CN103876756A - Lower limb power-assisted exoskeleton robot gait pattern identification method and system - Google Patents

Lower limb power-assisted exoskeleton robot gait pattern identification method and system Download PDF

Info

Publication number
CN103876756A
CN103876756A CN201410155426.4A CN201410155426A CN103876756A CN 103876756 A CN103876756 A CN 103876756A CN 201410155426 A CN201410155426 A CN 201410155426A CN 103876756 A CN103876756 A CN 103876756A
Authority
CN
China
Prior art keywords
lower limb
gait
exoskeleton robot
pressure
wearer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410155426.4A
Other languages
Chinese (zh)
Inventor
韩亚丽
朱松青
高海涛
祁兵
于建铭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Institute of Technology
Original Assignee
Nanjing Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Institute of Technology filed Critical Nanjing Institute of Technology
Priority to CN201410155426.4A priority Critical patent/CN103876756A/en
Publication of CN103876756A publication Critical patent/CN103876756A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rehabilitation Tools (AREA)
  • Manipulator (AREA)

Abstract

本发明提供一种下肢助力外骨骼机器人步态模式识别方法及系统,通过内嵌在下肢助力外骨骼机器人鞋底处的压力传感装置对穿戴者的脚底压力信息进行检测,把获得的脚底压力信息与人体步态数据库内的行走模式进行比较匹配,判断出行走模式,并对一个步态周期内的运动相进行识别,判断得出运动相;进行数据处理分析,匹配识别后的结果传输给下肢助力外骨骼机器人控制系统,作为控制依据。本发明提供下肢助力外骨骼穿戴者的行走模式及在每一个步态周期内详细的运动相位,为下肢助力外骨骼的控制提供了丰富的决策依据。不仅能为下肢助力外骨骼提供穿戴者的运动信息,还可广泛应用于人体步态识别。

The invention provides a gait pattern recognition method and system for a lower limb-assisted exoskeleton robot. The pressure sensor device embedded in the sole of the lower limb-assisted exoskeleton robot detects the wearer's sole pressure information, and the obtained sole pressure information Compare and match with the walking pattern in the human gait database, determine the walking pattern, and identify the motion phase within a gait cycle, and determine the motion phase; perform data processing and analysis, and transmit the matching recognition results to the lower limbs Assist the exoskeleton robot control system as the control basis. The invention provides the walking mode of the wearer of the lower limb assisting exoskeleton and the detailed motion phase in each gait cycle, and provides rich decision-making basis for the control of the lower limb assisting exoskeleton. It can not only provide the wearer's motion information for the lower limb power-assisted exoskeleton, but also be widely used in human gait recognition.

Description

下肢助力外骨骼机器人步态模式识别方法及系统Gait pattern recognition method and system for lower limb assisted exoskeleton robot

技术领域 technical field

    本发明涉及一种基于足底测力检测系统的下肢助力外骨骼机器人步态模式识别方法及系统。 The present invention relates to a gait pattern recognition method and system for a lower limb-assisted exoskeleton robot based on a plantar dynamometer detection system.

背景技术 Background technique

下肢助力外骨骼机器人结合了人与机器人的优点,把人与机器人组合在一个系统里,充分发挥人的动作导向能力与机器人承担负载的能力。此下肢助力外骨骼机构能被穿戴者穿在身上,并时刻保持与穿戴者一致的行走动作,像人体的外骨骼一样代替人体承担外部负载,从而达到行走助力的目的。 The lower limb assisted exoskeleton robot combines the advantages of humans and robots, and combines humans and robots into one system to give full play to the human's action-oriented ability and the robot's ability to bear loads. This lower limb power-assisted exoskeleton mechanism can be worn by the wearer, and maintains the same walking movement as the wearer at all times. Like the human exoskeleton, it replaces the human body to bear the external load, so as to achieve the purpose of walking assistance.

为了缓解大负重、长距离行走引起的下肢伤痛问题;人口老龄化日益加剧带来的社会问题;及由于交通、地震灾害等引起的下肢伤残等问题;故对此种人机一体化的下肢助力外骨骼系统进行研究具有重要的意义,且将具有广泛的应用前景。 In order to alleviate the problem of lower limb injuries caused by heavy loads and long-distance walking; the social problems caused by the aging population; and the lower limb disabilities caused by traffic, earthquake disasters, etc.; It is of great significance to study the lower limb assisted exoskeleton system, and will have a wide range of application prospects.

对于下肢助力外骨骼机器人的控制,其中最关键的因素是采集穿戴者的运动意图及运动趋势,只有很好的获取穿戴者的运动意图,才能对下肢助力外骨骼进行控制,使其快速的跟随穿戴者进行有效助力。 For the control of the lower limb assisting exoskeleton robot, the most critical factor is to collect the wearer's motion intention and movement trend. Only by obtaining the wearer's motion intention well can the lower limb assisting exoskeleton be controlled so that it can quickly follow The wearer provides effective assistance.

目前,对穿戴者运动意图的获取一类是进行肌电信号、脑电信号的检测,由于肌电、脑电信号存在信号微弱,不稳定的缺点,使得信号的采集、处理及分析都非常复杂。 At present, the acquisition of the wearer's movement intention is the detection of EMG and EEG signals. Due to the weak and unstable signals of EMG and EEG signals, the acquisition, processing and analysis of the signals are very complicated. .

另一类是通过在穿戴者身上安装角度、加速度传感装置,并检测穿戴者的脚底力信息进行运动信息的检测,进而对下肢外骨骼实施控制。在脚底力信息检测中,设计一套便于穿戴,能准确获取人体的行走模式及一个步态周期内确切运动相位的测力系统非常重要。 The other is to install angle and acceleration sensing devices on the wearer, and detect the wearer's plantar force information to detect motion information, and then control the lower extremity exoskeleton. In the detection of plantar force information, it is very important to design a force measurement system that is easy to wear and can accurately obtain the walking pattern of the human body and the exact motion phase within a gait cycle.

发明内容 Contents of the invention

针对下肢助力外骨骼机器人控制中存在的问题及对穿戴者行走运动模式识别的需求,本发明提供了一种人体运动模式识别方法,通过内嵌在机器人鞋底处的压力传感装置对穿戴者的脚底压力信息进行检测,设计信号调理电路,数据转换模块、无线传输模块等获得脚底压力信息,把获得的脚底压力信息与人体步态数据库内的行走模式进行比较匹配,判断出其行走模式,并对一个步态周期内的运动相进行识别,实现下肢助力外骨骼机器人运动状态的实时检测,便于机器人的运动控制。 Aiming at the problems existing in the control of the lower limb assisted exoskeleton robot and the demand for the recognition of the wearer's walking motion pattern, the present invention provides a human body motion pattern recognition method, through the pressure sensing device embedded in the sole of the robot shoe. The plantar pressure information is detected, the signal conditioning circuit is designed, the data conversion module, the wireless transmission module, etc. are obtained to obtain the plantar pressure information, and the obtained plantar pressure information is compared and matched with the walking pattern in the human gait database to determine its walking pattern and The motion phase in a gait cycle is identified to realize the real-time detection of the motion state of the lower limb assisted exoskeleton robot, which is convenient for the motion control of the robot.

为实现上述目的,本发明采用以下技术方案: To achieve the above object, the present invention adopts the following technical solutions:

一种下肢助力外骨骼机器人步态模式识别方法, A method for gait pattern recognition of a lower limb assisted exoskeleton robot,

内嵌在下肢助力外骨骼机器人鞋底处的压力传感装置对穿戴者的脚底压力信息进行检测,通过信号调理电路、无线传输模块使数据处理模块获得脚底压力信息; The pressure sensing device embedded in the sole of the lower limb assisting exoskeleton robot detects the wearer's sole pressure information, and the data processing module obtains the sole pressure information through the signal conditioning circuit and the wireless transmission module;

数据处理模块将获得的脚底压力信息与人体步态数据库内的行走模式进行比较匹配,判断得出行走模式,并对一个步态周期内的运动相进行识别,判断得出运动相位; The data processing module compares and matches the obtained plantar pressure information with the walking pattern in the human gait database, judges the walking pattern, and identifies the motion phase within a gait cycle, and judges the motion phase;

进行数据处理分析,匹配识别后的结果传输给下肢助力外骨骼机器人的控制系统,作为控制依据。 Data processing and analysis are carried out, and the results after matching and recognition are transmitted to the control system of the lower limb-assisted exoskeleton robot as a control basis.

优选地,数据库中存放有运动模式的特征参数,包括人体平地行走、楼梯行走、斜坡行走、跳跃、下蹲、跑步运动模式下的脚底力信息。 Preferably, the database stores characteristic parameters of motion patterns, including plantar force information of the human body in the motion patterns of walking on flat ground, walking on stairs, walking on slopes, jumping, squatting, and running.

优选地,分析得出在一个步态周期内的运动相位: Preferably, the analysis yields the phase of motion within a gait cycle:

当后脚跟压力小于预设阈值,前脚掌压力逐渐增加时,表示穿戴者正在蹬离地面; When the rear heel pressure is less than the preset threshold and the forefoot pressure gradually increases, it means that the wearer is kicking off the ground;

当前脚掌与后脚跟的压力均小于预设阈值时,表示穿戴者进入摆动腿工作模式阶段; When the pressure on the sole of the front foot and the back heel is less than the preset threshold, it means that the wearer enters the swing leg working mode;

当后脚跟压力逐渐增大,而前脚掌压力小于预设阈值时,表示穿戴者进入脚跟着地阶段; When the rear heel pressure gradually increases, while the forefoot pressure is less than the preset threshold, it means that the wearer enters the heel strike stage;

当后脚跟与前脚掌压力均大于预设阈值时,表示穿戴者进入支撑腿工作模式阶段。 When the pressure of the rear heel and the forefoot are both greater than the preset threshold, it means that the wearer enters the stage of the supporting leg working mode.

一种下肢助力外骨骼机器人步态模式识别系统,用于获得脚底压力信息并识别出的下肢助力外骨骼运动模式,并将识别出的运动相位上传给上位机的控制系统,为控制系统进行下肢助力外骨骼运动控制提供依据; A lower limb assisted exoskeleton robot gait pattern recognition system, which is used to obtain plantar pressure information and identify the lower limb assisted exoskeleton motion pattern, and upload the identified motion phase to the control system of the host computer, and perform lower limb assisted exoskeleton for the control system. Provide basis for assisting exoskeleton motion control;

包括内嵌在测力鞋内的上层鞋垫和下层鞋垫间的PVDF压力传感器、信号调理电路、数据转换模块、无线传输模块、数据处理模块; Including PVDF pressure sensor, signal conditioning circuit, data conversion module, wireless transmission module, and data processing module embedded between the upper insole and the lower insole in the force-measuring shoe;

通过内嵌在下肢助力外骨骼机器人足部的压力鞋垫对穿戴者的运动意图进行实时检测; Real-time detection of the wearer's movement intention through the pressure insole embedded in the foot of the lower limb assisting exoskeleton robot;

信号调理电路、无线传输模块使数据处理模块获得脚底压力信息; The signal conditioning circuit and the wireless transmission module enable the data processing module to obtain plantar pressure information;

数据处理模块将获得的脚底压力信息与人体步态数据库内的行走模式进行比较匹配,判断得出行走模式,并对一个步态周期内的运动相进行识别,判断得出运动相位; The data processing module compares and matches the obtained plantar pressure information with the walking pattern in the human gait database, judges the walking pattern, and identifies the motion phase within a gait cycle, and judges the motion phase;

进行数据处理分析,匹配识别后的结果传输给下肢助力外骨骼机器人的控制系统,作为控制依据。 Data processing and analysis are carried out, and the results after matching and recognition are transmitted to the control system of the lower limb-assisted exoskeleton robot as a control basis.

优选地,信号调理电路包括电荷放大电路、低通滤波电路、电压放大电路; Preferably, the signal conditioning circuit includes a charge amplification circuit, a low-pass filter circuit, and a voltage amplification circuit;

在积分电路中,采用高输入阻抗CA3140作为前置运放; In the integral circuit, CA3140 with high input impedance is used as the pre-amplifier;

在低通滤波电路中,采用OP07芯片组合电容、电阻形成的二阶Butterworth有源低通滤波电路; In the low-pass filter circuit, a second-order Butterworth active low-pass filter circuit formed by combining capacitors and resistors with OP07 chip;

在电压放大电路中,采用高增益运算放大器UA741芯片,提供输出短路保护和闭锁的自由运作。 In the voltage amplifying circuit, a high-gain operational amplifier UA741 chip is used to provide output short-circuit protection and free operation of blocking.

优选地,如权利要求4所述的下肢助力外骨骼机器人步态模式识别方法,其特征在于:PVDF压力传感器位于鞋垫的中层,在每只脚中布局方式为前脚掌5个,后脚跟3个。 Preferably, the gait pattern recognition method of a lower limb assisted exoskeleton robot according to claim 4, characterized in that: the PVDF pressure sensor is located in the middle layer of the insole, and the layout in each foot is 5 on the sole of the forefoot and 3 on the rear heel .

优选地,如权利要求4所述的下肢助力外骨骼机器人步态模式识别方法,其特征在于:数据转换模块采用多路的A/D转换,使用集成的数据采集卡,数据采集卡模拟输入端端口数大于两足的传感点数量。 Preferably, the gait pattern recognition method of the lower limbs assisting exoskeleton robot as claimed in claim 4, is characterized in that: the data conversion module adopts multi-channel A/D conversion, uses an integrated data acquisition card, and the data acquisition card simulates the input terminal The number of ports is greater than the number of sensing points for the biped.

本发明的有益效果是:本发明提供下肢助力外骨骼穿戴者的行走模式及在每一个步态周期内详细的运动相位,为下肢助力外骨骼的控制提供了丰富的决策依据。不仅能为下肢助力外骨骼提供穿戴者的运动信息,还可广泛应用于人体步态识别。而采用鞋垫式压力检测系统,内嵌在外骨骼机器人鞋内,具有穿戴方便的优点。采用无线传输方法,使得穿戴者摆脱了电缆等传统物理媒介的束缚。 The beneficial effects of the present invention are: the present invention provides the walking pattern of the wearer of the lower limb assisting exoskeleton and the detailed movement phase in each gait cycle, and provides rich decision-making basis for the control of the lower limb assisting exoskeleton. It can not only provide the wearer's motion information for the lower limb power-assisted exoskeleton, but also be widely used in human gait recognition. The insole-type pressure detection system is embedded in the exoskeleton robot shoe, which has the advantage of being easy to wear. The use of wireless transmission methods frees the wearer from the shackles of traditional physical media such as cables.

附图说明 Description of drawings

图1是实施例中运动模式识别的说明框图; Fig. 1 is the explanatory block diagram of motion pattern recognition in the embodiment;

图2是实施例中基于PVDF的压力传感器在脚底的布置示意图; Fig. 2 is the layout schematic diagram of the pressure sensor based on PVDF in the sole of the foot in the embodiment;

图3是信号调理电路中电荷放大电路图; Fig. 3 is a circuit diagram of charge amplification in the signal conditioning circuit;

图4是信号调理电路中二阶低通滤波电路图; Fig. 4 is a second-order low-pass filter circuit diagram in the signal conditioning circuit;

图5是信号调理电路中电压放大电路图; Fig. 5 is a voltage amplification circuit diagram in the signal conditioning circuit;

图6是步态周期内人体的步态相位分析示意图。 Fig. 6 is a schematic diagram of gait phase analysis of a human body in a gait cycle.

具体实施方式 Detailed ways

下面结合附图详细说明本发明的优选实施例。 Preferred embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings.

本发明是一种下肢助力外骨骼机器人步态模式识别方法,为下肢助力外骨骼机器人提供控制决策,如图1所示。 The present invention is a gait pattern recognition method for a lower-limb-assisted exoskeleton robot, which provides control decisions for a lower-limb-assisted exoskeleton robot, as shown in FIG. 1 .

首先,内嵌在下肢助力外骨骼机器人鞋底处的压力传感装置对穿戴者的脚底压力信心进行检测,通过信号调理电路、数据转换模块及无线传输模块等获得脚底压力信息。 First of all, the pressure sensing device embedded in the sole of the lower extremity assisting exoskeleton robot detects the wearer's sole pressure confidence, and obtains the sole pressure information through the signal conditioning circuit, data conversion module and wireless transmission module.

由获得的脚底压力信息与数据库中的人体步态特征相匹配。人体步态数据库中存放了人体平地行走、楼梯行走、斜坡行走、跳跃、下蹲、跑步等各种运动模式下的脚底力信息。由匹配结果,初判下肢助力外骨骼机器人处于何种运动模式。 The obtained plantar pressure information is matched with the human gait characteristics in the database. The human body gait database stores the plantar force information of the human body in various motion modes such as walking on flat ground, walking on stairs, walking on slopes, jumping, squatting, and running. Based on the matching results, the motion mode of the lower limb-assisted exoskeleton robot is preliminarily judged.

把获得的脚底压力信息与人体步态数据库内的行走模式进行比较匹配,判断出其行走模式,并对一个步态周期内的运动相进行识别,判断其处于脚跟着地阶段、脚底放平支撑阶段、脚尖蹬离地面阶段及摆动阶段中的哪一种运动相位。 Compare and match the obtained plantar pressure information with the walking pattern in the human gait database to determine its walking pattern, and identify the movement phase within a gait cycle to determine whether it is in the heel-strike stage or the sole-flat support stage , which kind of motion phase in the stage of kicking the toes off the ground and the swing stage.

对获取信息进行运动模式下的进一步的步态识别,分别对前脚掌的及后脚跟的传感器输出压力进行预设阈值的比较,当后脚跟压力小于预设阈值,前脚掌压力逐渐增加时,表示穿戴者正在蹬离地面;当前脚掌与后脚跟的压力均小于预设阈值时,表示穿戴者进入摆动腿工作模式阶段;当后脚跟压力逐渐增大,而前脚掌压力小于预设阈值时,表示穿戴者进入脚跟着地阶段;当后脚跟与前脚掌压力均大于预设阈值时,表示穿戴者进入支撑腿工作模式阶段。 Carry out further gait recognition in the exercise mode on the acquired information, and compare the preset thresholds of the sensor output pressures of the forefoot and rear heel respectively. When the rear heel pressure is less than the preset threshold and the forefoot pressure gradually increases, it means The wearer is kicking off the ground; when the pressure on the front sole and the rear heel are both lower than the preset threshold, it means that the wearer enters the swing leg working mode stage; The wearer enters the heel strike stage; when the pressure of the rear heel and the forefoot are greater than the preset threshold, it means that the wearer enters the stage of supporting leg work mode.

把识别出的下肢助力外骨骼运动模式传输给上位机控制控制系统,进行下肢助力外骨骼机器人的运动控制。 The identified motion pattern of the lower limb-assisted exoskeleton is transmitted to the host computer control system for motion control of the lower limb-assisted exoskeleton robot.

    其中,压力传感器的布局图如图2所示,前脚掌有5个,后脚跟有3个,前脚掌或后脚跟的压力传感器均层三角形分布。PVDF固定在上、下夹层中。 Among them, the layout of the pressure sensors is shown in Figure 2. There are 5 on the forefoot and 3 on the rear heel, and the pressure sensors on the forefoot or the rear heel are evenly distributed in a triangle. PVDF is fixed in the upper and lower interlayers.

信号调理电路,包含电荷放大电路,也称为积分电路,二阶低通滤波电路及电压放大电路。由于PVDF压电薄膜输出信号非常微弱,要把信号通过前置电荷放大器放大,电荷放大器本质上是一个积分电路,即将传感器输出的电荷,在积分电容上累积然后以电压的形式输出,故也称前置电荷-电压转换电路。电荷放大电路是个非常灵敏的电路,很有可能就将干扰信号引进到电路中,因此需对经过电荷放大路输出的信号进行滤波,必须有滤波电路。采用低温漂、高精度的贴片式运放与电阻电容,减少了电路板的尺寸。在传感单元与电路板之间,采用多芯的屏蔽线连接,可屏蔽外来的干扰信号,同时降低传输信号的损耗。 The signal conditioning circuit includes a charge amplification circuit, also known as an integrating circuit, a second-order low-pass filter circuit, and a voltage amplification circuit. Since the output signal of the PVDF piezoelectric film is very weak, the signal must be amplified through the pre-charge amplifier. The charge amplifier is essentially an integrating circuit, that is, the charge output by the sensor is accumulated on the integrating capacitor and then output in the form of voltage, so it is also called Precharge-to-voltage conversion circuit. The charge amplifier circuit is a very sensitive circuit, and it is very likely to introduce interference signals into the circuit. Therefore, it is necessary to filter the signal output by the charge amplifier circuit, and a filter circuit must be provided. Low-temperature drift, high-precision SMD operational amplifiers and resistors and capacitors are used to reduce the size of the circuit board. Between the sensing unit and the circuit board, a multi-core shielded wire is used to shield the external interference signal and reduce the loss of the transmission signal.

如图3所示,在积分电路中,选用高输入阻抗CA3140作为前置运放。同时电路还包含反馈电容C1及反馈电阻R2两个重要元器件。另外,为了保护运放CA3140,在其反相输入端串接电阻R3,并在R3两端并联电容C3,实现相位补偿,这样则可避免R3与运放CA3140的输入电容构成两一个极点,使运放产生自激振荡。 As shown in Figure 3, in the integral circuit, CA3140 with high input impedance is selected as the pre-op amplifier. At the same time, the circuit also includes two important components, the feedback capacitor C1 and the feedback resistor R2. In addition, in order to protect the operational amplifier CA3140, a resistor R3 is connected in series at its inverting input terminal, and a capacitor C3 is connected in parallel at both ends of R3 to realize phase compensation. This can prevent R3 and the input capacitance of the operational amplifier CA3140 from forming two poles. The op amp generates self-oscillation.

如图4所示,在低通滤波电路中,采用OP07芯片组合电容、电阻形成的二阶Butterworth有源低通滤波电路。如图5所示,在电压放大电路中,采用高增益运算放大器UA741芯片,这类单片硅集成电路器件提供输出短路保护和闭锁的自由运作。 As shown in Figure 4, in the low-pass filter circuit, a second-order Butterworth active low-pass filter circuit formed by combining capacitors and resistors using the OP07 chip. As shown in Figure 5, in the voltage amplifying circuit, a high-gain operational amplifier UA741 chip is used. This type of monolithic silicon integrated circuit device provides output short-circuit protection and latch-free operation.

    在数据库中存放了各种运动模式的特征参数,包括人体平地行走、楼梯行走、斜坡行走、跳跃、下蹲、跑步等各种运动模式下的脚底力信息。进行各种运动的模式的实验研究,提取其脚底压力运动特征,存放数据库中,便于下肢助力外骨骼实时运动中压力信息的匹配比较及行走模式的判定。 The characteristic parameters of various motion modes are stored in the database, including the plantar force information of the human body in various motion modes such as walking on flat ground, walking on stairs, walking on slopes, jumping, squatting, and running. Carry out experimental research on various movement modes, extract the characteristics of the plantar pressure movement, and store them in the database, which is convenient for the matching and comparison of pressure information in the real-time movement of the lower limb assisted exoskeleton and the determination of the walking mode.

    为根据获取的信息,进行精确的步态相位识别,图6为平地行走运动中一个步态周期内的运动相位图,从相位图中可看出,在一个步态周期内,人体的运动可分为支撑期与摆动期,再进一步细化可分为足跟着地、全足放平、支撑中期、脚跟离地、脚尖离地、加速推离、摆动中相及减速着地阶段。根据分布在前脚掌的5个传感器及后脚跟的3个传感器信息,可对运动相位进行分析,例如,当后脚跟压力小于预设阈值,前脚掌压力逐渐增加时,表示穿戴者正在蹬离地面;当前脚掌与后脚跟的压力均小于预设阈值时,表示穿戴者进入摆动腿工作模式阶段;当后脚跟压力逐渐增大,而前脚掌压力小于预设阈值时,表示穿戴者进入脚跟着地阶段;当后脚跟与前脚掌压力均大于预设阈值时,表示穿戴者进入支撑腿工作模式阶段。 In order to carry out accurate gait phase recognition based on the acquired information, Fig. 6 is a movement phase diagram in a gait cycle in level ground walking. It can be seen from the phase diagram that in a gait cycle, the movement of the human body can be It is divided into support phase and swing phase, and further refined into heel strike, full foot flat, mid support phase, heel off the ground, toe off the ground, acceleration push off, swing mid phase, and deceleration landing phase. According to the information of 5 sensors distributed on the forefoot and 3 sensors on the rear heel, the movement phase can be analyzed. For example, when the pressure on the rear heel is less than the preset threshold and the pressure on the forefoot gradually increases, it means that the wearer is kicking off the ground ; When the pressure on the front sole and the rear heel are both lower than the preset threshold, it means that the wearer enters the swing leg working mode; when the pressure on the rear heel gradually increases, and the pressure on the front sole is less than the preset threshold, it means that the wearer enters the heel strike stage ; When the pressure of the rear heel and the forefoot are greater than the preset threshold, it means that the wearer enters the supporting leg working mode stage.

    把识别出的运动相位上传给上位机的控制系统,便于下肢助力外骨骼控制策略的实施。   Upload the identified motion phase to the control system of the host computer to facilitate the implementation of the control strategy for the lower limb assist exoskeleton.

    上述各实施例例仅用于说明本发明,脚底压力传感器的选取及布局、信号调理电路的设计、步态模式的识别流程均可以有所变化,在本发明技术方案的基础上,本领域的技术人员能够用显而易见地想到的一些变型或替代的方案,均应落入本发明保护的范围。 The above-mentioned embodiments are only used to illustrate the present invention, and the selection and layout of the plantar pressure sensor, the design of the signal conditioning circuit, and the identification process of the gait pattern can all be changed. On the basis of the technical solution of the present invention, people in the art Some modifications or alternatives that can be obviously conceived by the skilled person shall fall within the protection scope of the present invention.

Claims (7)

1.一种下肢助力外骨骼机器人步态模式识别方法,其特征在于: 1. A lower limb assisted exoskeleton robot gait pattern recognition method, is characterized in that: 内嵌在下肢助力外骨骼机器人鞋底处的压力传感装置对穿戴者的脚底压力信息进行检测,通过信号调理电路、无线传输模块使数据处理模块获得脚底压力信息; The pressure sensing device embedded in the sole of the lower limb assisting exoskeleton robot detects the wearer's sole pressure information, and the data processing module obtains the sole pressure information through the signal conditioning circuit and the wireless transmission module; 数据处理模块将获得的脚底压力信息与人体步态数据库内的行走模式进行比较匹配,判断得出行走模式,并对一个步态周期内的运动相进行识别,判断得出运动相位; The data processing module compares and matches the obtained plantar pressure information with the walking pattern in the human gait database, judges the walking pattern, and identifies the motion phase within a gait cycle, and judges the motion phase; 进行数据处理分析,匹配识别后的结果传输给下肢助力外骨骼机器人的控制系统,作为控制依据。 Data processing and analysis are carried out, and the results after matching and recognition are transmitted to the control system of the lower limb-assisted exoskeleton robot as a control basis. 2.如权利要求1所述的下肢助力外骨骼机器人步态模式识别方法,其特征在于,数据库中存放有运动模式的特征参数,包括人体平地行走、楼梯行走、斜坡行走、跳跃、下蹲、跑步运动模式下的脚底力信息。 2. the lower limbs assisting exoskeleton robot gait pattern recognition method as claimed in claim 1, is characterized in that, deposits the feature parameter of motion pattern in the database, comprises human body flat ground walking, stair walking, slope walking, jumping, squatting down, Plantar force information in running mode. 3.如权利要求1或2所述的下肢助力外骨骼机器人步态模式识别方法,其特征在于:对一个步态周期内的运动相位进行识别; 3. the gait pattern recognition method of the lower limbs assisted exoskeleton robot as claimed in claim 1 or 2, is characterized in that: the motion phase in a gait cycle is identified; 当后脚跟压力小于预设阈值,前脚掌压力逐渐增加时,表示穿戴者正在蹬离地面; When the rear heel pressure is less than the preset threshold and the forefoot pressure gradually increases, it means that the wearer is kicking off the ground; 当前脚掌与后脚跟的压力均小于预设阈值时,表示穿戴者进入摆动腿工作模式阶段; When the pressure on the sole of the front foot and the back heel is less than the preset threshold, it means that the wearer enters the swing leg working mode; 当后脚跟压力逐渐增大,而前脚掌压力小于预设阈值时,表示穿戴者进入脚跟着地阶段; When the rear heel pressure gradually increases, while the forefoot pressure is less than the preset threshold, it means that the wearer enters the heel strike stage; 当后脚跟与前脚掌压力均大于预设阈值时,表示穿戴者进入支撑腿工作模式阶段。 When the pressure of the rear heel and the forefoot are both greater than the preset threshold, it means that the wearer enters the stage of the supporting leg working mode. 4.一种实现权利要求1-3任一项所述方法的系统,用于获得脚底压力信息并识别出的下肢助力外骨骼运动模式,并将识别出的运动相位上传给上位机的控制系统,为控制系统进行下肢助力外骨骼运动控制提供依据;其特征在于: 4. A system for realizing the method according to any one of claims 1-3, which is used to obtain plantar pressure information and identify the lower limb power-assisted exoskeleton movement pattern, and upload the identified movement phase to the control system of the host computer , to provide a basis for the control system to control the movement of the lower extremity assisted exoskeleton; it is characterized in that: 包括内嵌在测力鞋内的上层鞋垫和下层鞋垫间的PVDF压力传感器、信号调理电路、数据转换模块、无线传输模块、数据处理模块; Including PVDF pressure sensor, signal conditioning circuit, data conversion module, wireless transmission module, and data processing module embedded between the upper insole and the lower insole in the force-measuring shoe; 通过内嵌在下肢助力外骨骼机器人足部的压力鞋垫对穿戴者的运动意图进行实时检测; Real-time detection of the wearer's movement intention through the pressure insole embedded in the foot of the lower limb assisting exoskeleton robot;     信号调理电路、无线传输模块使数据处理模块获得脚底压力信息; The signal conditioning circuit and wireless transmission module enable the data processing module to obtain plantar pressure information;     数据处理模块将获得的脚底压力信息与人体步态数据库内的行走模式进行比较匹配,判断得出行走模式,并对一个步态周期内的运动相进行识别,判断得出运动相位; The data processing module compares and matches the obtained plantar pressure information with the walking pattern in the human gait database, judges the walking pattern, and identifies the motion phase within a gait cycle, and judges the motion phase; 进行数据处理分析,匹配识别后的结果传输给下肢助力外骨骼机器人的控制系统,作为控制依据。 Data processing and analysis are carried out, and the results after matching and recognition are transmitted to the control system of the lower limb-assisted exoskeleton robot as a control basis. 5.如权利要求4所述的下肢助力外骨骼机器人步态模式识别系统,其特征在于,信号调理电路包括电荷放大电路、低通滤波电路、电压放大电路; 5. the lower limbs assist exoskeleton robot gait pattern recognition system as claimed in claim 4, is characterized in that, signal conditioning circuit comprises charge amplification circuit, low-pass filter circuit, voltage amplification circuit; 在积分电路中,采用高输入阻抗CA3140作为前置运放; In the integral circuit, CA3140 with high input impedance is used as the pre-amplifier; 在低通滤波电路中,采用OP07芯片组合电容、电阻形成的二阶Butterworth有源低通滤波电路; In the low-pass filter circuit, a second-order Butterworth active low-pass filter circuit formed by combining capacitors and resistors with OP07 chip; 在电压放大电路中,采用高增益运算放大器UA741芯片,提供输出短路保护和闭锁的自由运作。 In the voltage amplifying circuit, a high-gain operational amplifier UA741 chip is used to provide output short-circuit protection and free operation of blocking. 6.如权利要求4所述的下肢助力外骨骼机器人步态模式识别系统,其特征在于:PVDF压力传感器位于鞋垫的中层,在每只脚中布局方式为前脚掌5个,后脚跟3个。 6. The gait pattern recognition system for a lower limb assisted exoskeleton robot as claimed in claim 4, wherein the PVDF pressure sensor is located in the middle layer of the insole, and the layout in each foot is 5 on the sole of the forefoot and 3 on the rear heel. 7.如权利要求4-6任一项所述的下肢助力外骨骼机器人步态模式识别系统,其特征在于:数据转换模块采用多路的A/D转换,使用集成的数据采集卡,数据采集卡模拟输入端端口数大于两足的传感点数量。 7. The gait pattern recognition system of the exoskeleton robot assisted by lower limbs as claimed in any one of claims 4-6, characterized in that: the data conversion module adopts multi-channel A/D conversion, uses an integrated data acquisition card, and the data acquisition The number of card analog input ports is greater than the number of sensing points of the biped.
CN201410155426.4A 2014-04-18 2014-04-18 Lower limb power-assisted exoskeleton robot gait pattern identification method and system Pending CN103876756A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410155426.4A CN103876756A (en) 2014-04-18 2014-04-18 Lower limb power-assisted exoskeleton robot gait pattern identification method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410155426.4A CN103876756A (en) 2014-04-18 2014-04-18 Lower limb power-assisted exoskeleton robot gait pattern identification method and system

Publications (1)

Publication Number Publication Date
CN103876756A true CN103876756A (en) 2014-06-25

Family

ID=50946117

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410155426.4A Pending CN103876756A (en) 2014-04-18 2014-04-18 Lower limb power-assisted exoskeleton robot gait pattern identification method and system

Country Status (1)

Country Link
CN (1) CN103876756A (en)

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104523403A (en) * 2014-11-05 2015-04-22 陶宇虹 Method for judging lower-limb movement intentions of exoskeleton walking aid robot wearer
CN105030260A (en) * 2015-07-27 2015-11-11 深圳市豪恩声学股份有限公司 Judgment method for motion state and footwear
CN105249973A (en) * 2015-08-29 2016-01-20 广东铭凯医疗机器人有限公司 Shoe pad-based gait detection system
CN105268171A (en) * 2015-09-06 2016-01-27 安徽华米信息科技有限公司 Gait monitoring method, gait monitoring device and wearable device
CN105310654A (en) * 2015-08-06 2016-02-10 跑动(厦门)信息科技有限公司 Foot pronation detection method and smart shoe pad for detecting pronation
CN105662419A (en) * 2016-04-25 2016-06-15 电子科技大学 Plantar pressure measuring device and method for exoskeleton control
CN105716752A (en) * 2016-01-19 2016-06-29 东南大学 Detection system for acting force on human body imposed by wearable device
CN105795571A (en) * 2016-04-13 2016-07-27 电子科技大学 Data acquisition system and method for exoskeleton pressure shoe
WO2016168463A1 (en) * 2015-04-14 2016-10-20 Ekso Bionics, Inc. Methods of exoskeleton communication and control
CN106691770A (en) * 2015-11-12 2017-05-24 摩托瑞克有限公司 Session program for generating and executing training
CN107260176A (en) * 2017-06-07 2017-10-20 深圳市奇诺动力科技有限公司 Plantar pressure measuring device and method
CN107520834A (en) * 2017-07-13 2017-12-29 安徽工程大学 A kind of lower limb exoskeleton biped supporting zone real time discriminating device
CN107536613A (en) * 2016-06-29 2018-01-05 深圳光启合众科技有限公司 Robot and its human body lower limbs Gait Recognition apparatus and method
CN107693308A (en) * 2017-10-26 2018-02-16 西南交通大学 Wearable power-assisted walking aid rehabilitation Environmental-protection shoes
CN108013998A (en) * 2017-12-12 2018-05-11 深圳市罗伯医疗科技有限公司 A kind of lower limb rehabilitation instrument training method and system
CN108216420A (en) * 2018-01-23 2018-06-29 杭州云深处科技有限公司 A kind of adjustable foot bottom mechanism for carrying diaphragm pressure sensor
CN108542393A (en) * 2018-03-30 2018-09-18 深圳市丞辉威世智能科技有限公司 Vola sensing device and wearable ectoskeleton
CN108652636A (en) * 2018-06-29 2018-10-16 东莞英汉思机器人科技有限公司 Gait detection method and system based on pressure sensor
CN108942887A (en) * 2018-08-20 2018-12-07 上海司羿智能科技有限公司 A kind of control system of lower limb assistance exoskeleton robot
CN109260647A (en) * 2018-09-10 2019-01-25 郑州大学 Human body jump index comprehensive test and training system based on multi-modal signal
CN109421081A (en) * 2017-09-01 2019-03-05 淮安信息职业技术学院 A kind of method of production for the intelligent power-assisting robot system carried based on heavy duty
CN109498375A (en) * 2018-11-23 2019-03-22 电子科技大学 A kind of human motion intention assessment control device and control method
CN109693237A (en) * 2017-10-23 2019-04-30 深圳市优必选科技有限公司 Robot and its bouncing control method, device and computer-readable storage medium
CN109718047A (en) * 2017-10-31 2019-05-07 松下知识产权经营株式会社 Auxiliary device, householder method and program
CN110051361A (en) * 2019-05-16 2019-07-26 南京晓庄学院 A kind of wearable lower limb skeleton motion detection device
CN110123329A (en) * 2019-05-17 2019-08-16 浙江大学城市学院 A kind of intelligent machine frame and its control method carrying out position of human body adjustment for cooperative movement auxiliary lower limb exoskeleton
CN110693501A (en) * 2019-10-12 2020-01-17 上海应用技术大学 Wireless walking gait detection system based on multi-sensor fusion
CN110974609A (en) * 2019-12-09 2020-04-10 宿州学院 Foot sole pressure sensing system of exoskeleton device for lower limb rehabilitation training
CN111312361A (en) * 2020-01-20 2020-06-19 深圳市丞辉威世智能科技有限公司 Free gait walking training method and device, terminal and storage medium
CN111469117A (en) * 2020-04-14 2020-07-31 武汉理工大学 Human motion mode detection method of rigid-flexible coupling active exoskeleton
CN111481197A (en) * 2020-04-22 2020-08-04 东北大学 A living-machine multimode information acquisition fuses device for man-machine natural interaction
CN111571572A (en) * 2020-06-02 2020-08-25 中国科学技术大学先进技术研究院 A wearable power-assisted flexible exoskeleton
CN111658447A (en) * 2014-07-24 2020-09-15 三星电子株式会社 Methods of controlling exercise aids
CN112137779A (en) * 2020-09-30 2020-12-29 哈工大机器人湖州国际创新研究院 Intelligent prosthesis and mode judgment method of intelligent prosthesis
CN112296983A (en) * 2019-08-02 2021-02-02 深圳市肯綮科技有限公司 Exoskeleton equipment and control method and control device thereof
CN112741757A (en) * 2020-12-30 2021-05-04 华南理工大学 Ankle joint line drives ectoskeleton control system based on biped pressure sensor
CN112891144A (en) * 2021-01-28 2021-06-04 北京理工大学 Positive-negative pressure hybrid drive flexible knee joint exoskeleton
CN113208583A (en) * 2021-04-12 2021-08-06 华南理工大学 Gait recognition method, medium and device under assistance of exoskeleton
CN114043459A (en) * 2021-11-25 2022-02-15 湖南大学 Flexible lower limb exoskeleton control method, exoskeleton control system and use method
CN114298115A (en) * 2022-03-07 2022-04-08 南开大学 A method and system for acquiring sensor interaction motion intent
CN114404214A (en) * 2020-10-28 2022-04-29 北京机械设备研究所 Exoskeleton gait identification method and device
CN116172547A (en) * 2023-01-13 2023-05-30 电子科技大学 System and method for gait phase and terrain recognition of lower limb assisted exoskeleton
CN117462314A (en) * 2023-11-09 2024-01-30 浙江强脑科技有限公司 Damping adjustment method, damping adjustment device, intelligent artificial limb, intelligent artificial terminal and storage medium
CN117484473A (en) * 2022-07-25 2024-02-02 广州视源电子科技股份有限公司 Walking recognition method, signal collection shoes and exoskeleton based on exoskeleton
CN116172547B (en) * 2023-01-13 2025-12-09 电子科技大学 System and method for gait phase and topography recognition of lower limb assistance exoskeleton

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001277159A (en) * 2000-04-03 2001-10-09 Sony Corp Legged mobile robot, control method thereof, and relative movement measurement sensor for legged mobile robot
WO2005074373A2 (en) * 2004-02-05 2005-08-18 Motorika Inc. Methods and apparatus for rehabilitation and training
US20090149855A1 (en) * 2005-03-31 2009-06-11 Thk Co., Ltd. Power assist control method, power assist control apparatus, and reduction apparatus
CN102670207A (en) * 2012-05-15 2012-09-19 北京大学 Gait analysis method based on plantar pressure
CN103040586A (en) * 2012-12-20 2013-04-17 上海大学 External skeleton robot for exercising lower limbs and exercise control method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001277159A (en) * 2000-04-03 2001-10-09 Sony Corp Legged mobile robot, control method thereof, and relative movement measurement sensor for legged mobile robot
WO2005074373A2 (en) * 2004-02-05 2005-08-18 Motorika Inc. Methods and apparatus for rehabilitation and training
US20090149855A1 (en) * 2005-03-31 2009-06-11 Thk Co., Ltd. Power assist control method, power assist control apparatus, and reduction apparatus
CN102670207A (en) * 2012-05-15 2012-09-19 北京大学 Gait analysis method based on plantar pressure
CN103040586A (en) * 2012-12-20 2013-04-17 上海大学 External skeleton robot for exercising lower limbs and exercise control method thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
邢学彬: "《下肢康复柔性关节机器人的研究》", 《沈阳工业大学硕士学位论文》 *
邢学彬: "下肢康复柔性关节机器人的研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *

Cited By (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111658447A (en) * 2014-07-24 2020-09-15 三星电子株式会社 Methods of controlling exercise aids
US11833067B2 (en) 2014-07-24 2023-12-05 Samsung Electronics Co., Ltd. Motion assistance apparatus and method of controlling the same
CN111658447B (en) * 2014-07-24 2023-01-13 三星电子株式会社 Method for controlling a motor-assisted device
US11304828B2 (en) 2014-07-24 2022-04-19 Samsung Electronics Co., Ltd. Motion assistance apparatus and method of controlling the same
CN104523403A (en) * 2014-11-05 2015-04-22 陶宇虹 Method for judging lower-limb movement intentions of exoskeleton walking aid robot wearer
CN104523403B (en) * 2014-11-05 2019-06-18 陶宇虹 A method of judging that ectoskeleton assistant robot wearer's lower limb action is intended to
WO2016168463A1 (en) * 2015-04-14 2016-10-20 Ekso Bionics, Inc. Methods of exoskeleton communication and control
US10694948B2 (en) 2015-04-14 2020-06-30 Ekso Bionics Methods of exoskeleton communication and control
CN105030260A (en) * 2015-07-27 2015-11-11 深圳市豪恩声学股份有限公司 Judgment method for motion state and footwear
CN105030260B (en) * 2015-07-27 2018-07-03 深圳市豪恩声学股份有限公司 Motion state judgment method and foot's wear
CN105310654A (en) * 2015-08-06 2016-02-10 跑动(厦门)信息科技有限公司 Foot pronation detection method and smart shoe pad for detecting pronation
CN105249973A (en) * 2015-08-29 2016-01-20 广东铭凯医疗机器人有限公司 Shoe pad-based gait detection system
CN105268171B (en) * 2015-09-06 2018-09-18 安徽华米信息科技有限公司 gait monitoring method, device and wearable device
CN105268171A (en) * 2015-09-06 2016-01-27 安徽华米信息科技有限公司 Gait monitoring method, gait monitoring device and wearable device
CN106691770A (en) * 2015-11-12 2017-05-24 摩托瑞克有限公司 Session program for generating and executing training
CN105716752A (en) * 2016-01-19 2016-06-29 东南大学 Detection system for acting force on human body imposed by wearable device
CN105795571A (en) * 2016-04-13 2016-07-27 电子科技大学 Data acquisition system and method for exoskeleton pressure shoe
CN105662419A (en) * 2016-04-25 2016-06-15 电子科技大学 Plantar pressure measuring device and method for exoskeleton control
CN107536613A (en) * 2016-06-29 2018-01-05 深圳光启合众科技有限公司 Robot and its human body lower limbs Gait Recognition apparatus and method
CN107536613B (en) * 2016-06-29 2021-10-08 沭阳县成基实业有限公司 Robot and its human lower limb gait recognition device and method
CN107260176A (en) * 2017-06-07 2017-10-20 深圳市奇诺动力科技有限公司 Plantar pressure measuring device and method
CN107520834A (en) * 2017-07-13 2017-12-29 安徽工程大学 A kind of lower limb exoskeleton biped supporting zone real time discriminating device
CN109421081A (en) * 2017-09-01 2019-03-05 淮安信息职业技术学院 A kind of method of production for the intelligent power-assisting robot system carried based on heavy duty
CN109693237A (en) * 2017-10-23 2019-04-30 深圳市优必选科技有限公司 Robot and its bouncing control method, device and computer-readable storage medium
CN109693237B (en) * 2017-10-23 2021-01-08 深圳市优必选科技有限公司 Robot, bounce control method and device thereof, and computer-readable storage medium
CN107693308A (en) * 2017-10-26 2018-02-16 西南交通大学 Wearable power-assisted walking aid rehabilitation Environmental-protection shoes
CN109718047A (en) * 2017-10-31 2019-05-07 松下知识产权经营株式会社 Auxiliary device, householder method and program
CN109718047B (en) * 2017-10-31 2022-05-27 松下知识产权经营株式会社 Support device, support method, and program
CN108013998A (en) * 2017-12-12 2018-05-11 深圳市罗伯医疗科技有限公司 A kind of lower limb rehabilitation instrument training method and system
CN108216420B (en) * 2018-01-23 2024-03-19 杭州云深处科技有限公司 Adjustable plantar mechanism carrying with film pressure sensor
CN108216420A (en) * 2018-01-23 2018-06-29 杭州云深处科技有限公司 A kind of adjustable foot bottom mechanism for carrying diaphragm pressure sensor
CN108542393A (en) * 2018-03-30 2018-09-18 深圳市丞辉威世智能科技有限公司 Vola sensing device and wearable ectoskeleton
CN108652636A (en) * 2018-06-29 2018-10-16 东莞英汉思机器人科技有限公司 Gait detection method and system based on pressure sensor
CN108652636B (en) * 2018-06-29 2023-01-13 东莞英汉思机器人科技有限公司 Gait detection method and system based on pressure sensor
CN108942887A (en) * 2018-08-20 2018-12-07 上海司羿智能科技有限公司 A kind of control system of lower limb assistance exoskeleton robot
CN109260647A (en) * 2018-09-10 2019-01-25 郑州大学 Human body jump index comprehensive test and training system based on multi-modal signal
CN109498375A (en) * 2018-11-23 2019-03-22 电子科技大学 A kind of human motion intention assessment control device and control method
CN109498375B (en) * 2018-11-23 2020-12-25 电子科技大学 Human motion intention recognition control device and control method
CN110051361A (en) * 2019-05-16 2019-07-26 南京晓庄学院 A kind of wearable lower limb skeleton motion detection device
CN110123329A (en) * 2019-05-17 2019-08-16 浙江大学城市学院 A kind of intelligent machine frame and its control method carrying out position of human body adjustment for cooperative movement auxiliary lower limb exoskeleton
CN110123329B (en) * 2019-05-17 2024-04-02 浙大城市学院 Intelligent mechanical frame for matching with exercise-assisted lower limb exoskeleton to adjust human body position and control method thereof
CN112296983A (en) * 2019-08-02 2021-02-02 深圳市肯綮科技有限公司 Exoskeleton equipment and control method and control device thereof
CN112296983B (en) * 2019-08-02 2022-02-15 深圳市肯綮科技有限公司 Exoskeleton equipment and control method and control device thereof
CN110693501A (en) * 2019-10-12 2020-01-17 上海应用技术大学 Wireless walking gait detection system based on multi-sensor fusion
CN110974609A (en) * 2019-12-09 2020-04-10 宿州学院 Foot sole pressure sensing system of exoskeleton device for lower limb rehabilitation training
CN111312361A (en) * 2020-01-20 2020-06-19 深圳市丞辉威世智能科技有限公司 Free gait walking training method and device, terminal and storage medium
CN111312361B (en) * 2020-01-20 2024-05-10 深圳市丞辉威世智能科技有限公司 Exercise gait control method, device, terminal and storage medium
CN111469117A (en) * 2020-04-14 2020-07-31 武汉理工大学 Human motion mode detection method of rigid-flexible coupling active exoskeleton
CN111469117B (en) * 2020-04-14 2022-06-03 武汉理工大学 A human motion pattern detection method based on rigid-flexible active exoskeleton
CN111481197B (en) * 2020-04-22 2021-01-26 东北大学 Vibrant multimodal information collection and fusion device for natural human-computer interaction
CN111481197A (en) * 2020-04-22 2020-08-04 东北大学 A living-machine multimode information acquisition fuses device for man-machine natural interaction
CN111571572A (en) * 2020-06-02 2020-08-25 中国科学技术大学先进技术研究院 A wearable power-assisted flexible exoskeleton
CN111571572B (en) * 2020-06-02 2021-11-05 中国科学技术大学先进技术研究院 Wearable power-assisted flexible exoskeleton
CN112137779A (en) * 2020-09-30 2020-12-29 哈工大机器人湖州国际创新研究院 Intelligent prosthesis and mode judgment method of intelligent prosthesis
CN114404214A (en) * 2020-10-28 2022-04-29 北京机械设备研究所 Exoskeleton gait identification method and device
CN114404214B (en) * 2020-10-28 2024-02-13 北京机械设备研究所 Exoskeleton gait recognition device
CN112741757A (en) * 2020-12-30 2021-05-04 华南理工大学 Ankle joint line drives ectoskeleton control system based on biped pressure sensor
CN112891144A (en) * 2021-01-28 2021-06-04 北京理工大学 Positive-negative pressure hybrid drive flexible knee joint exoskeleton
CN113208583A (en) * 2021-04-12 2021-08-06 华南理工大学 Gait recognition method, medium and device under assistance of exoskeleton
CN114043459A (en) * 2021-11-25 2022-02-15 湖南大学 Flexible lower limb exoskeleton control method, exoskeleton control system and use method
CN114298115A (en) * 2022-03-07 2022-04-08 南开大学 A method and system for acquiring sensor interaction motion intent
CN117484473A (en) * 2022-07-25 2024-02-02 广州视源电子科技股份有限公司 Walking recognition method, signal collection shoes and exoskeleton based on exoskeleton
CN116172547A (en) * 2023-01-13 2023-05-30 电子科技大学 System and method for gait phase and terrain recognition of lower limb assisted exoskeleton
CN116172547B (en) * 2023-01-13 2025-12-09 电子科技大学 System and method for gait phase and topography recognition of lower limb assistance exoskeleton
CN117462314A (en) * 2023-11-09 2024-01-30 浙江强脑科技有限公司 Damping adjustment method, damping adjustment device, intelligent artificial limb, intelligent artificial terminal and storage medium
CN117462314B (en) * 2023-11-09 2024-04-09 浙江强脑科技有限公司 Damping adjustment method, damping adjustment device, intelligent artificial limb, intelligent artificial terminal and storage medium

Similar Documents

Publication Publication Date Title
CN103876756A (en) Lower limb power-assisted exoskeleton robot gait pattern identification method and system
CN105795571B (en) A kind of data collecting system and method for ectoskeleton pressure footwear
CN108379038B (en) A lower limb rehabilitation exoskeleton system and its walking control method
CN105125216B (en) A kind of gait detecting system based on plantar pressure
Chen et al. Locomotion mode classification using a wearable capacitive sensing system
Yu et al. Adaptive method for real-time gait phase detection based on ground contact forces
Joshi et al. Terrain and direction classification of locomotion transitions using neuromuscular and mechanical input
Mansour et al. Analysis of several methods and inertial sensors locations to assess gait parameters in able-bodied subjects
el Achkar et al. Instrumented shoes for activity classification in the elderly
CN103462619A (en) Plantar pressure measuring device and gait mode identification method using same
CN103519819A (en) Gait analysis method and gait analysis system
KR20160031246A (en) Method and apparatus for gait task recognition
Negi et al. FSR and IMU sensors-based human gait phase detection and its correlation with EMG signal for different terrain walk
WO2015149197A1 (en) Non-contact capacitance sensor system for intelligent prosthesis
CN113576467A (en) Wearable real-time gait detection system integrating plantar pressure sensor and IMU
WO2018003910A1 (en) Walking state determination device, walking state determination system, walking state determination method, and storage medium
Ye et al. An adaptive method for gait event detection of gait rehabilitation robots
CN108334827A (en) A gait identity authentication method based on smart shoes and smart shoes
CN101554894A (en) Foot plate structure of humanoid robot capable of perceiving ground counterforces
CN116458875A (en) Method for evaluating cognitive condition based on intelligent mobile phone sensor gait analysis
KR101829356B1 (en) An EMG Signal-Based Gait Phase Recognition Method Using a GPES library and ISMF
CN105249973A (en) Shoe pad-based gait detection system
CN111469117B (en) A human motion pattern detection method based on rigid-flexible active exoskeleton
KR102251104B1 (en) Wearable gait analysis device
CN117975559A (en) A striding gait phase recognition method based on multi-source perception fusion

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C53 Correction of patent of invention or patent application
CB03 Change of inventor or designer information

Inventor after: Han Yali

Inventor after: Zhu Songqing

Inventor after: Yu Jianming

Inventor after: Gao Haitao

Inventor after: Qi Bing

Inventor before: Han Yali

Inventor before: Zhu Songqing

Inventor before: Gao Haitao

Inventor before: Qi Bing

Inventor before: Yu Jianming

COR Change of bibliographic data

Free format text: CORRECT: INVENTOR; FROM: HAN YALI ZHU SONGQING GAO HAITAO QI BING YU JIANMING TO: HAN YALI ZHU SONGQING YU JIANMING GAO HAITAO QI BING

RJ01 Rejection of invention patent application after publication

Application publication date: 20140625

RJ01 Rejection of invention patent application after publication