CN103996964A - Hollow mirror laser resonant cavity - Google Patents
Hollow mirror laser resonant cavity Download PDFInfo
- Publication number
- CN103996964A CN103996964A CN201410252938.2A CN201410252938A CN103996964A CN 103996964 A CN103996964 A CN 103996964A CN 201410252938 A CN201410252938 A CN 201410252938A CN 103996964 A CN103996964 A CN 103996964A
- Authority
- CN
- China
- Prior art keywords
- mirror
- hollow
- center
- totally
- laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Lasers (AREA)
Abstract
Description
技术领域 technical field
本发明属于激光器技术领域,具体是一种由空心镜构成的激光谐振腔,涉及一种空心镜激光谐振腔。 The invention belongs to the technical field of lasers, in particular to a laser resonant cavity composed of a hollow mirror, and relates to a hollow mirror laser resonant cavity.
背景技术 Background technique
在现有技术中的激光器输出的激光光束都是高斯光束,即激光光束横截面上的光强分布是高斯函数形式分布。高斯分布的光强,光斑中心能量强,旁边能量弱。这样的光强分布,不利于激光熔覆和焊接的应用。如何采用一种简单易行、价格低廉的方法,获得比较均匀的激光光强分布,是激光应用研究的热点之一,获得光强分布均匀激光光束,传统采用激光输出后通过积分镜、π形镜、微透镜阵列等装置,对激光光束进行整形匀化的方法来实现。此类方法虽然可以获得光强分布比较均匀的激光光斑,但这些特种镜片,价格高昂,且随着激光器输出的光强分布发生变化,均化的效果也不一致,影响了激光在应用中的稳定性。 The laser beams output by the lasers in the prior art are all Gaussian beams, that is, the light intensity distribution on the cross section of the laser beam is distributed in the form of a Gaussian function. For Gaussian distribution of light intensity, the energy in the center of the spot is strong and the energy in the side is weak. Such light intensity distribution is not conducive to the application of laser cladding and welding. How to adopt a simple, easy and cheap method to obtain relatively uniform laser light intensity distribution is one of the hotspots in laser application research. To obtain a uniform laser beam with light intensity distribution, the traditional laser output is passed through an integrator mirror, π-shaped It can be achieved by shaping and homogenizing the laser beam with devices such as mirrors and microlens arrays. Although this type of method can obtain a laser spot with a relatively uniform light intensity distribution, these special lenses are expensive, and as the light intensity distribution of the laser output changes, the homogenization effect is inconsistent, which affects the stability of the laser in application. sex.
发明内容 Contents of the invention
本发明克服了上述存在的缺陷,目的是通过谐振腔有效地控制激光振荡的中心光强,解决了直接从激光器中获得光束横截面上光强分布较为均匀的激光束,提供一种空心镜激光谐振腔。 The invention overcomes the above-mentioned defects, and aims to effectively control the central light intensity of laser oscillation through the resonator, solve the problem of obtaining a laser beam with a relatively uniform light intensity distribution on the beam cross section directly from the laser, and provide a hollow mirror laser resonant cavity.
本发明空心镜激光谐振腔内容简述: Brief description of the content of the hollow mirror laser resonator of the present invention:
本发明空心镜激光谐振腔,其特征在于:空心镜激光谐振腔的光路上依次为全反镜、激光增益介质和平面输出镜;全反镜或平面输出镜是中心设有直径为0.5mm~5mm圆孔的全反射平面镜,获得空心高斯光束,通过改变中心孔径大小,或改变圆孔在全反镜上或输出镜上,得到多种形式的空心高斯光束。 The hollow mirror laser resonator of the present invention is characterized in that: the optical path of the hollow mirror laser resonator is followed by a total reflection mirror, a laser gain medium and a plane output mirror; Hollow Gaussian beams can be obtained by the total reflection plane mirror with 5mm round hole, and various forms of hollow Gaussian beams can be obtained by changing the size of the central aperture, or changing the round hole on the total reflection mirror or the output mirror.
在空心镜激光谐振腔的光路上依次为全反镜、激光增益介质和平面输出镜,全反镜的中心设有直径为0.5mm~5mm的圆孔,平面输出镜为中心无孔的高反射率平面输出镜。 On the optical path of the hollow mirror laser resonator, there are total reflection mirror, laser gain medium and planar output mirror in sequence. The center of the total reflection mirror is provided with a circular hole with a diameter of 0.5mm to 5mm, and the planar output mirror is a high reflection without holes in the center. rate flat output mirror.
在空心镜激光谐振腔的光路上依次为全反镜、激光增益介质和平面输出镜,全反镜中心无孔,平面输出镜是中心设有直径为0.5mm~5mm的圆孔的高反射率平面输出镜。 On the optical path of the hollow mirror laser resonator, there are total reflection mirror, laser gain medium and planar output mirror in sequence. Flat output mirror.
在空心镜激光谐振腔的光路上依次为全反镜、激光增益介质和平面输出镜,全反镜和平面输出镜是中心均设有直径为0.5mm~5mm的圆孔的高反射率平面输出镜。 On the optical path of the hollow mirror laser resonator, there are total reflection mirror, laser gain medium and planar output mirror in sequence. The total reflection mirror and the planar output mirror are high-reflectivity planar output with circular holes with a diameter of 0.5 mm to 5 mm in the center. mirror.
本发明空心镜激光谐振腔,可以获得空心高斯光束,是以低成本的方式产生有利于材料加工的光束;可以根据应用的需要,确定使用中心带有小孔的全反镜或输出镜,从而实现不同的空间光强分布;可以根据应用的需要,合理的改变孔型的尺寸适应对光束空间特性的需要。 The hollow mirror laser cavity of the present invention can obtain a hollow Gaussian beam, which is a low-cost way to produce a beam that is beneficial to material processing; it can be determined to use a total reflection mirror or an output mirror with a small hole in the center according to the needs of the application, so that Realize different spatial light intensity distribution; according to the needs of the application, the size of the aperture can be reasonably changed to meet the needs of the spatial characteristics of the beam.
附图说明 Description of drawings
图1是空心镜激光谐振腔实施例1的结构示意图; Fig. 1 is the structural representation of hollow mirror laser cavity embodiment 1;
图2是空心镜激光谐振腔实施例1产生的轴向光强分布图; Fig. 2 is the axial light intensity distribution diagram that hollow mirror laser cavity embodiment 1 produces;
图3是空心镜激光谐振腔实施例2的结构示意图; Fig. 3 is the structural representation of hollow mirror laser cavity embodiment 2;
图4是空心镜激光谐振腔实施例2产生的轴向光强分布图; Fig. 4 is the axial light intensity distribution figure that embodiment 2 of hollow mirror laser resonator produces;
图5是空心镜激光谐振腔实施例3的结构示意图; Fig. 5 is the structural representation of hollow mirror laser cavity embodiment 3;
图6是空心镜激光谐振腔实施例3产生的轴向光强分布图; Fig. 6 is the axial light intensity distribution figure that embodiment 3 of hollow mirror laser resonator produces;
图7是激光器产生光束烧蚀耐火砖材料图; Fig. 7 is a diagram of a refractory brick ablation material generated by a laser beam;
图8是高斯光束烧蚀耐火砖材料图; Fig. 8 is a Gaussian beam ablation refractory brick material diagram;
图中:1是全反镜、2是激光增益介质、3是平面输出镜。 In the figure: 1 is a total reflection mirror, 2 is a laser gain medium, and 3 is a plane output mirror.
具体实施方式 Detailed ways
本发明空心镜激光谐振腔的光路上依次为全反镜、激光增益介质和输出镜;全反镜或平面输出镜是中心设有直径为0.5mm~5mm圆孔的全反射平面镜,获得空心高斯光束,通过改变中心孔径大小,或改变圆孔在全反镜上或平面输出镜上,得到多种形式的空心高斯光束,下面结合实施例及附图做具体说明。 The optical path of the hollow mirror laser resonator of the present invention is followed by a total reflection mirror, a laser gain medium, and an output mirror; For the light beam, various forms of hollow Gaussian light beams can be obtained by changing the size of the central aperture, or changing the circular hole on the total reflection mirror or the plane output mirror.
实施例1 Example 1
见图1,在空心镜激光谐振腔的光路上依次为全反镜1、激光增益介质2和平面输出镜3,全反镜1的中心设有直径为0.5mm~5mm的圆孔,平面输出镜3为中心无孔的高反射率平面输出镜。 As shown in Figure 1, the optical path of the hollow mirror laser resonator consists of a total reflection mirror 1, a laser gain medium 2, and a planar output mirror 3. The center of the total reflection mirror 1 is provided with a circular hole with a diameter of 0.5 mm to 5 mm, and the plane output Mirror 3 is a high reflectivity flat output mirror with no hole in the center.
工作原理 working principle
激光在该谐振腔内建立的过程中,由于全反镜1中心含有一个圆孔,因此原本产生的高斯光束的中心低阶模部分被抑制了一部分,见图2为轴向光强分布图,所得到的空心高斯光束在与材料相互作用时可以得到均匀的温度场分布。 During the establishment of the laser in the resonant cavity, since the center of the total reflection mirror 1 contains a circular hole, the central low-order mode part of the original Gaussian beam is partially suppressed, see Figure 2 for the axial light intensity distribution diagram, The resulting hollow Gaussian beam can obtain a uniform temperature field distribution when interacting with the material.
实施例2 Example 2
见图3,在空心镜激光谐振腔的光路上依次为全反镜1、激光增益介质2和平面输出镜3,全反镜1中心无孔,平面输出镜3是中心设有直径为0.5mm~5mm的圆孔的高反射率平面输出镜。 As shown in Figure 3, the optical path of the hollow mirror laser resonator is followed by a total reflection mirror 1, a laser gain medium 2 and a plane output mirror 3. The center of the total reflection mirror 1 has no hole, and the center of the plane output mirror 3 is provided with a diameter of 0.5mm. High reflectivity planar output mirror with ~5mm circular aperture.
工作原理 working principle
见图4,为实施例2的谐振腔产生光束的轴向光强分布,由于在平面输出镜3的中心设有直径为0.5mm~5mm的圆孔,将更加有效的抑制高斯光束中低阶模的部分,其轴向光强分布路图与实施例1相比较基模部分振荡更加少。 See Fig. 4, the axial light intensity distribution of the light beam generated by the resonant cavity of embodiment 2, since the center of the plane output mirror 3 is provided with a circular hole with a diameter of 0.5 mm to 5 mm, it will more effectively suppress the low-order Gaussian beam For the part of the mode, the axial light intensity distribution roadmap is less than that of the embodiment 1, and the part of the fundamental mode oscillates less.
实施例3 Example 3
见图5,在空心镜激光谐振腔的光路上依次为全反镜1、激光增益介质2和平面输出镜3,在全反镜1和平面输出镜3是中心均设有直径为0.5mm~5mm的圆孔的高反射率平面输出镜。 As shown in Figure 5, the optical path of the hollow mirror laser resonator is followed by a total reflection mirror 1, a laser gain medium 2 and a plane output mirror 3, and the centers of the total reflection mirror 1 and the plane output mirror 3 are all equipped with a diameter of 0.5mm~ High reflectivity flat output mirror with 5mm circular aperture.
工作原理 working principle
见图6,为实施例3的谐振腔产生光束的轴向光强分布,由于全反镜1和平面输出镜3的中心均设有直径为0.5mm~5mm的圆孔,基模高斯光束几乎没有振荡,中心光强非常弱。 See Fig. 6, which is the axial light intensity distribution of the light beam generated by the resonant cavity of embodiment 3. Since the centers of the total reflection mirror 1 and the plane output mirror 3 are provided with circular holes with a diameter of 0.5 mm to 5 mm, the fundamental mode Gaussian beam is almost There is no oscillation and the central light intensity is very weak.
见图7为本发明中产生的光束烧蚀耐火砖材料图,见图8为一般高斯光束烧蚀耐火砖材料得到的结果图。明显可以看出,采用空心镜谐振腔产生的空心高斯光束在与材料作用中产生的温度场分布更加均匀,更加有利于材料的加工。 See Figure 7 for the beam ablation refractory brick material produced in the present invention, see Figure 8 for the result of general Gaussian beam ablation refractory brick material. It can be clearly seen that the temperature field distribution generated by the hollow Gaussian beam generated by the hollow mirror resonator in the interaction with the material is more uniform, which is more conducive to the processing of the material.
本发明在现有的平行平面腔灯泵浦固体激光器基础上,提出空心镜激光谐振腔。激光在中心具有直径0.5mm~5mm圆孔的平面反射镜的谐振腔中建立振荡的过程中,低阶模受到一定的抑制,输出的光束光强分布不再是传统的高斯分布,从而实现中心弱,边缘强的光强分布。相比于传统的高斯光束而言,该光束与材料作用形成的温度场分布更加均匀,因此更加利于激光焊接及其他激光表面处理。本发明具有以下优点: The invention proposes a hollow mirror laser resonant cavity on the basis of the existing parallel plane cavity lamp-pumped solid-state laser. During the process of laser oscillation in the resonant cavity of a plane mirror with a circular hole with a diameter of 0.5 mm to 5 mm in the center, the low-order mode is suppressed to a certain extent, and the output beam intensity distribution is no longer the traditional Gaussian distribution, thereby realizing the center Weak, marginally strong light intensity distribution. Compared with the traditional Gaussian beam, the temperature field distribution formed by the interaction between the beam and the material is more uniform, so it is more conducive to laser welding and other laser surface treatments. The present invention has the following advantages:
(1)通过使全反镜或者输出镜的中心加一定尺寸的小孔,在牺牲小部分低阶模模光强的代价下,获得空心高斯光束。在与材料作用下形成均匀的温度场分布,以低成本的方式产生有利于材料加工的光束。 (1) By adding a small hole of a certain size to the center of the total reflection mirror or the output mirror, a hollow Gaussian beam is obtained at the cost of sacrificing a small part of the light intensity of the low-order mode. Under the action of the material, a uniform temperature field distribution is formed, and a beam that is beneficial to material processing is generated at a low cost.
(2)可以根据不同应用下的需要,确定使用中心带有小孔的全反镜或输出镜,从而实现不同的空间光强分布。 (2) According to the needs of different applications, it can be determined to use a total reflection mirror or an output mirror with a small hole in the center, so as to achieve different spatial light intensity distributions.
(3)可以根据不同应用下的需要,合理的改变孔型的尺寸大小以适应不同应用下的对光束空间特性的需要。 (3) According to the needs of different applications, the size of the hole can be reasonably changed to meet the needs of the spatial characteristics of the beam in different applications.
Claims (4)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410252938.2A CN103996964A (en) | 2014-06-10 | 2014-06-10 | Hollow mirror laser resonant cavity |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410252938.2A CN103996964A (en) | 2014-06-10 | 2014-06-10 | Hollow mirror laser resonant cavity |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN103996964A true CN103996964A (en) | 2014-08-20 |
Family
ID=51311039
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201410252938.2A Pending CN103996964A (en) | 2014-06-10 | 2014-06-10 | Hollow mirror laser resonant cavity |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN103996964A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107526176A (en) * | 2017-09-05 | 2017-12-29 | 上海交通大学 | The method that intracavitary directly produces exponent number adjustable cyclone light beam |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN2310405Y (en) * | 1997-08-22 | 1999-03-10 | 杭州大学 | Laser resonant cavity with mutation reflectivity reflective mirror |
| CN101262114A (en) * | 2008-04-20 | 2008-09-10 | 华中科技大学 | A ring-shaped concave mirror laser resonator |
| CN101262113A (en) * | 2008-04-20 | 2008-09-10 | 华中科技大学 | A ring-shaped concave output mirror laser resonator |
| CN102570262A (en) * | 2012-02-29 | 2012-07-11 | 中国科学院上海光学精密机械研究所 | Hollow ring-shaped light beam output solid laser and using method therefor |
| CN203942142U (en) * | 2014-06-10 | 2014-11-12 | 鞍山华科大激光科技有限公司 | Hollow mirror laserresonator |
-
2014
- 2014-06-10 CN CN201410252938.2A patent/CN103996964A/en active Pending
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN2310405Y (en) * | 1997-08-22 | 1999-03-10 | 杭州大学 | Laser resonant cavity with mutation reflectivity reflective mirror |
| CN101262114A (en) * | 2008-04-20 | 2008-09-10 | 华中科技大学 | A ring-shaped concave mirror laser resonator |
| CN101262113A (en) * | 2008-04-20 | 2008-09-10 | 华中科技大学 | A ring-shaped concave output mirror laser resonator |
| CN102570262A (en) * | 2012-02-29 | 2012-07-11 | 中国科学院上海光学精密机械研究所 | Hollow ring-shaped light beam output solid laser and using method therefor |
| CN203942142U (en) * | 2014-06-10 | 2014-11-12 | 鞍山华科大激光科技有限公司 | Hollow mirror laserresonator |
Non-Patent Citations (2)
| Title |
|---|
| GIULIANI G等: "Radial birefringent element and its application to laser resonator design", 《OPTICS LETTERS》 * |
| 尹烨等: "变反射率镜非稳腔的研究进展", 《光学与光电技术》 * |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107526176A (en) * | 2017-09-05 | 2017-12-29 | 上海交通大学 | The method that intracavitary directly produces exponent number adjustable cyclone light beam |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN103606810B (en) | A kind of pump light many journeys transmission system and disc piece solid laser | |
| CN105071206B (en) | A kind of vortex laser based on laser medium center zero gain structure | |
| CN203774604U (en) | Semiconductor saturable absorber mirror (SESAM) passive mode-locking laser | |
| CN107134714A (en) | Laser beam merging apparatus | |
| CN105470804A (en) | Diode pumped solid state laser (DPL) and debugging method therefor | |
| CN102891431A (en) | Solid laser oscillator capable of outputting annular laser distribution | |
| CN106549294B (en) | Cavity mirror of solid-state laser and resonant cavity and solid-state laser using it | |
| CN103311789A (en) | Thin laser medium laser device | |
| CN203503967U (en) | Pump light multi-stroke transmission system and disc solid laser | |
| CN101262114B (en) | A loop concave reflector laser resonance cavity | |
| CN203942142U (en) | Hollow mirror laserresonator | |
| CN101262113A (en) | A ring-shaped concave output mirror laser resonator | |
| CN105958311B (en) | Spherical aberration regulates and controls the area Re Wen and the laser sizing amplification hollow laser of double square | |
| CN107971631A (en) | A short-wavelength, efficient and stable laser welding system for high-reflective metals | |
| CN202616598U (en) | Passive mode-locking laser device | |
| CN111009819A (en) | Ceramic laser with high beam quality and high output efficiency and design method | |
| CN101950919A (en) | Full solid serial pump laser | |
| CN103996964A (en) | Hollow mirror laser resonant cavity | |
| CN103022870B (en) | Based on the high-power 355nm ultraviolet laser of battened construction | |
| Zhu et al. | Pulse fluctuations caused by the thermal lens effect in a passively Q-switched laser system | |
| CN211088738U (en) | Ceramic laser with high beam quality and high output efficiency | |
| CN106451058B (en) | A laser transverse mode tunable passive Q-switched microchip laser | |
| CN101728764A (en) | Ring-shaped laser resonator structure | |
| CN101179175A (en) | Laser diode-pumped solid-state laser with high peak power | |
| CN203660270U (en) | Adjustable dye laser based on light fluid |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| WD01 | Invention patent application deemed withdrawn after publication | ||
| WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20140820 |