise it is transferred to D11;

步骤D10,医院感染监控管理服务器1通过微信企业号服务器8提供的信息推送功能,推送检测出的疑似医院感染病例给相关医生,j=J;Step D10, the hospital infection monitoring and management server 1 pushes the detected suspected hospital infection cases to the relevant doctors through the information push function provided by the WeChat enterprise account server 8, j=J;

步骤D11,如果j<J,转入D5,否则转入D12;Step D11, if j<J, go to D5, otherwise go to D12;

步骤D12,如果f<F,转入D2,否则转入D13;Step D12, if f<F, go to D2, otherwise go to D13;

步骤D13,医院感染检测完毕。Step D13, the nosocomial infection detection is completed.

以下是发明人给出的实施例The following are examples given by the inventors

实施例1Example 1

如图6所示,采用下呼吸道感染类别管理过程举例,体现了计划(Plan),执行(Do),检查(Check),调整(Action)的整体流程,具体流程如下:As shown in Figure 6, the lower respiratory tract infection category management process is used as an example, which reflects the overall process of planning (Plan), executing (Do), checking (Check), and adjusting (Action). The specific process is as follows:

步骤A1,院感工作人员整理下呼吸道感染相关检测方法和政策,通过微信企业号服务器8提供的如图6计划(Plan)所示的图文宣教功能发送给呼吸科医生的智能手机9;Step A1, the hospital infection staff organize the detection methods and policies related to lower respiratory tract infection, and send it to the smart phone 9 of the respiratory doctor through the graphic and text education function as shown in the plan (Plan) in Figure 6 provided by the WeChat enterprise account server 8;

步骤A2,如图6执行(Do)所示,医院感染监控管理服务器1使用医院感染模型建立方法在医院感染检测服务器7建立医院感染模型,医院感染监控管理服务器1使用医院感染检测方法检测疑似下呼吸道感染事件,并推送给呼吸科医生,呼吸科医生使用医院感染上报方法上报下呼吸道感染事件;Step A2, as shown in Figure 6 Execute (Do), the hospital infection monitoring and management server 1 uses the hospital infection model establishment method to establish a hospital infection model on the hospital infection detection server 7, and the hospital infection monitoring and management server 1 uses the hospital infection detection method to detect suspected cases. Respiratory tract infection events, and push them to respiratory doctors, who use the hospital infection reporting method to report lower respiratory tract infection events;

步骤A3,如图6检查(Check)所示,院感工作人员接收并处理下呼吸道感染事件;Step A3, as shown in the check (Check) in Figure 6, the hospital infection staff receives and handles lower respiratory tract infection events;

步骤A4,如图6调整(Action)所示,院感工作人员整理医院感染监控管理服务器1中相关下呼吸道感染病例,生成问卷调查,通过微信企业号服务器8提供的问卷调查功能发送给呼吸科医生的智能手机1,呼吸科医生填写完毕后发送回医院感染监控管理服务器1,院感工作人员分析呼吸科医生上报数据,问卷调查数据,形成整改意见,重新调整下呼吸道感染相关检测方法和政策。Step A4, as shown in Figure 6 Adjustment (Action), the hospital infection staff organizes the relevant lower respiratory tract infection cases in the hospital infection monitoring and management server 1, generates a questionnaire, and sends it to the respiratory department through the questionnaire function provided by the WeChat enterprise account server 8. The doctor's smartphone 1, the respiratory doctor sends it back to the hospital infection monitoring and management server 1 after filling it out, and the hospital infection staff analyzes the data reported by the respiratory doctor and the questionnaire survey data, forms rectification opinions, and readjusts the detection methods and policies related to lower respiratory tract infection .

实施例2Example 2

呼吸科医生接收某例疑似下呼吸道感染病例推送,并确认及上报的过程举例如下:An example of the process of receiving, confirming and reporting a suspected case of lower respiratory tract infection by a respiratory doctor is as follows:

步骤B1,在医院感染监控管理服务器1中设置感染类别集合为{C1,C2...Cj...CJ},其中Cj为下呼吸道感染类别,1≤j≤J,J为感染类别总数,Cj={D1,D2...Dk...DK},其中Dk为下呼吸道感染类别的第k个病例,1≤k≤K,K为下呼吸道感染类别的病例总数;Step B1, set the infection category set in the hospital infection monitoring and management server 1 as {C 1 , C 2 ... C j ... C J }, where C j is the lower respiratory tract infection category, 1≤j≤J, J is the total number of infection categories, C j = {D 1 , D 2 ... D k ... D K }, where D k is the kth case of the lower respiratory tract infection category, 1≤k≤K, K is the lower respiratory tract infection the total number of cases in the infection category;

步骤B2,呼吸科医生查看医院感染监控管理服务器1推送的医院感染检测方法检测出的疑似下呼吸道感染病例信息;Step B2, the respiratory doctor checks the information of suspected lower respiratory tract infection cases detected by the hospital infection detection method pushed by the hospital infection monitoring and management server 1;

步骤B3,呼吸科医生判断该病例为医院感染病例,转入B4;Step B3, the respiratory doctor judges that the case is a nosocomial infection case, and transfers to B4;

步骤B4,生成感染案例DfindStep B4, generating infection case D find ;

步骤B5,通过微信企业号服务器8提供的信息推送功能,推送Dfind给院感工作人员;Step B5, through the information push function provided by the WeChat enterprise number server 8, push D find to the hospital staff;

步骤B6,院感工作人员分析该感染病例Dfind,确认为下呼吸道感染类别,转到B7;Step B6, the hospital infection staff analyzes the infection case D find , confirms it is a lower respiratory tract infection category, and transfers to B7;

步骤B7,将该感染病例Dfind存储到下呼吸道感染类别Cj中;Step B7, store the infection case D find in the lower respiratory tract infection category C j ;

步骤B8,上报结束。Step B8, the reporting ends.

实施例3Example 3

上呼吸道感染,下呼吸道感染类别模型生成过程,以及采用感染模型的检测过程举例,检测模型生成过程如下:The upper respiratory tract infection, the lower respiratory tract infection category model generation process, and the detection process using the infection model are examples. The detection model generation process is as follows:

步骤C1,医院感染监控管理服务器1载入上呼吸道感染,下呼吸道感染类别作为主成分分析的训练集,初始化j=0;Step C1, the hospital infection monitoring and management server 1 loads the upper respiratory tract infection and the lower respiratory tract infection category as the training set of the principal component analysis, and initializes j=0;

步骤C2,j=j+1;Step C2, j=j+1;

步骤C3,医院感染监控管理服务器1向医院信息集成平台2申请抽取上呼吸道感染中所有病例的医疗指标信息;Step C3, the hospital infection monitoring and management server 1 applies to the hospital information integration platform 2 to extract the medical index information of all cases in upper respiratory tract infection;

步骤C4,医院信息集成平台2从医院信息系统3中抽取抗生素药品信息{100,200,...200,...300};Step C4, the hospital information integration platform 2 extracts antibiotic drug information {100, 200, ... 200, ... 300} from the hospital information system 3;

步骤C5,医院信息集成平台2从实验室信息系统4抽取血液检查信息{1,0,...1,...1},医院信息集成平台2从实验室信息系统4抽取耐药菌检测信息{0,0,...0,...0};Step C5, the hospital information integration platform 2 extracts blood test information {1, 0, ... 1, ... 1} from the laboratory information system 4, and the hospital information integration platform 2 extracts the drug-resistant bacteria detection from the laboratory information system 4 info{0,0,...0,...0};

步骤C6,医院信息集成平台2从医学影像存档与通讯系统5抽取胸部X线检查报告结果信息xrayk=0、CT检查报告结果信息CTk=0;Step C6, the hospital information integration platform 2 extracts the chest X-ray examination report result information xray k =0 and the CT examination report result information CT k =0 from the medical image archiving and communication system 5;

步骤C7,医院信息集成平台2从电子病历系统6抽取近期体温信息{37.2,36.5,...36.5,...38.2},其中temk,d为第k份病例的第d次体温测量数值,1≤d≤D,D为第k份病例的体温测量次数;Step C7, the hospital information integration platform 2 extracts recent body temperature information {37.2, 36.5, ... 36.5, ... 38.2} from the electronic medical record system 6, where tem k, d is the d-th body temperature measurement value of the k-th case , 1≤d≤D, D is the number of body temperature measurements of the kth case;

步骤C8,将所有医疗指标信息标准化之后,按列排列,形成所有病例的所有指标的矩阵 Step C8, after standardizing all medical index information, arrange in columns to form a matrix of all indexes of all cases for

步骤C9,医院感染检测服务器7计算X的相关系数矩阵Step C9, the hospital infection detection server 7 calculates the correlation coefficient matrix of X

其中 in

其中 in

步骤C10,医院感染检测服务器7求矩阵R的特征根{3.56,2.32…1.22…0.23},并使其按大小顺序排列,λ1≥λ2≥…λp…≥λP≥0;Step C10, the hospital infection detection server 7 finds the characteristic root {3.56, 2.32...1.22...0.23} of the matrix R, and arranges it in order of magnitude, λ 1 ≥λ 2 ≥...λ p ...≥λ P ≥0;

步骤C11,医院感染检测服务器7生成{λ12…λp…λP}对应的主成分 Step C11, the hospital infection detection server 7 generates principal components corresponding to {λ 1 , λ 2 ... λ p ... λ P }

步骤C12,设定累计比例阈值STEP=0.85,i=0,i为累加变量;Step C12, set the cumulative proportion threshold STEP=0.85, i=0, i is the cumulative variable;

步骤C13,i=i+1;Step C13, i=i+1;

步骤C14,医院感染检测服务器7计算主成分累计贡献率 Step C14, the hospital infection detection server 7 calculates the cumulative contribution rate of the principal components

步骤C15,setp>STEP,转入C16;Step C15, setp>STEP, transfer to C16;

步骤C16,医院感染检测服务器7确定主成分对应的特征向量为上呼吸道感染的检测阈值Testj=0.87;In step C16, the nosocomial infection detection server 7 determines that the feature vector corresponding to the principal component is: The detection threshold of upper respiratory tract infection Test j = 0.87;

步骤C17,医院感染检测服务器7生成感染类别Cj的检测模型Step C17, the hospital infection detection server 7 generates a detection model of the infection category C j

步骤C18,j<2,转入C2;Step C18, j<2, transfer to C2;

步骤C2,j=j+1;Step C2, j=j+1;

步骤C3,医院感染监控管理服务器1向医院信息集成平台2申请抽取下呼吸道感染中所有病例的医疗指标信息;Step C3, the hospital infection monitoring and management server 1 applies to the hospital information integration platform 2 to extract the medical index information of all cases in lower respiratory tract infection;

步骤C4,医院信息集成平台2从医院信息系统3中抽取抗生素药品信息{300,400,...500,...800};Step C4, the hospital information integration platform 2 extracts antibiotic drug information {300, 400, ... 500, ... 800} from the hospital information system 3;

步骤C5,医院信息集成平台2从实验室信息系统4抽取血液检查信息{1,1,...1,...1},医院信息集成平台2从实验室信息系统4抽取耐药菌检测信息{0,1,...1,...0};Step C5, the hospital information integration platform 2 extracts blood test information {1, 1, ... 1, ... 1} from the laboratory information system 4, and the hospital information integration platform 2 extracts the drug-resistant bacteria detection from the laboratory information system 4 info{0,1,...1,...0};

步骤C6,医院信息集成平台2从医学影像存档与通讯系统5抽取胸部X线检查报告结果信息xrayk=1、CT检查报告结果信息CTk=1;Step C6, the hospital information integration platform 2 extracts the chest X-ray examination report result information xray k =1, and the CT examination report result information CT k =1 from the medical image archiving and communication system 5;

步骤C7,医院信息集成平台2从电子病历系统6抽取近期体温信息{38.2,38.5,...38.5,...38.2},其中temk,d为第k份病例的第d次体温测量数值,1≤d≤D,D为第k份病例的体温测量次数;Step C7, the hospital information integration platform 2 extracts recent body temperature information {38.2, 38.5, ... 38.5, ... 38.2} from the electronic medical record system 6, where tem k, d is the d-th body temperature measurement value of the k-th case , 1≤d≤D, D is the number of body temperature measurements of the kth case;

步骤C8,将所有医疗指标信息标准化之后,按列排列,形成所有病例的所有指标的矩阵 Step C8, after standardizing all medical index information, arrange in columns to form a matrix of all indexes of all cases for

步骤C9,医院感染检测服务器7计算X的相关系数矩阵Step C9, the hospital infection detection server 7 calculates the correlation coefficient matrix of X

其中 in

其中 in

步骤C10,医院感染检测服务器7求矩阵R的特征根{3.96,3.12…2.22…0.63},并使其按大小顺序排列,λ1≥λ2≥…λp…≥λP≥0;Step C10, the hospital infection detection server 7 finds the characteristic root {3.96, 3.12...2.22...0.63} of the matrix R, and arranges it in order of magnitude, λ 1 ≥λ 2 ≥...λ p ...≥λ P ≥0;

步骤C11,医院感染检测服务器7生成{λ12…λp…λP}对应的主成分 Step C11, the hospital infection detection server 7 generates principal components corresponding to {λ 1 , λ 2 ... λ p ... λ P }

步骤C12,设定累计比例阈值STEP=0.85,i=0,i为累加变量;Step C12, set the cumulative proportion threshold STEP=0.85, i=0, i is the cumulative variable;

步骤C13,i=i+1;Step C13, i=i+1;

步骤C14,医院感染检测服务器7计算主成分累计贡献率 Step C14, the hospital infection detection server 7 calculates the cumulative contribution rate of the principal components

步骤C15,setp>STEP,转入C16;Step C15, setp>STEP, transfer to C16;

步骤C16,医院感染检测服务器7确定主成分对应的特征向量为下呼吸道感染的检测阈值Testj=0.87;In step C16, the nosocomial infection detection server 7 determines that the feature vector corresponding to the principal component is: The detection threshold of lower respiratory tract infection Test j = 0.87;

步骤C17,医院感染检测服务器7生成感染类别Cj的检测模型Step C17, the hospital infection detection server 7 generates a detection model of the infection category C j

步骤C18,j==J,转入C19;Step C18, j==J, go to C19;

步骤C19,上呼吸道感染,下呼吸道感染类别模型建立完毕。In step C19, the upper respiratory tract infection and lower respiratory tract infection category models are established.

下呼吸道感染检测过程如下:The lower respiratory tract infection detection process is as follows:

步骤D1,选择在院患者病例作为医院感染模型的检测集,在院全部患者的病例集为{D1,D2...Df...DF},Df为第f个住院患者病例,1≤f≤F,F为当前在院患者总数,初始化f=0;Step D1, select the cases of patients in the hospital as the detection set of the hospital infection model, the case set of all patients in the hospital is {D 1 , D 2 ... D f ... D F }, and D f is the fth inpatient Cases, 1≤f≤F, F is the total number of patients currently in the hospital, initialized f=0;

步骤D2,f=f+1;Step D2, f=f+1;

步骤D3,判断该患者病例未判断为院感病例,转入D4;Step D3, judging that the patient's case is not judged to be a nosocomial case, transfer to D4;

步骤D4,初始化j=0;Step D4, initialize j=0;

步骤D5,j=j+1;Step D5, j=j+1;

步骤D6,医院感染监控管理服务器1向医院信息集成平台2申请抽取Df病例中的相关信息,医院信息集成平台2从医院信息系统3中抽取抗生素药品信息{300,300,...400,...600},医院信息集成平台2从实验室信息系统4抽取血液检查信息{1,1,...1,...1},耐药菌检测信息{0,0,...1,...0},医院信息集成平台2从医学影像存档与通讯系统5抽取胸部X线检查报告结果信息xrayf=1、CT检查报告结果信息CTf=0,医院信息集成平台2从电子病历系统6抽取近期体温信息{37.5,38.2,...38.5,...38.6};In step D6, the hospital infection monitoring and management server 1 applies to the hospital information integration platform 2 to extract relevant information from the D f cases, and the hospital information integration platform 2 extracts antibiotic drug information from the hospital information system 3 {300, 300, ... 400, ...600}, hospital information integration platform 2 extracts blood test information {1, 1, ... 1, ... 1} from laboratory information system 4, drug resistance detection information {0, 0, ... 1 , . The electronic medical record system 6 extracts recent body temperature information {37.5, 38.2, ... 38.5, ... 38.6};

步骤D7,将所有医疗指标信息标准化之后,依次排列为{1,0.6,...0.5,...1};Step D7, after standardizing all medical index information, arrange them in sequence as {1, 0.6, ... 0.5, ... 1};

步骤D8,将医疗指标信息输入医院感染检测服务器7中的下呼吸道感染检测模型进行计算,current=0.67×1+...0.22×0.5...+0.02×1=0.91;Step D8, input the medical index information into the lower respiratory tract infection detection model in the hospital infection detection server 7 for calculation, current=0.67×1+...0.22×0.5...+0.02×1=0.91;

步骤D9,判断0.91大于0.87,转入D10;Step D9, judge that 0.91 is greater than 0.87, and transfer to D10;

步骤D10,医院感染监控管理服务器1通过微信企业号服务器8提供的信息推送功能,推送检测出的疑似下呼吸道感染病例给呼吸科医生,j=J;Step D10, the hospital infection monitoring and management server 1 pushes the detected suspected lower respiratory tract infection case to the respiratory doctor through the information push function provided by the WeChat enterprise account server 8, j=J;

步骤D11,j==J,转入D12;Step D11, j==J, go to D12;

步骤D12,f==F,转入D13;Step D12, f==F, go to D13;

步骤D13,医院感染检测完毕。In step D13, the nosocomial infection detection is completed.

Claims (5)

1.一种医院感染监控管理系统,其特征在于包括:医院感染监控管理服务器、医院信息集成平台、医院信息系统、实验室信息系统、医学影像存档与通讯系统、电子病历系统、医院感染检测服务器、微信企业号服务器、智能手机;1. a hospital infection monitoring and management system is characterized in that comprising: hospital infection monitoring and management server, hospital information integration platform, hospital information system, laboratory information system, medical image archive and communication system, electronic medical record system, hospital infection detection server , WeChat enterprise number server, smart phone; 所述的医院感染监控管理服务器与所述的医院信息集成平台通过医院LAN连接;The hospital infection monitoring and management server is connected with the hospital information integration platform through the hospital LAN; 所述的医院信息集成平台与所述的医院信息系统通过医院LAN连接;The hospital information integration platform is connected with the hospital information system through the hospital LAN; 所述的医院信息集成平台与所述的实验室信息系统通过医院LAN连接;The hospital information integration platform is connected with the laboratory information system through the hospital LAN; 所述的医院信息集成平台与所述的医学影像存档与通讯系统通过医院LAN连接;The hospital information integration platform is connected with the medical image archiving and communication system through the hospital LAN; 所述的医院信息集成平台与所述的电子病历系统通过医院LAN连接;The hospital information integration platform is connected with the electronic medical record system through the hospital LAN; 所述的医院感染监控管理服务器与所述的医院感染检测服务器通过医院LAN连接;The hospital infection monitoring and management server is connected with the hospital infection detection server through the hospital LAN; 所述的医院感染监控管理服务器与所述的微信企业号服务器通过医院LAN连接;The hospital infection monitoring and management server is connected with the WeChat enterprise account server through the hospital LAN; 所述的微信企业号服务器与所述的智能手机通过医院无线网络连接;The WeChat enterprise number server is connected with the smart phone through the hospital wireless network; 所述的医院信息系统用于采集患者的姓名,住院号,抗生素药品医嘱信息;The hospital information system is used to collect the patient's name, hospital number, and antibiotic drug order information; 所述的实验室信息系统用于采集患者血液检查和耐药菌检测信息;The laboratory information system is used for collecting information on blood tests and drug-resistant bacteria detection of patients; 所述的医学影像存档与通讯系统用于采集患者胸部X线检查、CT检查报告结果信息;The medical image archiving and communication system is used for collecting patient chest X-ray examination and CT examination report result information; 所述的电子病历系统用于采集患者体温状态信息;The electronic medical record system is used for collecting patient temperature state information; 所述的医院信息集成平台用于管理连接医院信息系统,实验室信息系统,医学影像存档与通讯系统,电子病历系统;The hospital information integration platform is used for managing and connecting hospital information systems, laboratory information systems, medical image archiving and communication systems, and electronic medical record systems; 所述的医院感染检测服务器用于分析处理患者的基本医疗数据,并且检测出疑似医院感染的患者;The nosocomial infection detection server is used for analyzing and processing the basic medical data of patients, and detecting patients suspected of nosocomial infection; 所述的微信企业号服务器用于提供信息推送,图文宣教,问卷调查功能;The WeChat enterprise account server is used to provide information push, graphic propaganda and education, and questionnaire survey functions; 所述的智能手机用于接收和显示微信企业号服务器提供的各类服务信息,并发送相关回馈信息给微信企业号服务器;The smart phone is used to receive and display various service information provided by the WeChat enterprise account server, and send relevant feedback information to the WeChat enterprise account server; 所述的医院感染监控管理服务器用于管理连接医院信息集成平台,医院感染检测服务器,微信企业号服务器,管理医院感染的整体流程。The hospital infection monitoring and management server is used to manage and connect the hospital information integration platform, the hospital infection detection server, and the WeChat enterprise account server, and to manage the overall process of hospital infection. 2.根据权利要求1所述的一种医院感染监控管理系统的监控管理方法,其特征在于包括以下步骤:2. the monitoring and management method of a kind of hospital infection monitoring and management system according to claim 1, is characterized in that comprising the following steps: 步骤A1,院感工作人员整理医院感染相关检测方法和政策,通过微信企业号服务器提供的图文宣教功能发送给医生的智能手机;Step A1, the hospital infection staff organizes the detection methods and policies related to hospital infection, and sends them to the doctor's smartphone through the image and text education function provided by the WeChat enterprise account server; 步骤A2,医院感染监控管理服务器使用医院感染模型建立方法在医院感染检测服务器建立医院感染模型,医院感染监控管理服务器使用医院感染检测方法检测疑似医院感染事件,并推送给医生,医生使用医院感染上报方法上报医院感染事件;Step A2, the hospital infection monitoring and management server uses the hospital infection model establishment method to establish a hospital infection model on the hospital infection detection server, the hospital infection monitoring and management server uses the hospital infection detection method to detect the suspected hospital infection event, and pushes it to the doctor, and the doctor reports the hospital infection using the hospital infection detection method. Methods to report nosocomial infection events; 步骤A3,院感工作人员接收并处理医院感染事件;Step A3, the hospital infection staff receives and handles the nosocomial infection event; 步骤A4,院感工作人员整理医院感染监控管理服务器中相关感染病例,生成问卷调查,通过微信企业号服务器提供的问卷调查功能发送给医生的智能手机,医生填写完毕后发送回医院感染监控管理服务器,院感工作人员分析医生上报数据,问卷调查数据,形成整改意见,重新调整医院感染相关检测方法和政策。Step A4, the hospital infection staff organizes the relevant infection cases in the hospital infection monitoring and management server, generates a questionnaire, and sends it to the doctor's smartphone through the questionnaire function provided by the WeChat enterprise account server. After the doctor completes the filling, it is sent back to the hospital infection monitoring and management server , the hospital infection staff analyzes the data reported by doctors and the questionnaire survey data, forms rectification opinions, and readjusts the detection methods and policies related to hospital infection. 3.根据权利要求2所述的一种医院感染监控管理方法,其特征在于所述的医院感染上报方法具体包括以下步骤:3. a kind of nosocomial infection monitoring and management method according to claim 2, is characterized in that described nosocomial infection reporting method specifically comprises the following steps: 步骤B1,在医院感染监控管理服务器中设置感染类别集合为{C1,C2...Cj...CJ},其中Cj为第j个感染类别,1≤j≤J,J为感染类别总数,Cj={D1,D2...Dk...DK},其中Dk为第j个感染类别的第k个病例,1≤k≤K,K为第j个感染类别的病例总数;Step B1, set the infection category set in the hospital infection monitoring and management server as {C 1 , C 2 ... C j ... C J }, where C j is the j-th infection category, 1≤j≤J, J is the total number of infection categories, C j = {D 1 , D 2 ... D k ... D K }, where D k is the kth case of the jth infection category, 1≤k≤K, K is the kth case The total number of cases in j infection categories; 步骤B2,医生自行查看在院患者病例信息,或者查看医院感染监控管理服务器推送的医院感染检测方法检测出的疑似医院感染病例信息;Step B2, the doctor checks the case information of the patient in the hospital by himself, or checks the information of the suspected hospital infection case detected by the hospital infection detection method pushed by the hospital infection monitoring and management server; 步骤B3,医生判断该病例是否为医院感染病例,如果是转入B4,否则转入B8;Step B3, the doctor judges whether the case is a nosocomial infection case, if it is transferred to B4, otherwise transferred to B8; 步骤B4,生成感染案例DfindStep B4, generating infection case D find ; 步骤B5,通过微信企业号服务器提供的信息推送功能,推送Dfind给院感工作人员;Step B5, push D find to the hospital staff through the information push function provided by the WeChat enterprise account server; 步骤B6,院感工作人员分析该感染病例Dfind,如果确认为感染类别Cj转到B7,否则转到B8;Step B6, the hospital infection staff analyzes the infection case D find , if it is confirmed to be the infection category C j , go to B7, otherwise go to B8; 步骤B7,将该感染病例Dfind存储到对应的感染类别Cj中;Step B7, store the infection case D find in the corresponding infection category C j ; 步骤B8,上报结束。Step B8, the reporting ends. 4.根据权利要求2所述的一种医院感染监控管理方法,其特征在于所述的医院感染模型建立方法如下:4. a kind of hospital infection monitoring and management method according to claim 2 is characterized in that described hospital infection model establishment method is as follows: 步骤C1,医院感染监控管理服务器载入全部感染类别作为主成分分析的训练集,初始化j=0;Step C1, the hospital infection monitoring and management server loads all infection categories as the training set of principal component analysis, and initializes j=0; 步骤C2,j=j+1;Step C2, j=j+1; 步骤C3,医院感染监控管理服务器向医院信息集成平台申请抽取Cj={D1,D2...Dk...DK}中所有病例的医疗指标信息;Step C3, the hospital infection monitoring and management server applies to the hospital information integration platform to extract the medical index information of all cases in C j = {D 1 , D 2 ... D k ... D K }; 步骤C4,医院信息集成平台从医院信息系统中抽取抗生素药品信息{drugk,1,drugk,2,...drugk,a,...drugk,A},其中drugk,a为第k份病例的第a个抗生素使用剂量,1≤a≤A,A为第k份病例的抗生素种类数;Step C4, the hospital information integration platform extracts antibiotic drug information {drug k, 1 , drug k, 2 , ... drug k, a , ... drug k, A } from the hospital information system, where drug k, a is The a-th antibiotic dose of the k-th case, 1≤a≤A, A is the number of antibiotics in the k-th case; 步骤C5,医院信息集成平台从实验室信息系统抽取血液检查信息{bloodk,1,bloodk,2,...bloodk,b,...bloodk,B},其中bloodk,b为第k份病例的第b个血液检查数值,1≤b≤B,B为第k份病例的血液检查种类数,医院信息集成平台从实验室信息系统抽取耐药菌检测信息{cellk,1,cellk,2,...cellk,c,...cellk,C},其中cellk,c为第k份病例的第c个耐药菌检测数值,1≤c≤C,C为第k份病例的耐药菌检测种类数;Step C5, the hospital information integration platform extracts blood test information {blood k, 1 , blood k, 2 , ... blood k, b , ... blood k, B } from the laboratory information system, where blood k, b is The bth blood test value of the kth case, 1≤b≤B, B is the number of blood test types of the kth case, the hospital information integration platform extracts the drug-resistant bacteria detection information from the laboratory information system {cell k, 1 , cell k, 2 ,...cell k,c ,...cell k,C }, where cell k,c is the detection value of the c-th drug-resistant bacteria in the k-th case, 1≤c≤C,C is the number of drug-resistant bacteria detected in the kth case; 步骤C6,医院信息集成平台从医学影像存档与通讯系统抽取胸部X线检查报告结果信息xrayk、CT检查报告结果信息CTkStep C6, the hospital information integration platform extracts the chest X-ray examination report result information xray k and the CT examination report result information CT k from the medical image archiving and communication system; 步骤C7,医院信息集成平台从电子病历系统抽取近期体温信息{temk,1,temk,2,...temk,d,...temk,D},其中temk,d为第k份病例的第d次体温测量数值,1≤d≤D,D为第k份病例的体温测量次数;Step C7, the hospital information integration platform extracts recent body temperature information {tem k, 1 , tem k, 2 ,...tem k,d ,...tem k,D } from the electronic medical record system, where tem k,d is the first The value of the d-th body temperature measurement of the k cases, 1≤d≤D, D is the number of body temperature measurements of the k-th case; 步骤C8,将所有医疗指标信息标准化之后,按列排列,形成所有病例的所有指标的矩阵 Step C8, after standardizing all medical index information, arrange in columns to form a matrix of all indexes of all cases 其中{xk,1,xk,2,...xk,p,...xk,P}由{drugk,1,drugk,2,...drugk,a,...drugk,A},{bloodk,1,bloodk,2,...bloodk,b,...bloodk,B},{cellk,1,cellk,2,...cellk,c,...cellk,C},xrayk,CTk,{temk,1,temk,2,...temk,d,...temk,D}从左至右整合到同一个集合中,P=A+B+C+1+1+D,1≤p≤P,p为医疗指标序号,P为医疗指标总数;where { xk,1 , xk,2 ,... xk,p ,... xk,P } is given by {drugk ,1 ,drugk ,2 ,...drugk ,a ,.. .drug k,A },{blood k,1 ,blood k,2 ,...blood k,b ,...blood k,B },{cell k,1 ,cell k,2 ,...cell k,c ,...cell k ,C },xrayk, CTk ,{temk ,1 ,temk ,2 ,...temk ,d ,...temk ,D } from left to right Integrated into the same set, P=A+B+C+1+1+D, 1≤p≤P, p is the serial number of medical indicators, and P is the total number of medical indicators; 步骤C9,医院感染检测服务器计算X的相关系数矩阵其中其中 Step C9, the hospital infection detection server calculates the correlation coefficient matrix of X in in 步骤C10,医院感染检测服务器求矩阵R的特征根{λ12…λp…λP},并使其按大小顺序排列,λ1≥λ2≥…λp…≥λP≥0;Step C10, the hospital infection detection server finds the eigenvalues {λ 12 ...λ p ...λ P } of the matrix R, and arranges them in order of magnitude, λ 1 ≥λ 2 ≥...λ p ...≥λ P ≥0 ; 步骤C11,医院感染检测服务器生成{λ12…λp…λP}对应的主成分Step C11, the hospital infection detection server generates principal components corresponding to {λ 12 ...λ p ...λ P } 步骤C12,设定累计比例阈值STEP,i=0,i为累加变量;Step C12, set the cumulative proportion threshold STEP, i=0, i is the cumulative variable; 步骤C13,i=i+1;Step C13, i=i+1; 步骤C14,医院感染检测服务器计算主成分累计贡献率1≤i≤P;Step C14, the hospital infection detection server calculates the cumulative contribution rate of the principal components 1≤i≤P; 步骤C15,如果setp<STEP,转入C13,否则转入C16;Step C15, if setp<STEP, go to C13, otherwise go to C16; 步骤C16,医院感染检测服务器确定主成分对应的特征向量为感染类别Cj的检测阈值Testj=setp;Step C16, the nosocomial infection detection server determines that the feature vector corresponding to the principal component is Detection threshold Test j =setp of infection category C j ; 步骤C17,医院感染检测服务器生成感染类别Cj的检测模型Step C17, the hospital infection detection server generates a detection model of infection category C j 步骤C18,如果j<J,转入C2,否则转入C19;Step C18, if j<J, go to C2, otherwise go to C19; 步骤C19,医院感染模型建立完毕;Step C19, the establishment of the nosocomial infection model is completed; 其中Cj为第j个感染类别,1≤j≤J,J为感染类别总数,Cj={D1,D2...Dk...DK},其中Dk为第j个感染类别的第k个病例,1≤k≤K,K为第j个感染类别的病例总数。where C j is the j-th infection category, 1≤j≤J, J is the total number of infection categories, C j ={D 1 ,D 2 ... D k ... D K }, where D k is the j-th The kth case of the infection category, 1≤k≤K, where K is the total number of cases in the jth infection category. 5.根据权利要求2所述的一种医院感染监控管理方法,其特征在于所述的医院感染检测方法如下:5. a kind of nosocomial infection monitoring and management method according to claim 2, is characterized in that described nosocomial infection detection method is as follows: 步骤D1,选择在院患者病例作为医院感染模型的检测集,在院全部患者的病例集为{D1,D2...Df...DF},Df为第f个住院患者病例,1≤f≤F,F为当前在院患者总数,初始化f=0;Step D1, select the cases of patients in the hospital as the detection set of the hospital infection model, the case set of all patients in the hospital is {D 1 , D 2 ... D f ... D F }, and D f is the fth inpatient Cases, 1≤f≤F, F is the total number of patients currently in the hospital, initialized f=0; 步骤D2,f=f+1;Step D2, f=f+1; 步骤D3,判断该患者病例是否已经判断为院感病例;如果是转入D12,否则转入D4;Step D3, judge whether the patient's case has been judged as a nosocomial infection case; if it is, transfer to D12, otherwise transfer to D4; 步骤D4,初始化j=0;Step D4, initialize j=0; 步骤D5,j=j+1;Step D5, j=j+1; 步骤D6,医院感染监控管理服务器向医院信息集成平台申请抽取Df病例中的相关信息,医院信息集成平台从医院信息系统中抽取抗生素药品信息{drugf,1,drugf,2,...drugf,a,...drugf,A},医院信息集成平台从实验室信息系统抽取血液检查信息{bloodf,1,bloodf,2,...bloodf,b,...bloodf,B},耐药菌检测信息{cellf,1,cellf,2,...cellf,c,...cellf,C},医院信息集成平台从医学影像存档与通讯系统抽取胸部X线检查报告结果信息xrayf、CT检查报告结果信息CTf,医院信息集成平台从电子病历系统抽取近期体温信息{temf,1,temf,2,...temf,d,...temf,D};Step D6, the hospital infection monitoring and management server applies to the hospital information integration platform to extract relevant information from the D f cases, and the hospital information integration platform extracts antibiotic drug information {drug f, 1 , drug f, 2 , ... drug f, a ,...drug f, A }, the hospital information integration platform draws blood test information from the laboratory information system {blood f, 1 , blood f, 2 ,...blood f,b ,...blood f, B }, drug-resistant bacteria detection information {cell f, 1 , cell f, 2 , ... cell f, c , ... cell f, C }, the hospital information integration platform extracts from the medical image archiving and communication system Chest X-ray examination report result information xray f , CT examination report result information CT f , the hospital information integration platform extracts recent body temperature information from the electronic medical record system {tem f, 1 , tem f, 2 ,...tem f, d ,. ..tem f, D }; 步骤D7,将所有医疗指标信息标准化之后,依次排列为{xf,1,xf,2,...xf,p,...xf,P};Step D7, after standardizing all medical index information, arrange them in sequence as {x f, 1 , x f, 2 ,...x f, p ,...x f, P }; 步骤D8,将医疗指标信息输入感染类别Cj对应的医院感染检测服务器中的检测模型进行计算,current=e1,1×xf,1+...ep,1×xf,p...+eP,1×xf,PStep D8, input the medical index information into the detection model in the hospital infection detection server corresponding to the infection category C j for calculation, current=e 1 , 1 ×x f,1 +...e p,1 ×x f,p . ..+e P,1 × x f,P ; 步骤D9,判断current是否大于Testj,是转入D10,否则转入D11;Step D9, judging whether current is greater than Test j , it is transferred to D10, otherwise it is transferred to D11; 步骤D10,医院感染监控管理服务器通过微信企业号服务器提供的信息推送功能,推送检测出的疑似医院感染病例给相关医生,j=J;Step D10, the hospital infection monitoring and management server pushes the detected suspected hospital infection cases to the relevant doctors through the information push function provided by the WeChat enterprise account server, j=J; 步骤D11,如果j<J,转入D5,否则转入D12;Step D11, if j<J, go to D5, otherwise go to D12; 步骤D12,如果f<F,转入D2,否则转入D13;Step D12, if f<F, go to D2, otherwise go to D13; 步骤D13,医院感染检测完毕;Step D13, the nosocomial infection detection is completed; J为感染类别总数;A为第k份病例的抗生素种类数;B为第k份病例的血液检查种类数;C为第k份病例的耐药菌检测种类数;D为第k份病例的体温测量次数;P为医疗指标总数。J is the total number of infection categories; A is the number of antibiotic types in the kth case; B is the number of blood test types in the kth case; C is the number of drug-resistant bacteria detected in the kth case; D is the number of drug-resistant bacteria in the kth case Number of body temperature measurements; P is the total number of medical indicators.
CN201810126014.6A 2018-02-08 2018-02-08 A hospital infection monitoring and management device and monitoring and management method Active CN108461154B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810126014.6A CN108461154B (en) 2018-02-08 2018-02-08 A hospital infection monitoring and management device and monitoring and management method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810126014.6A CN108461154B (en) 2018-02-08 2018-02-08 A hospital infection monitoring and management device and monitoring and management method

Publications (2)

Publication Number Publication Date
CN108461154A CN108461154A (en) 2018-08-28
CN108461154B true CN108461154B (en) 2019-07-26

Family

ID=63239652

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810126014.6A Active CN108461154B (en) 2018-02-08 2018-02-08 A hospital infection monitoring and management device and monitoring and management method

Country Status (1)

Country Link
CN (1) CN108461154B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109472519A (en) * 2018-12-13 2019-03-15 湖南德雅曼达科技有限公司 A method of building hospital infection control measure Cost benefit assessment model
CN109871866B (en) * 2019-01-08 2023-04-07 深圳市南山区人民医院 Model training method, device, equipment and medium for hospital infection prediction
CN110060748A (en) * 2019-03-25 2019-07-26 江苏大学附属医院 A kind of multidisciplinary PICC sets pipe assessment managing device and method
CN111223573A (en) * 2020-01-20 2020-06-02 和宇健康科技股份有限公司 Hospital infection monitoring management method and system
CN115762807A (en) * 2022-11-23 2023-03-07 杭州杏林信息科技有限公司 Infection early warning system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104460610A (en) * 2014-11-18 2015-03-25 深圳市赛得立实业有限公司 Hospital infection equipment remote monitoring management system and method
CN107656969A (en) * 2017-08-31 2018-02-02 深圳市谷熊网络科技有限公司 A kind of information recommendation method and device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106682442B (en) * 2017-01-06 2019-03-29 上海神州美景健康科技有限公司 Cerebral apoplexy early warning and cerebrovascular health management system
CN106919796A (en) * 2017-03-02 2017-07-04 上海市第六人民医院 A kind of patient follow-up system based on wechat public number

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104460610A (en) * 2014-11-18 2015-03-25 深圳市赛得立实业有限公司 Hospital infection equipment remote monitoring management system and method
CN107656969A (en) * 2017-08-31 2018-02-02 深圳市谷熊网络科技有限公司 A kind of information recommendation method and device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
医院感染实时监控系统与医院信息系统的融合应用;李顺飞等;《医疗卫生装备》;20141015;第35卷(第10期);全文 *

Also Published As

Publication number Publication date
CN108461154A (en) 2018-08-28

Similar Documents

Publication Publication Date Title
CN108461154B (en) A hospital infection monitoring and management device and monitoring and management method
KR102558021B1 (en) A clinical decision support ensemble system and the clinical decision support method by using the same
US7895055B2 (en) Method and system to optimize and automate clinical workflow
US20100056875A1 (en) Monitoring Patient Conditions
CN105069308B (en) Medical Devices intelligent monitor system
CN103690240A (en) Medical system
CN118538429A (en) Clinical examination result analysis method based on medical knowledge graph
CN111883256A (en) Early warning system and early warning method for pulmonary tuberculosis patients based on electronic medical record data
CN112037896A (en) An intelligent cloud nurse assistant system for hemodialysis
CN110415832A (en) Artificial intelligence-based infection control management system and method
CN110675942A (en) Medical imaging image diagnosis distribution method, device, terminal and storage medium
CN115691746A (en) A body assessment management system based on health records
CN115798662A (en) Case transport analysis system for hospital medical record management based on artificial intelligence algorithm
CN113066562A (en) Medical image transmission method and system based on 5g
US20220254459A1 (en) Data processing method, data processing device, computing device and computer readable storage medium
CN107368684A (en) The method and platform of service provided are examined using Cold Chain Logistics and internet as basic unit
CN117275702B (en) Wall-mounted intelligent query terminal
US20100274588A1 (en) System and method to manage a workflow in delivering healthcare
CN116246778B (en) Intelligent diagnosis platform for lung function detection
US20150106124A1 (en) Date and time accuracy testing patient data transferred from a remote device
CN118430729A (en) Intelligent medical information management system and method
CN113593706A (en) Health monitoring and service management system based on artificial intelligence technology
KR102004135B1 (en) Method for providing quality control automation service using hub terminal between medical appliance and middleware in hospital
CN115862818A (en) Medical image equipment data analysis system based on deep learning algorithm
CN115222362A (en) A set of methods and systems for improving the efficiency of public health examinations based on the Internet of Things

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant