CN108354588B - A mechanical structure of a microrobot for exploring the mechanical properties of human skin - Google Patents
A mechanical structure of a microrobot for exploring the mechanical properties of human skin Download PDFInfo
- Publication number
- CN108354588B CN108354588B CN201810035150.4A CN201810035150A CN108354588B CN 108354588 B CN108354588 B CN 108354588B CN 201810035150 A CN201810035150 A CN 201810035150A CN 108354588 B CN108354588 B CN 108354588B
- Authority
- CN
- China
- Prior art keywords
- base
- probe
- brake
- ball sliding
- human skin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000523 sample Substances 0.000 claims abstract description 50
- 238000006073 displacement reaction Methods 0.000 claims abstract description 30
- 230000033001 locomotion Effects 0.000 claims description 16
- 229910000831 Steel Inorganic materials 0.000 claims description 11
- 239000010959 steel Substances 0.000 claims description 11
- 230000003014 reinforcing effect Effects 0.000 claims description 10
- 238000001179 sorption measurement Methods 0.000 claims description 2
- 238000003696 structure analysis method Methods 0.000 abstract description 2
- 238000000034 method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000011160 research Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000013308 plastic optical fiber Substances 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000000844 transformation Methods 0.000 description 2
- 230000003187 abdominal effect Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/44—Detecting, measuring or recording for evaluating the integumentary system, e.g. skin, hair or nails
- A61B5/441—Skin evaluation, e.g. for skin disorder diagnosis
- A61B5/442—Evaluating skin mechanical properties, e.g. elasticity, hardness, texture, wrinkle assessment
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Dermatology (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
本发明公开了一种用于探究人体皮肤力学特性微型机器人的机械结构,包括运动控制部分、探针固定平台部分和探针钢架结构部分,运动控制部分包括一个底座a,底座a上固设有多个制动器,该制动器包括外圈和内圈,外圈固定于底座a上,内圈能够在外圈内转动并上、下移动;底座a外周均匀固设有多个滚珠滑组,该滚珠滑组包括外层和内层,外层固定于底座a上,内层底端固定于制动器的内圈上,并随制动器的内圈一起上、下移动,滚珠滑组内层上设置有位移传感,本发明采用制动器驱动探针固定平台上下移动,从而使得探针在皮肤上产生连续的形变,再借助于传感器测出的数据以及有限元结构分析法,能用于精确地分析出皮肤的各向异性、粘弹性、非线性等特征。
The invention discloses a mechanical structure of a micro-robot for exploring the mechanical properties of human skin. There are multiple brakes, the brake includes an outer ring and an inner ring, the outer ring is fixed on the base a, the inner ring can rotate and move up and down in the outer ring; the outer circumference of the base a is evenly fixed with a plurality of ball sliding groups, the ball The sliding group includes an outer layer and an inner layer. The outer layer is fixed on the base a, and the bottom end of the inner layer is fixed on the inner ring of the brake, and moves up and down together with the inner ring of the brake. The inner layer of the ball sliding group is provided with a displacement Sensing, the present invention uses the brake to drive the probe fixed platform to move up and down, so that the probe produces continuous deformation on the skin, and then with the help of the data measured by the sensor and the finite element structure analysis method, it can be used to accurately analyze the skin. Anisotropy, viscoelasticity, nonlinearity and other characteristics.
Description
技术领域technical field
本发明涉及应用在探究人体皮肤力学特性的微型机器人技术领域,特别是一种用于探究人体皮肤力学特性微型机器人的机械结构。The invention relates to the technical field of micro-robots used for exploring the mechanical properties of human skin, in particular to a mechanical structure of a micro-robot for exploring the mechanical properties of human skin.
背景技术Background technique
皮肤组织生物特性测试研究不仅有助于医生判别皮肤组织是否发生病变,而且能够有效地优化外科手术方案,提高手术的安全性。早期皮肤力学特性的测量多采用活体生物力学法,在活体状态下,将人体麻醉,用医学仪器直接测量皮肤特性。这种方法没有考虑到皮肤组织的各向异性以及神经、体液、代谢、理化环境等对皮肤力学特性的影响。The research on biological characteristics of skin tissue not only helps doctors to determine whether the skin tissue has lesions, but also can effectively optimize the surgical plan and improve the safety of the operation. In the early days, the measurement of skin mechanical properties mostly used in vivo biomechanics. In the living state, the human body was anesthetized, and the skin properties were directly measured with medical instruments. This method does not take into account the anisotropy of skin tissue and the effects of nerves, body fluids, metabolism, physicochemical environment, etc. on the mechanical properties of the skin.
随着现代力学特性测量手段的不断改进,各种生物力学测试方法广泛应用于皮肤力学研究,最常见的是压痕测量法,即在皮肤组织表面进行拉伸或挤压,根据位移和负载之间的动态响应过程,在利用传感器测得点的数据以及数值方法,获取皮肤组织的力学特性参数。针对在皮肤组织表面产生适当的位移,并利用位移和负载之间的动态关系获得皮肤的力学特性参数,科研人员进行了大量的探究。科学家Lanir在文章《A structure theoryfor the homogeneous biaxial stress-strain relationships in flat collagenoustissues》提出对腹部皮肤做了二维拉伸试验,即在两个相互垂直的方向上对皮肤施加力进而产生形变,该装置使用不便,且只能垂直或水平方向对皮肤进行测量。With the continuous improvement of modern mechanical property measurement methods, various biomechanical test methods are widely used in skin mechanics research. During the dynamic response process, the mechanical properties parameters of the skin tissue are obtained by using the data of the points measured by the sensor and numerical methods. Researchers have conducted a lot of research on generating appropriate displacement on the surface of skin tissue and using the dynamic relationship between the displacement and the load to obtain the mechanical properties of the skin. In the article "A structure theory for the homogeneous biaxial stress-strain relationships in flat collagenoustissues", scientist Lanir proposed to perform a two-dimensional tensile test on the abdominal skin, that is, applying force to the skin in two mutually perpendicular directions to generate deformation. The device It is inconvenient to use and can only measure the skin vertically or horizontally.
发明内容SUMMARY OF THE INVENTION
本发明的目的是提供一种用于探究人体皮肤力学特性微型机器人的机械结构,该机械结构能携带探针在皮肤表面产生一定量的连续且规则的位移与形变,再借助于传感器测出的数据以及有限元分析法,能精确地分析出皮肤的各向异性、粘弹性、非线性等特征。The purpose of the present invention is to provide a mechanical structure of a micro-robot for exploring the mechanical properties of human skin. Data and finite element analysis method can accurately analyze the anisotropy, viscoelasticity, nonlinearity and other characteristics of the skin.
为解决上述技术问题,本发明采用的技术方案是:In order to solve the above-mentioned technical problems, the technical scheme adopted in the present invention is:
一种用于探究人体皮肤力学特性微型机器人的机械结构,包括运动控制部分、探针固定平台部分和探针钢架结构部分,其中,运动控制部分包括一个底座a,底座a上固设有多个制动器,该制动器包括外圈和内圈,外圈固定于底座a上,内圈能够在外圈内转动并上、下移动;底座a外周均匀固设有多个滚珠滑组,该滚珠滑组包括外层和内层,外层固定于底座a上,内层底端固定于制动器的内圈上,并随制动器的内圈一起上、下移动,滚珠滑组内层上设置有位移传感,内层顶端设置有定位销;A mechanical structure of a micro-robot for exploring the mechanical properties of human skin, including a motion control part, a probe fixing platform part and a probe steel frame structure part, wherein the motion control part includes a base a, and a plurality of a brake, the brake includes an outer ring and an inner ring, the outer ring is fixed on the base a, the inner ring can rotate and move up and down in the outer ring; a plurality of ball sliding groups are evenly fixed on the outer circumference of the base a, and the ball sliding group It includes an outer layer and an inner layer, the outer layer is fixed on the base a, the bottom end of the inner layer is fixed on the inner ring of the brake, and moves up and down together with the inner ring of the brake, and the inner layer of the ball sliding group is provided with a displacement sensor , the top of the inner layer is provided with a positioning pin;
探针固定平台部分包括底座b,底座b的底面设置有导柱,通过将定位销设置于导柱中,将运动控制部分与探针固定平台部分连接在一起;底座b的顶面设置有用于连接探针钢架结构部分的磁铁,磁铁周围均匀设置有位移传感器;The probe fixing platform part includes a base b, and the bottom surface of the base b is provided with a guide column, and by arranging the positioning pin in the guide column, the motion control part and the probe fixing platform part are connected together; Connect the magnets of the steel frame structure of the probe, and the displacement sensors are evenly arranged around the magnets;
探针钢架结构部分包括一个与磁铁吸附连接的底座c,底座c的顶面设置有一个支撑柱,该支撑柱顶面连接探针,探针的顶面设置有生物力学传感器,支撑柱的外圆周面上均布有加强筋,加强筋与底座b上的位移传感器接触连接。The structural part of the probe steel frame includes a base c that is connected with the magnet, a support column is arranged on the top surface of the base c, the top surface of the support column is connected to the probe, the top surface of the probe is provided with a biomechanical sensor, and the top surface of the support column is provided with a biomechanical sensor. Reinforcing ribs are evenly distributed on the outer circumferential surface, and the reinforcing ribs are in contact and connected with the displacement sensor on the base b.
优选地,底座a为六棱柱状刚体结构,底座a具有六个侧平面,便于定位和安装滚珠滑组。Preferably, the base a is a hexagonal prism-shaped rigid body structure, and the base a has six side planes, which is convenient for positioning and installing the ball sliding group.
进一步优选地,共有三个滚珠滑组,底座a具有六个侧平面,每间隔一个侧平面设置一个滚珠滑组,且三个滚珠滑组呈等边三角形设置。Further preferably, there are three ball sliding groups in total, the base a has six side planes, one ball sliding group is arranged at every side plane, and the three ball sliding groups are arranged in an equilateral triangle.
更进一步优选地,共有三个制动器,制动器在底座a上呈等边三角形设置,制动器为BEI-KimcoLA15音圈式制动器。More preferably, there are three brakes in total, the brakes are arranged in an equilateral triangle on the base a, and the brakes are BEI-KimcoLA15 voice coil brakes.
本发明所述底座b为圆柱体结构,磁铁也为圆柱体形,磁铁周围呈等边三角形设置三个U型滑槽,滑槽内设置位移传感器。The base b of the present invention has a cylindrical structure, and the magnet is also cylindrical. Three U-shaped chutes are arranged around the magnet in an equilateral triangle, and a displacement sensor is arranged in the chutes.
本发明的原理是:The principle of the present invention is:
本发明采用型号相同的三个音圈式制动器驱动滚珠滑组内层上、下移动,三个制动器可以同时启动或任选启动,从而使得探针固定平台部分获得不同的空间位置和姿态,这样实现探针固定平台三自由度运动或两自由度运动,探针固定平台再带动探针钢架结构部分以及探针运动,探针就能使皮肤产生三维形变或二维形变。滚珠滑组内层和探针固定平台上的位移传感器测出制动器带动探针发生的位移,探针上的生物力学传感器测出皮肤表面发生的形变应力与应变的大小。测出的数据再使用有限元分析法,就得准确得出人体皮肤各向异性、粘弹性、非线性的特征。In the present invention, three voice coil brakes of the same model are used to drive the inner layer of the ball sliding group to move up and down, and the three brakes can be activated simultaneously or optionally, so that the fixed platform part of the probe can obtain different spatial positions and attitudes. The three-degree-of-freedom movement or two-degree-of-freedom movement of the probe fixing platform is realized, and the probe fixing platform drives the probe steel frame structure part and the probe movement, and the probe can produce three-dimensional or two-dimensional deformation of the skin. The displacement sensor on the inner layer of the ball sliding group and the probe fixing platform measures the displacement of the probe driven by the brake, and the biomechanical sensor on the probe measures the deformation stress and strain on the skin surface. The measured data is then used to use finite element analysis to accurately obtain the anisotropy, viscoelasticity and nonlinear characteristics of human skin.
本发明采用上述技术方案具有如下技术效果:The present invention adopts the above-mentioned technical scheme to have the following technical effects:
本发明采用制动器驱动探针固定平台上下移动,从而使得探针在皮肤上产生连续的形变,再借助于传感器测出的数据以及有限元结构分析法,能用于精确地分析出皮肤的各向异性、粘弹性、非线性等特征。The invention adopts the brake to drive the probe fixed platform to move up and down, so that the probe produces continuous deformation on the skin, and then with the help of the data measured by the sensor and the finite element structure analysis method, it can be used to accurately analyze the various directions of the skin. Anisotropy, viscoelasticity, nonlinearity, etc.
附图说明Description of drawings
图1为运动控制部分的结构示意图。Figure 1 is a schematic diagram of the structure of the motion control part.
图2为探针固定平台部分的结构示意图。FIG. 2 is a schematic structural diagram of the part of the probe fixing platform.
图3为图2的俯视图结构。FIG. 3 is a top view structure of FIG. 2 .
图4为探针钢架结构部分的结构示意图。FIG. 4 is a schematic structural diagram of the structural part of the probe steel frame.
图5为本发明整体结构示意图。FIG. 5 is a schematic diagram of the overall structure of the present invention.
具体实施方法Specific implementation method
下面结合附图,对本发明作进一步的说明。The present invention will be further described below in conjunction with the accompanying drawings.
如图5所示,本发明所述一种用于探究人体皮肤力学特性微型机器人的机械结构包括运动控制部分、探针固定平台部分和探针钢架结构部分。As shown in FIG. 5 , the mechanical structure of a micro-robot for exploring the mechanical properties of human skin according to the present invention includes a motion control part, a probe fixing platform part and a probe steel frame structure part.
如图1所示,运动控制部分包括一个底座a1,底座a上固设有多个制动器2,该制动器包括外圈和内圈,外圈固定于底座a上,内圈能够在外圈内转动并上、下移动;底座a外周均匀固设有多个滚珠滑组3,该滚珠滑组包括外层4和内层5,外层固定于底座a上,内层底端固定于制动器的内圈上,并随制动器的内圈一起上、下移动,滚珠滑组内层上设置有位移传感;内层顶端设置有定位销6。As shown in Fig. 1, the motion control part includes a base a1, a plurality of
本实施例中优选底座为六棱柱状刚体结构。In this embodiment, the base is preferably a hexagonal prismatic rigid body structure.
本实施例中共有三个滚珠滑组,六棱柱底座具有六个侧平面,每间隔一个侧平面设置一个滚珠滑组,且三个滚珠滑组呈等边三角形设置。所述滚珠滑组为现有结构,本实施例中优选日本IKO直线导轨BSP1035 SL。There are three ball sliding groups in this embodiment, the hexagonal prism base has six side planes, and a ball sliding group is arranged at every side plane, and the three ball sliding groups are arranged in an equilateral triangle. The ball sliding group has an existing structure, and in this embodiment, the Japanese IKO linear guide BSP1035 SL is preferred.
本实施例中共有三个制动器,制动器在底座上呈等边三角形设置,制动器为现有技术,本实施例中优选BEI-KimcoLA15音圈式制动器,它能产生大于3mm的位移以及大于100Hz的频率,动作精度高。该制动器包括外圈和内圈,外圈固定于底座上,内圈能够转动,并能在外圈内相对上下移动。There are three brakes in this embodiment. The brakes are arranged in an equilateral triangle on the base. The brakes are in the prior art. In this embodiment, the BEI-KimcoLA15 voice coil brake is preferred, which can generate a displacement greater than 3mm and a frequency greater than 100Hz. The action precision is high. The brake includes an outer ring and an inner ring, the outer ring is fixed on the base, and the inner ring can rotate and move relatively up and down in the outer ring.
本实施例中在滚珠滑组内层上放置三个位移传感器,用来动态的测量运动时制动器内圈的上下位移,以此来分析对机器人工作顶点的控制,通过位移传感器输出的电压可以推算出制动器内圈的位移。本实施例中选用光电二极管式传感器,优选日本KODENSHI公司的SG-2BC,它具有测量精度高,价格低等优点。将光电二极管式传感器安装在滚珠滑组内层上,把发光二极管发出的光射入到塑性光纤上,光纤的自由端安装在制动器的运动部分,这样就可以照亮光电二极管。使用塑型光纤可以很有效的控制光照方向,并且在滚珠滑组内层上不需要安装其他设备。在光纤的末端安装一个显微镜,这样可以把光线全部聚集到光电二极管上。In this embodiment, three displacement sensors are placed on the inner layer of the ball sliding group to dynamically measure the up and down displacement of the inner ring of the brake during movement, so as to analyze the control of the robot's working vertex, and the voltage output by the displacement sensor can be calculated. The displacement of the inner ring of the brake. In this embodiment, a photodiode sensor is selected, preferably SG-2BC from KODENSHI Company of Japan, which has the advantages of high measurement accuracy and low price. The photodiode sensor is installed on the inner layer of the ball sliding group, the light emitted by the light emitting diode is injected into the plastic optical fiber, and the free end of the optical fiber is installed on the moving part of the brake, so that the photodiode can be illuminated. The use of plastic optical fibers can effectively control the direction of light, and no other equipment needs to be installed on the inner layer of the ball sliding group. A microscope is attached to the end of the fiber so that it can focus all of the light onto the photodiode.
如图2、3所示,探针固定平台部分包括底座b7,底座b的底面设置有导柱8,通过将定位销设置于导柱中,将运动控制部分与探针固定平台部分连接在一起;底座b的顶面设置有用于连接探针钢架结构部分的磁铁9,磁铁周围均匀设置有位移传感器10。As shown in Figures 2 and 3, the probe fixing platform part includes a base b7, and the bottom surface of the base b is provided with a
磁铁周围设置的位移传感器与滚珠滑组内层上的位移传感器均可用于测量探针的位移量,单纯以滚珠滑组内层上的位移传感器测量探针的位移量会因结构件之间的安装及相对滑动造成误差,故在底座b上再设置位移传感器。Both the displacement sensor arranged around the magnet and the displacement sensor on the inner layer of the ball sliding group can be used to measure the displacement of the probe. Simply using the displacement sensor on the inner layer of the ball sliding group to measure the displacement of the probe will be affected by the difference between the structural parts. Installation and relative sliding cause errors, so a displacement sensor is installed on the base b.
如图3所示,本实施例中优选底座b为圆柱体结构,磁铁也为圆柱体形,磁铁周围呈等边三角形设置三个U型滑槽11,滑槽内设置位移传感器。制动器的运动与探针的运动存在一一对应的关系,制动器呈等边三角形状放置,所以位移传感器也同样这样放置,能更准确的测出探针各个方向上的位移。As shown in FIG. 3 , in this embodiment, the base b is preferably a cylindrical structure, and the magnet is also cylindrical. Three
底座a、底座b均选用轻质的硬性材料以减小惯性,以减小制动器内圈转动带着探针上下移动时产生的弹性偏差,另外还须考虑防止底座与制动器的工作频率产生共振。Both the base a and the base b are made of light and rigid materials to reduce inertia, so as to reduce the elastic deviation generated when the inner ring of the brake rotates with the probe moving up and down. In addition, it is necessary to consider preventing the working frequency of the base and the brake from resonating.
如图4所示,探针钢架结构部分包括一个与磁铁吸附连接的底座c12,底座c的顶面设置有一个支撑柱,该支撑柱顶面连接探针13,探针的顶面设置有生物力学传感器,支撑柱的外圆周面上均布有加强筋14,加强筋与底座b上的位移传感器接触连接。加强筋可以为探针的支撑柱提供刚性强度,防止因探针与皮肤挤压,使支撑柱应力分配不均造成扭曲变形。As shown in FIG. 4 , the probe steel frame structure part includes a base c12 which is attached to the magnet by adsorption. A support column is provided on the top surface of the base c. The top surface of the support column is connected to the
探针与皮肤接触,为减小探针对皮肤的伤害,探针的接触面可设计成圆形,当制动器启动时,带动探针运动,从而对皮肤表面产生位移。The probe is in contact with the skin. In order to reduce the damage of the probe to the skin, the contact surface of the probe can be designed in a circular shape. When the brake is activated, the probe is driven to move, thereby displacing the skin surface.
本实施例中加强筋为直角梯形结构,加强筋的斜边自支撑柱外圆周面向底座c倾斜, 加强筋呈直角梯形设计主要为避免应力集中,梯形能提供的支撑力更大,且更加美观。In this embodiment, the reinforcing rib has a right-angled trapezoid structure, and the hypotenuse of the reinforcing rib is inclined from the outer circumference of the support column to the base c. The design of the reinforcing rib in a right-angled trapezoid is mainly to avoid stress concentration, and the trapezoid can provide greater supporting force and is more beautiful. .
以上所述生物力学传感器可选用本申请人自主研发设计的传感器,亦可选用美国AMTI六维力传感器等商用传感器。The above-mentioned biomechanical sensors can be selected from sensors independently developed and designed by the applicant, or commercial sensors such as the American AMTI six-dimensional force sensor.
以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种等同变换,这些等同变换均属于本发明的保护范围。The preferred embodiments of the present invention have been described in detail above. However, the present invention is not limited to the specific details of the above-mentioned embodiments. Within the scope of the technical concept of the present invention, various equivalent transformations can be made to the technical solutions of the present invention. These equivalent transformations All belong to the protection scope of the present invention.
Claims (5)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201810035150.4A CN108354588B (en) | 2018-01-15 | 2018-01-15 | A mechanical structure of a microrobot for exploring the mechanical properties of human skin |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201810035150.4A CN108354588B (en) | 2018-01-15 | 2018-01-15 | A mechanical structure of a microrobot for exploring the mechanical properties of human skin |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN108354588A CN108354588A (en) | 2018-08-03 |
| CN108354588B true CN108354588B (en) | 2020-12-15 |
Family
ID=63006240
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201810035150.4A Active CN108354588B (en) | 2018-01-15 | 2018-01-15 | A mechanical structure of a microrobot for exploring the mechanical properties of human skin |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN108354588B (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN116712036A (en) * | 2023-06-02 | 2023-09-08 | 北京他山科技有限公司 | Method and device for measuring surface viscoelasticity of biological tissue |
Citations (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4297884A (en) * | 1978-08-31 | 1981-11-03 | L'oreal | Method of and apparatus for the measurement of at least one mechanical property of an elastic material |
| US4396025A (en) * | 1980-07-01 | 1983-08-02 | L'oreal | Apparatus for measuring the elastic characteristics of skin |
| CN2165435Y (en) * | 1993-09-08 | 1994-05-18 | 中国科学院合肥智能机械研究所 | Six-freedom force and moment transducer |
| CN1828248A (en) * | 2006-04-18 | 2006-09-06 | 燕山大学 | Parallel 6-UPUR six-dimensional force measuring platform |
| CN101246065A (en) * | 2008-03-22 | 2008-08-20 | 燕山大学 | Elastic hinge parallel 6-UPUR six-dimensional force measuring platform |
| CN101329208A (en) * | 2008-07-02 | 2008-12-24 | 燕山大学 | Integral pre-tightening double-layer upper and lower symmetrical eight-bar parallel structure six-dimensional force sensor |
| CN201230875Y (en) * | 2008-06-19 | 2009-05-06 | 上海交通大学医学院附属瑞金医院 | Skin Tissue Hardness Meter |
| CN101430237A (en) * | 2007-11-05 | 2009-05-13 | 中国科学院合肥物质科学研究院 | Multidimensional force test system in vibration experiment |
| JP2009268640A (en) * | 2008-05-02 | 2009-11-19 | Kao Corp | Method for measuring skin internal elasticity |
| CN201548356U (en) * | 2009-12-10 | 2010-08-11 | 中国直升机设计研究所 | Column type three-dimensional force transducer |
| CN201903415U (en) * | 2010-12-03 | 2011-07-20 | 西安金和光学科技有限公司 | Six-dimension force sensing device |
| CN102125436A (en) * | 2011-04-15 | 2011-07-20 | 北京航空航天大学 | Device for measuring skin muscle tension |
| CN104540448A (en) * | 2012-01-27 | 2015-04-22 | 雷文斯治疗公司 | Methods and rating scales for measuring wrinkle severity |
| CN205449351U (en) * | 2015-12-30 | 2016-08-10 | 陕西电器研究所 | Small -size three -dimensional force transducer |
| CN106943121A (en) * | 2017-04-27 | 2017-07-14 | 黑龙江大学 | A kind of skin viscoplasticity detection means and method |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7303534B2 (en) * | 2003-10-28 | 2007-12-04 | Rocky Kahn | Rotating firmness sensor |
-
2018
- 2018-01-15 CN CN201810035150.4A patent/CN108354588B/en active Active
Patent Citations (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4297884A (en) * | 1978-08-31 | 1981-11-03 | L'oreal | Method of and apparatus for the measurement of at least one mechanical property of an elastic material |
| US4396025A (en) * | 1980-07-01 | 1983-08-02 | L'oreal | Apparatus for measuring the elastic characteristics of skin |
| CN2165435Y (en) * | 1993-09-08 | 1994-05-18 | 中国科学院合肥智能机械研究所 | Six-freedom force and moment transducer |
| CN1828248A (en) * | 2006-04-18 | 2006-09-06 | 燕山大学 | Parallel 6-UPUR six-dimensional force measuring platform |
| CN101430237A (en) * | 2007-11-05 | 2009-05-13 | 中国科学院合肥物质科学研究院 | Multidimensional force test system in vibration experiment |
| CN101246065A (en) * | 2008-03-22 | 2008-08-20 | 燕山大学 | Elastic hinge parallel 6-UPUR six-dimensional force measuring platform |
| JP2009268640A (en) * | 2008-05-02 | 2009-11-19 | Kao Corp | Method for measuring skin internal elasticity |
| CN201230875Y (en) * | 2008-06-19 | 2009-05-06 | 上海交通大学医学院附属瑞金医院 | Skin Tissue Hardness Meter |
| CN101329208A (en) * | 2008-07-02 | 2008-12-24 | 燕山大学 | Integral pre-tightening double-layer upper and lower symmetrical eight-bar parallel structure six-dimensional force sensor |
| CN201548356U (en) * | 2009-12-10 | 2010-08-11 | 中国直升机设计研究所 | Column type three-dimensional force transducer |
| CN201903415U (en) * | 2010-12-03 | 2011-07-20 | 西安金和光学科技有限公司 | Six-dimension force sensing device |
| CN102125436A (en) * | 2011-04-15 | 2011-07-20 | 北京航空航天大学 | Device for measuring skin muscle tension |
| CN104540448A (en) * | 2012-01-27 | 2015-04-22 | 雷文斯治疗公司 | Methods and rating scales for measuring wrinkle severity |
| CN205449351U (en) * | 2015-12-30 | 2016-08-10 | 陕西电器研究所 | Small -size three -dimensional force transducer |
| CN106943121A (en) * | 2017-04-27 | 2017-07-14 | 黑龙江大学 | A kind of skin viscoplasticity detection means and method |
Also Published As
| Publication number | Publication date |
|---|---|
| CN108354588A (en) | 2018-08-03 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP7667890B2 (en) | SYSTEM AND METHOD FOR DETERMINING STRUCTURAL FEATURES OF AN OBJECT - Patent application | |
| JP2024059870A (en) | Determining the structural characteristics of an object | |
| RU2012121174A (en) | INTERVENTIONAL INSTRUMENTS WITH OPTICAL SENSING SUPPORT FOR QUICK DISTRIBUTED MEASUREMENTS OF BIOSPHYSICAL PARAMETERS | |
| US9782088B2 (en) | Pulse measuring device and method of pulse measurement therewith | |
| Hsu et al. | A triplane video-based experimental system for studying axisymmetrically inflated biomembranes | |
| CN108078553A (en) | High-accuracy intelligence pulse-taking instrument | |
| CN205483873U (en) | Biological tissue elasticity measuring apparatu | |
| CN102798592B (en) | Micro-nano driving platform for real-time variable-frequency regulation and control of muscle fiber | |
| Noh et al. | A contact force sensor based on S-shaped beams and optoelectronic sensors for flexible manipulators for minimally invasive surgery (MIS) | |
| CN108354588B (en) | A mechanical structure of a microrobot for exploring the mechanical properties of human skin | |
| JP2007127429A (en) | Hose bending rigidity measuring device | |
| CN111568431A (en) | Spinal column bending biomechanics and mobility testing device and method | |
| CN111830121A (en) | Test device and method for magneto-deformable material under controllable magnetic field environment | |
| CN212123355U (en) | An operation-type industrial robot joint and a loading device for measuring the stiffness of the whole machine | |
| Hinterkausen et al. | In vitro analysis of the initial tooth mobility in a novel optomechanical set-up | |
| US20250215376A1 (en) | Lab-on-chip designs for measuring tissues | |
| CN207468651U (en) | The cell culture apparatus of dynamic microenvironment in analogue body | |
| CN204608008U (en) | The MEMS system of the unicellular excitation of a kind of scleroblast and detection | |
| CN202654159U (en) | Support for automatic full-volume imaging system | |
| Yunlei et al. | Design of a microforce sensor based on fixed-simply supported beam: Towards realtime cell microinjection | |
| JP2012021924A (en) | Device for measuring deformed state | |
| CN118340592A (en) | Orthodontic appliance friction force testing device and use method | |
| CN117717331A (en) | Foot shape detection and pressure matching device | |
| CN204608007U (en) | The operator structure of the unicellular excitation of a kind of scleroblast and detection | |
| CN104330299A (en) | Mechanical property testing system for soft tissues of tiny organisms and working method of mechanical property testing system |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| CB02 | Change of applicant information |
Address after: 210003 Gulou District, Jiangsu, Nanjing new model road, No. 66 Applicant after: NANJING University OF POSTS AND TELECOMMUNICATIONS Address before: 210023 Jiangsu city of Nanjing province Ya Dong new Yuen Road No. 9 Applicant before: NANJING University OF POSTS AND TELECOMMUNICATIONS |
|
| CB02 | Change of applicant information | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |
