CN103876756A - Lower limb power-assisted exoskeleton robot gait pattern identification method and system - Google Patents
Lower limb power-assisted exoskeleton robot gait pattern identification method and system Download PDFInfo
- Publication number
- CN103876756A CN103876756A CN201410155426.4A CN201410155426A CN103876756A CN 103876756 A CN103876756 A CN 103876756A CN 201410155426 A CN201410155426 A CN 201410155426A CN 103876756 A CN103876756 A CN 103876756A
- Authority
- CN
- China
- Prior art keywords
- lower limb
- gait
- exoskeleton robot
- pressure
- wearer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 210000003141 lower extremity Anatomy 0.000 title claims abstract description 51
- 230000005021 gait Effects 0.000 title claims abstract description 44
- 238000000034 method Methods 0.000 title claims description 6
- 230000033001 locomotion Effects 0.000 claims abstract description 55
- 238000012545 processing Methods 0.000 claims abstract description 16
- 238000012567 pattern recognition method Methods 0.000 claims abstract description 9
- 238000004458 analytical method Methods 0.000 claims abstract description 8
- 210000004744 fore-foot Anatomy 0.000 claims description 16
- 230000003750 conditioning effect Effects 0.000 claims description 15
- 230000005540 biological transmission Effects 0.000 claims description 10
- 238000006243 chemical reaction Methods 0.000 claims description 9
- 230000003321 amplification Effects 0.000 claims description 8
- 210000002683 foot Anatomy 0.000 claims description 8
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 8
- 239000002033 PVDF binder Substances 0.000 claims description 7
- 239000003990 capacitor Substances 0.000 claims description 7
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 7
- 238000003909 pattern recognition Methods 0.000 claims description 6
- 230000009191 jumping Effects 0.000 claims description 4
- 238000011897 real-time detection Methods 0.000 claims description 3
- 230000000903 blocking effect Effects 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 6
- 238000001514 detection method Methods 0.000 description 4
- 241000282412 Homo Species 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000010587 phase diagram Methods 0.000 description 2
- 210000003371 toe Anatomy 0.000 description 2
- 206010061225 Limb injury Diseases 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000011217 control strategy Methods 0.000 description 1
- ACGUYXCXAPNIKK-UHFFFAOYSA-N hexachlorophene Chemical compound OC1=C(Cl)C=C(Cl)C(Cl)=C1CC1=C(O)C(Cl)=CC(Cl)=C1Cl ACGUYXCXAPNIKK-UHFFFAOYSA-N 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
Images
Landscapes
- Rehabilitation Tools (AREA)
- Manipulator (AREA)
Abstract
本发明提供一种下肢助力外骨骼机器人步态模式识别方法及系统,通过内嵌在下肢助力外骨骼机器人鞋底处的压力传感装置对穿戴者的脚底压力信息进行检测,把获得的脚底压力信息与人体步态数据库内的行走模式进行比较匹配,判断出行走模式,并对一个步态周期内的运动相进行识别,判断得出运动相;进行数据处理分析,匹配识别后的结果传输给下肢助力外骨骼机器人控制系统,作为控制依据。本发明提供下肢助力外骨骼穿戴者的行走模式及在每一个步态周期内详细的运动相位,为下肢助力外骨骼的控制提供了丰富的决策依据。不仅能为下肢助力外骨骼提供穿戴者的运动信息,还可广泛应用于人体步态识别。
The invention provides a gait pattern recognition method and system for a lower limb-assisted exoskeleton robot. The pressure sensor device embedded in the sole of the lower limb-assisted exoskeleton robot detects the wearer's sole pressure information, and the obtained sole pressure information Compare and match with the walking pattern in the human gait database, determine the walking pattern, and identify the motion phase within a gait cycle, and determine the motion phase; perform data processing and analysis, and transmit the matching recognition results to the lower limbs Assist the exoskeleton robot control system as the control basis. The invention provides the walking mode of the wearer of the lower limb assisting exoskeleton and the detailed motion phase in each gait cycle, and provides rich decision-making basis for the control of the lower limb assisting exoskeleton. It can not only provide the wearer's motion information for the lower limb power-assisted exoskeleton, but also be widely used in human gait recognition.
Description
技术领域 technical field
本发明涉及一种基于足底测力检测系统的下肢助力外骨骼机器人步态模式识别方法及系统。 The present invention relates to a gait pattern recognition method and system for a lower limb-assisted exoskeleton robot based on a plantar dynamometer detection system.
背景技术 Background technique
下肢助力外骨骼机器人结合了人与机器人的优点,把人与机器人组合在一个系统里,充分发挥人的动作导向能力与机器人承担负载的能力。此下肢助力外骨骼机构能被穿戴者穿在身上,并时刻保持与穿戴者一致的行走动作,像人体的外骨骼一样代替人体承担外部负载,从而达到行走助力的目的。 The lower limb assisted exoskeleton robot combines the advantages of humans and robots, and combines humans and robots into one system to give full play to the human's action-oriented ability and the robot's ability to bear loads. This lower limb power-assisted exoskeleton mechanism can be worn by the wearer, and maintains the same walking movement as the wearer at all times. Like the human exoskeleton, it replaces the human body to bear the external load, so as to achieve the purpose of walking assistance.
为了缓解大负重、长距离行走引起的下肢伤痛问题;人口老龄化日益加剧带来的社会问题;及由于交通、地震灾害等引起的下肢伤残等问题;故对此种人机一体化的下肢助力外骨骼系统进行研究具有重要的意义,且将具有广泛的应用前景。 In order to alleviate the problem of lower limb injuries caused by heavy loads and long-distance walking; the social problems caused by the aging population; and the lower limb disabilities caused by traffic, earthquake disasters, etc.; It is of great significance to study the lower limb assisted exoskeleton system, and will have a wide range of application prospects.
对于下肢助力外骨骼机器人的控制,其中最关键的因素是采集穿戴者的运动意图及运动趋势,只有很好的获取穿戴者的运动意图,才能对下肢助力外骨骼进行控制,使其快速的跟随穿戴者进行有效助力。 For the control of the lower limb assisting exoskeleton robot, the most critical factor is to collect the wearer's motion intention and movement trend. Only by obtaining the wearer's motion intention well can the lower limb assisting exoskeleton be controlled so that it can quickly follow The wearer provides effective assistance.
目前,对穿戴者运动意图的获取一类是进行肌电信号、脑电信号的检测,由于肌电、脑电信号存在信号微弱,不稳定的缺点,使得信号的采集、处理及分析都非常复杂。 At present, the acquisition of the wearer's movement intention is the detection of EMG and EEG signals. Due to the weak and unstable signals of EMG and EEG signals, the acquisition, processing and analysis of the signals are very complicated. .
另一类是通过在穿戴者身上安装角度、加速度传感装置,并检测穿戴者的脚底力信息进行运动信息的检测,进而对下肢外骨骼实施控制。在脚底力信息检测中,设计一套便于穿戴,能准确获取人体的行走模式及一个步态周期内确切运动相位的测力系统非常重要。 The other is to install angle and acceleration sensing devices on the wearer, and detect the wearer's plantar force information to detect motion information, and then control the lower extremity exoskeleton. In the detection of plantar force information, it is very important to design a force measurement system that is easy to wear and can accurately obtain the walking pattern of the human body and the exact motion phase within a gait cycle.
发明内容 Contents of the invention
针对下肢助力外骨骼机器人控制中存在的问题及对穿戴者行走运动模式识别的需求,本发明提供了一种人体运动模式识别方法,通过内嵌在机器人鞋底处的压力传感装置对穿戴者的脚底压力信息进行检测,设计信号调理电路,数据转换模块、无线传输模块等获得脚底压力信息,把获得的脚底压力信息与人体步态数据库内的行走模式进行比较匹配,判断出其行走模式,并对一个步态周期内的运动相进行识别,实现下肢助力外骨骼机器人运动状态的实时检测,便于机器人的运动控制。 Aiming at the problems existing in the control of the lower limb assisted exoskeleton robot and the demand for the recognition of the wearer's walking motion pattern, the present invention provides a human body motion pattern recognition method, through the pressure sensing device embedded in the sole of the robot shoe. The plantar pressure information is detected, the signal conditioning circuit is designed, the data conversion module, the wireless transmission module, etc. are obtained to obtain the plantar pressure information, and the obtained plantar pressure information is compared and matched with the walking pattern in the human gait database to determine its walking pattern and The motion phase in a gait cycle is identified to realize the real-time detection of the motion state of the lower limb assisted exoskeleton robot, which is convenient for the motion control of the robot.
为实现上述目的,本发明采用以下技术方案: To achieve the above object, the present invention adopts the following technical solutions:
一种下肢助力外骨骼机器人步态模式识别方法, A method for gait pattern recognition of a lower limb assisted exoskeleton robot,
内嵌在下肢助力外骨骼机器人鞋底处的压力传感装置对穿戴者的脚底压力信息进行检测,通过信号调理电路、无线传输模块使数据处理模块获得脚底压力信息; The pressure sensing device embedded in the sole of the lower limb assisting exoskeleton robot detects the wearer's sole pressure information, and the data processing module obtains the sole pressure information through the signal conditioning circuit and the wireless transmission module;
数据处理模块将获得的脚底压力信息与人体步态数据库内的行走模式进行比较匹配,判断得出行走模式,并对一个步态周期内的运动相进行识别,判断得出运动相位; The data processing module compares and matches the obtained plantar pressure information with the walking pattern in the human gait database, judges the walking pattern, and identifies the motion phase within a gait cycle, and judges the motion phase;
进行数据处理分析,匹配识别后的结果传输给下肢助力外骨骼机器人的控制系统,作为控制依据。 Data processing and analysis are carried out, and the results after matching and recognition are transmitted to the control system of the lower limb-assisted exoskeleton robot as a control basis.
优选地,数据库中存放有运动模式的特征参数,包括人体平地行走、楼梯行走、斜坡行走、跳跃、下蹲、跑步运动模式下的脚底力信息。 Preferably, the database stores characteristic parameters of motion patterns, including plantar force information of the human body in the motion patterns of walking on flat ground, walking on stairs, walking on slopes, jumping, squatting, and running.
优选地,分析得出在一个步态周期内的运动相位: Preferably, the analysis yields the phase of motion within a gait cycle:
当后脚跟压力小于预设阈值,前脚掌压力逐渐增加时,表示穿戴者正在蹬离地面; When the rear heel pressure is less than the preset threshold and the forefoot pressure gradually increases, it means that the wearer is kicking off the ground;
当前脚掌与后脚跟的压力均小于预设阈值时,表示穿戴者进入摆动腿工作模式阶段; When the pressure on the sole of the front foot and the back heel is less than the preset threshold, it means that the wearer enters the swing leg working mode;
当后脚跟压力逐渐增大,而前脚掌压力小于预设阈值时,表示穿戴者进入脚跟着地阶段; When the rear heel pressure gradually increases, while the forefoot pressure is less than the preset threshold, it means that the wearer enters the heel strike stage;
当后脚跟与前脚掌压力均大于预设阈值时,表示穿戴者进入支撑腿工作模式阶段。 When the pressure of the rear heel and the forefoot are both greater than the preset threshold, it means that the wearer enters the stage of the supporting leg working mode.
一种下肢助力外骨骼机器人步态模式识别系统,用于获得脚底压力信息并识别出的下肢助力外骨骼运动模式,并将识别出的运动相位上传给上位机的控制系统,为控制系统进行下肢助力外骨骼运动控制提供依据; A lower limb assisted exoskeleton robot gait pattern recognition system, which is used to obtain plantar pressure information and identify the lower limb assisted exoskeleton motion pattern, and upload the identified motion phase to the control system of the host computer, and perform lower limb assisted exoskeleton for the control system. Provide basis for assisting exoskeleton motion control;
包括内嵌在测力鞋内的上层鞋垫和下层鞋垫间的PVDF压力传感器、信号调理电路、数据转换模块、无线传输模块、数据处理模块; Including PVDF pressure sensor, signal conditioning circuit, data conversion module, wireless transmission module, and data processing module embedded between the upper insole and the lower insole in the force-measuring shoe;
通过内嵌在下肢助力外骨骼机器人足部的压力鞋垫对穿戴者的运动意图进行实时检测; Real-time detection of the wearer's movement intention through the pressure insole embedded in the foot of the lower limb assisting exoskeleton robot;
信号调理电路、无线传输模块使数据处理模块获得脚底压力信息; The signal conditioning circuit and the wireless transmission module enable the data processing module to obtain plantar pressure information;
数据处理模块将获得的脚底压力信息与人体步态数据库内的行走模式进行比较匹配,判断得出行走模式,并对一个步态周期内的运动相进行识别,判断得出运动相位; The data processing module compares and matches the obtained plantar pressure information with the walking pattern in the human gait database, judges the walking pattern, and identifies the motion phase within a gait cycle, and judges the motion phase;
进行数据处理分析,匹配识别后的结果传输给下肢助力外骨骼机器人的控制系统,作为控制依据。 Data processing and analysis are carried out, and the results after matching and recognition are transmitted to the control system of the lower limb-assisted exoskeleton robot as a control basis.
优选地,信号调理电路包括电荷放大电路、低通滤波电路、电压放大电路; Preferably, the signal conditioning circuit includes a charge amplification circuit, a low-pass filter circuit, and a voltage amplification circuit;
在积分电路中,采用高输入阻抗CA3140作为前置运放; In the integral circuit, CA3140 with high input impedance is used as the pre-amplifier;
在低通滤波电路中,采用OP07芯片组合电容、电阻形成的二阶Butterworth有源低通滤波电路; In the low-pass filter circuit, a second-order Butterworth active low-pass filter circuit formed by combining capacitors and resistors with OP07 chip;
在电压放大电路中,采用高增益运算放大器UA741芯片,提供输出短路保护和闭锁的自由运作。 In the voltage amplifying circuit, a high-gain operational amplifier UA741 chip is used to provide output short-circuit protection and free operation of blocking.
优选地,如权利要求4所述的下肢助力外骨骼机器人步态模式识别方法,其特征在于:PVDF压力传感器位于鞋垫的中层,在每只脚中布局方式为前脚掌5个,后脚跟3个。 Preferably, the gait pattern recognition method of a lower limb assisted exoskeleton robot according to claim 4, characterized in that: the PVDF pressure sensor is located in the middle layer of the insole, and the layout in each foot is 5 on the sole of the forefoot and 3 on the rear heel .
优选地,如权利要求4所述的下肢助力外骨骼机器人步态模式识别方法,其特征在于:数据转换模块采用多路的A/D转换,使用集成的数据采集卡,数据采集卡模拟输入端端口数大于两足的传感点数量。 Preferably, the gait pattern recognition method of the lower limbs assisting exoskeleton robot as claimed in claim 4, is characterized in that: the data conversion module adopts multi-channel A/D conversion, uses an integrated data acquisition card, and the data acquisition card simulates the input terminal The number of ports is greater than the number of sensing points for the biped.
本发明的有益效果是:本发明提供下肢助力外骨骼穿戴者的行走模式及在每一个步态周期内详细的运动相位,为下肢助力外骨骼的控制提供了丰富的决策依据。不仅能为下肢助力外骨骼提供穿戴者的运动信息,还可广泛应用于人体步态识别。而采用鞋垫式压力检测系统,内嵌在外骨骼机器人鞋内,具有穿戴方便的优点。采用无线传输方法,使得穿戴者摆脱了电缆等传统物理媒介的束缚。 The beneficial effects of the present invention are: the present invention provides the walking pattern of the wearer of the lower limb assisting exoskeleton and the detailed movement phase in each gait cycle, and provides rich decision-making basis for the control of the lower limb assisting exoskeleton. It can not only provide the wearer's motion information for the lower limb power-assisted exoskeleton, but also be widely used in human gait recognition. The insole-type pressure detection system is embedded in the exoskeleton robot shoe, which has the advantage of being easy to wear. The use of wireless transmission methods frees the wearer from the shackles of traditional physical media such as cables.
附图说明 Description of drawings
图1是实施例中运动模式识别的说明框图; Fig. 1 is the explanatory block diagram of motion pattern recognition in the embodiment;
图2是实施例中基于PVDF的压力传感器在脚底的布置示意图; Fig. 2 is the layout schematic diagram of the pressure sensor based on PVDF in the sole of the foot in the embodiment;
图3是信号调理电路中电荷放大电路图; Fig. 3 is a circuit diagram of charge amplification in the signal conditioning circuit;
图4是信号调理电路中二阶低通滤波电路图; Fig. 4 is a second-order low-pass filter circuit diagram in the signal conditioning circuit;
图5是信号调理电路中电压放大电路图; Fig. 5 is a voltage amplification circuit diagram in the signal conditioning circuit;
图6是步态周期内人体的步态相位分析示意图。 Fig. 6 is a schematic diagram of gait phase analysis of a human body in a gait cycle.
具体实施方式 Detailed ways
下面结合附图详细说明本发明的优选实施例。 Preferred embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings.
本发明是一种下肢助力外骨骼机器人步态模式识别方法,为下肢助力外骨骼机器人提供控制决策,如图1所示。 The present invention is a gait pattern recognition method for a lower-limb-assisted exoskeleton robot, which provides control decisions for a lower-limb-assisted exoskeleton robot, as shown in FIG. 1 .
首先,内嵌在下肢助力外骨骼机器人鞋底处的压力传感装置对穿戴者的脚底压力信心进行检测,通过信号调理电路、数据转换模块及无线传输模块等获得脚底压力信息。 First of all, the pressure sensing device embedded in the sole of the lower extremity assisting exoskeleton robot detects the wearer's sole pressure confidence, and obtains the sole pressure information through the signal conditioning circuit, data conversion module and wireless transmission module.
由获得的脚底压力信息与数据库中的人体步态特征相匹配。人体步态数据库中存放了人体平地行走、楼梯行走、斜坡行走、跳跃、下蹲、跑步等各种运动模式下的脚底力信息。由匹配结果,初判下肢助力外骨骼机器人处于何种运动模式。 The obtained plantar pressure information is matched with the human gait characteristics in the database. The human body gait database stores the plantar force information of the human body in various motion modes such as walking on flat ground, walking on stairs, walking on slopes, jumping, squatting, and running. Based on the matching results, the motion mode of the lower limb-assisted exoskeleton robot is preliminarily judged.
把获得的脚底压力信息与人体步态数据库内的行走模式进行比较匹配,判断出其行走模式,并对一个步态周期内的运动相进行识别,判断其处于脚跟着地阶段、脚底放平支撑阶段、脚尖蹬离地面阶段及摆动阶段中的哪一种运动相位。 Compare and match the obtained plantar pressure information with the walking pattern in the human gait database to determine its walking pattern, and identify the movement phase within a gait cycle to determine whether it is in the heel-strike stage or the sole-flat support stage , which kind of motion phase in the stage of kicking the toes off the ground and the swing stage.
对获取信息进行运动模式下的进一步的步态识别,分别对前脚掌的及后脚跟的传感器输出压力进行预设阈值的比较,当后脚跟压力小于预设阈值,前脚掌压力逐渐增加时,表示穿戴者正在蹬离地面;当前脚掌与后脚跟的压力均小于预设阈值时,表示穿戴者进入摆动腿工作模式阶段;当后脚跟压力逐渐增大,而前脚掌压力小于预设阈值时,表示穿戴者进入脚跟着地阶段;当后脚跟与前脚掌压力均大于预设阈值时,表示穿戴者进入支撑腿工作模式阶段。 Carry out further gait recognition in the exercise mode on the acquired information, and compare the preset thresholds of the sensor output pressures of the forefoot and rear heel respectively. When the rear heel pressure is less than the preset threshold and the forefoot pressure gradually increases, it means The wearer is kicking off the ground; when the pressure on the front sole and the rear heel are both lower than the preset threshold, it means that the wearer enters the swing leg working mode stage; The wearer enters the heel strike stage; when the pressure of the rear heel and the forefoot are greater than the preset threshold, it means that the wearer enters the stage of supporting leg work mode.
把识别出的下肢助力外骨骼运动模式传输给上位机控制控制系统,进行下肢助力外骨骼机器人的运动控制。 The identified motion pattern of the lower limb-assisted exoskeleton is transmitted to the host computer control system for motion control of the lower limb-assisted exoskeleton robot.
其中,压力传感器的布局图如图2所示,前脚掌有5个,后脚跟有3个,前脚掌或后脚跟的压力传感器均层三角形分布。PVDF固定在上、下夹层中。 Among them, the layout of the pressure sensors is shown in Figure 2. There are 5 on the forefoot and 3 on the rear heel, and the pressure sensors on the forefoot or the rear heel are evenly distributed in a triangle. PVDF is fixed in the upper and lower interlayers.
信号调理电路,包含电荷放大电路,也称为积分电路,二阶低通滤波电路及电压放大电路。由于PVDF压电薄膜输出信号非常微弱,要把信号通过前置电荷放大器放大,电荷放大器本质上是一个积分电路,即将传感器输出的电荷,在积分电容上累积然后以电压的形式输出,故也称前置电荷-电压转换电路。电荷放大电路是个非常灵敏的电路,很有可能就将干扰信号引进到电路中,因此需对经过电荷放大路输出的信号进行滤波,必须有滤波电路。采用低温漂、高精度的贴片式运放与电阻电容,减少了电路板的尺寸。在传感单元与电路板之间,采用多芯的屏蔽线连接,可屏蔽外来的干扰信号,同时降低传输信号的损耗。 The signal conditioning circuit includes a charge amplification circuit, also known as an integrating circuit, a second-order low-pass filter circuit, and a voltage amplification circuit. Since the output signal of the PVDF piezoelectric film is very weak, the signal must be amplified through the pre-charge amplifier. The charge amplifier is essentially an integrating circuit, that is, the charge output by the sensor is accumulated on the integrating capacitor and then output in the form of voltage, so it is also called Precharge-to-voltage conversion circuit. The charge amplifier circuit is a very sensitive circuit, and it is very likely to introduce interference signals into the circuit. Therefore, it is necessary to filter the signal output by the charge amplifier circuit, and a filter circuit must be provided. Low-temperature drift, high-precision SMD operational amplifiers and resistors and capacitors are used to reduce the size of the circuit board. Between the sensing unit and the circuit board, a multi-core shielded wire is used to shield the external interference signal and reduce the loss of the transmission signal.
如图3所示,在积分电路中,选用高输入阻抗CA3140作为前置运放。同时电路还包含反馈电容C1及反馈电阻R2两个重要元器件。另外,为了保护运放CA3140,在其反相输入端串接电阻R3,并在R3两端并联电容C3,实现相位补偿,这样则可避免R3与运放CA3140的输入电容构成两一个极点,使运放产生自激振荡。 As shown in Figure 3, in the integral circuit, CA3140 with high input impedance is selected as the pre-op amplifier. At the same time, the circuit also includes two important components, the feedback capacitor C1 and the feedback resistor R2. In addition, in order to protect the operational amplifier CA3140, a resistor R3 is connected in series at its inverting input terminal, and a capacitor C3 is connected in parallel at both ends of R3 to realize phase compensation. This can prevent R3 and the input capacitance of the operational amplifier CA3140 from forming two poles. The op amp generates self-oscillation.
如图4所示,在低通滤波电路中,采用OP07芯片组合电容、电阻形成的二阶Butterworth有源低通滤波电路。如图5所示,在电压放大电路中,采用高增益运算放大器UA741芯片,这类单片硅集成电路器件提供输出短路保护和闭锁的自由运作。 As shown in Figure 4, in the low-pass filter circuit, a second-order Butterworth active low-pass filter circuit formed by combining capacitors and resistors using the OP07 chip. As shown in Figure 5, in the voltage amplifying circuit, a high-gain operational amplifier UA741 chip is used. This type of monolithic silicon integrated circuit device provides output short-circuit protection and latch-free operation.
在数据库中存放了各种运动模式的特征参数,包括人体平地行走、楼梯行走、斜坡行走、跳跃、下蹲、跑步等各种运动模式下的脚底力信息。进行各种运动的模式的实验研究,提取其脚底压力运动特征,存放数据库中,便于下肢助力外骨骼实时运动中压力信息的匹配比较及行走模式的判定。 The characteristic parameters of various motion modes are stored in the database, including the plantar force information of the human body in various motion modes such as walking on flat ground, walking on stairs, walking on slopes, jumping, squatting, and running. Carry out experimental research on various movement modes, extract the characteristics of the plantar pressure movement, and store them in the database, which is convenient for the matching and comparison of pressure information in the real-time movement of the lower limb assisted exoskeleton and the determination of the walking mode.
为根据获取的信息,进行精确的步态相位识别,图6为平地行走运动中一个步态周期内的运动相位图,从相位图中可看出,在一个步态周期内,人体的运动可分为支撑期与摆动期,再进一步细化可分为足跟着地、全足放平、支撑中期、脚跟离地、脚尖离地、加速推离、摆动中相及减速着地阶段。根据分布在前脚掌的5个传感器及后脚跟的3个传感器信息,可对运动相位进行分析,例如,当后脚跟压力小于预设阈值,前脚掌压力逐渐增加时,表示穿戴者正在蹬离地面;当前脚掌与后脚跟的压力均小于预设阈值时,表示穿戴者进入摆动腿工作模式阶段;当后脚跟压力逐渐增大,而前脚掌压力小于预设阈值时,表示穿戴者进入脚跟着地阶段;当后脚跟与前脚掌压力均大于预设阈值时,表示穿戴者进入支撑腿工作模式阶段。 In order to carry out accurate gait phase recognition based on the acquired information, Fig. 6 is a movement phase diagram in a gait cycle in level ground walking. It can be seen from the phase diagram that in a gait cycle, the movement of the human body can be It is divided into support phase and swing phase, and further refined into heel strike, full foot flat, mid support phase, heel off the ground, toe off the ground, acceleration push off, swing mid phase, and deceleration landing phase. According to the information of 5 sensors distributed on the forefoot and 3 sensors on the rear heel, the movement phase can be analyzed. For example, when the pressure on the rear heel is less than the preset threshold and the pressure on the forefoot gradually increases, it means that the wearer is kicking off the ground ; When the pressure on the front sole and the rear heel are both lower than the preset threshold, it means that the wearer enters the swing leg working mode; when the pressure on the rear heel gradually increases, and the pressure on the front sole is less than the preset threshold, it means that the wearer enters the heel strike stage ; When the pressure of the rear heel and the forefoot are greater than the preset threshold, it means that the wearer enters the supporting leg working mode stage.
把识别出的运动相位上传给上位机的控制系统,便于下肢助力外骨骼控制策略的实施。 Upload the identified motion phase to the control system of the host computer to facilitate the implementation of the control strategy for the lower limb assist exoskeleton.
上述各实施例例仅用于说明本发明,脚底压力传感器的选取及布局、信号调理电路的设计、步态模式的识别流程均可以有所变化,在本发明技术方案的基础上,本领域的技术人员能够用显而易见地想到的一些变型或替代的方案,均应落入本发明保护的范围。 The above-mentioned embodiments are only used to illustrate the present invention, and the selection and layout of the plantar pressure sensor, the design of the signal conditioning circuit, and the identification process of the gait pattern can all be changed. On the basis of the technical solution of the present invention, people in the art Some modifications or alternatives that can be obviously conceived by the skilled person shall fall within the protection scope of the present invention.
Claims (7)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410155426.4A CN103876756A (en) | 2014-04-18 | 2014-04-18 | Lower limb power-assisted exoskeleton robot gait pattern identification method and system |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410155426.4A CN103876756A (en) | 2014-04-18 | 2014-04-18 | Lower limb power-assisted exoskeleton robot gait pattern identification method and system |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN103876756A true CN103876756A (en) | 2014-06-25 |
Family
ID=50946117
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201410155426.4A Pending CN103876756A (en) | 2014-04-18 | 2014-04-18 | Lower limb power-assisted exoskeleton robot gait pattern identification method and system |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN103876756A (en) |
Cited By (45)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104523403A (en) * | 2014-11-05 | 2015-04-22 | 陶宇虹 | Method for judging lower-limb movement intentions of exoskeleton walking aid robot wearer |
| CN105030260A (en) * | 2015-07-27 | 2015-11-11 | 深圳市豪恩声学股份有限公司 | Judgment method for motion state and footwear |
| CN105249973A (en) * | 2015-08-29 | 2016-01-20 | 广东铭凯医疗机器人有限公司 | Shoe pad-based gait detection system |
| CN105268171A (en) * | 2015-09-06 | 2016-01-27 | 安徽华米信息科技有限公司 | Gait monitoring method, gait monitoring device and wearable device |
| CN105310654A (en) * | 2015-08-06 | 2016-02-10 | 跑动(厦门)信息科技有限公司 | Foot pronation detection method and smart shoe pad for detecting pronation |
| CN105662419A (en) * | 2016-04-25 | 2016-06-15 | 电子科技大学 | Plantar pressure measuring device and method for exoskeleton control |
| CN105716752A (en) * | 2016-01-19 | 2016-06-29 | 东南大学 | Detection system for acting force on human body imposed by wearable device |
| CN105795571A (en) * | 2016-04-13 | 2016-07-27 | 电子科技大学 | Data acquisition system and method for exoskeleton pressure shoe |
| WO2016168463A1 (en) * | 2015-04-14 | 2016-10-20 | Ekso Bionics, Inc. | Methods of exoskeleton communication and control |
| CN106691770A (en) * | 2015-11-12 | 2017-05-24 | 摩托瑞克有限公司 | Session program for generating and executing training |
| CN107260176A (en) * | 2017-06-07 | 2017-10-20 | 深圳市奇诺动力科技有限公司 | Plantar pressure measuring device and method |
| CN107520834A (en) * | 2017-07-13 | 2017-12-29 | 安徽工程大学 | A kind of lower limb exoskeleton biped supporting zone real time discriminating device |
| CN107536613A (en) * | 2016-06-29 | 2018-01-05 | 深圳光启合众科技有限公司 | Robot and its human body lower limbs Gait Recognition apparatus and method |
| CN107693308A (en) * | 2017-10-26 | 2018-02-16 | 西南交通大学 | Wearable power-assisted walking aid rehabilitation Environmental-protection shoes |
| CN108013998A (en) * | 2017-12-12 | 2018-05-11 | 深圳市罗伯医疗科技有限公司 | A kind of lower limb rehabilitation instrument training method and system |
| CN108216420A (en) * | 2018-01-23 | 2018-06-29 | 杭州云深处科技有限公司 | A kind of adjustable foot bottom mechanism for carrying diaphragm pressure sensor |
| CN108542393A (en) * | 2018-03-30 | 2018-09-18 | 深圳市丞辉威世智能科技有限公司 | Vola sensing device and wearable ectoskeleton |
| CN108652636A (en) * | 2018-06-29 | 2018-10-16 | 东莞英汉思机器人科技有限公司 | Gait detection method and system based on pressure sensor |
| CN108942887A (en) * | 2018-08-20 | 2018-12-07 | 上海司羿智能科技有限公司 | A kind of control system of lower limb assistance exoskeleton robot |
| CN109260647A (en) * | 2018-09-10 | 2019-01-25 | 郑州大学 | Human body jump index comprehensive test and training system based on multi-modal signal |
| CN109421081A (en) * | 2017-09-01 | 2019-03-05 | 淮安信息职业技术学院 | A kind of method of production for the intelligent power-assisting robot system carried based on heavy duty |
| CN109498375A (en) * | 2018-11-23 | 2019-03-22 | 电子科技大学 | A kind of human motion intention assessment control device and control method |
| CN109693237A (en) * | 2017-10-23 | 2019-04-30 | 深圳市优必选科技有限公司 | Robot and its bouncing control method, device and computer-readable storage medium |
| CN109718047A (en) * | 2017-10-31 | 2019-05-07 | 松下知识产权经营株式会社 | Auxiliary device, householder method and program |
| CN110051361A (en) * | 2019-05-16 | 2019-07-26 | 南京晓庄学院 | A kind of wearable lower limb skeleton motion detection device |
| CN110123329A (en) * | 2019-05-17 | 2019-08-16 | 浙江大学城市学院 | A kind of intelligent machine frame and its control method carrying out position of human body adjustment for cooperative movement auxiliary lower limb exoskeleton |
| CN110693501A (en) * | 2019-10-12 | 2020-01-17 | 上海应用技术大学 | Wireless walking gait detection system based on multi-sensor fusion |
| CN110974609A (en) * | 2019-12-09 | 2020-04-10 | 宿州学院 | Foot sole pressure sensing system of exoskeleton device for lower limb rehabilitation training |
| CN111312361A (en) * | 2020-01-20 | 2020-06-19 | 深圳市丞辉威世智能科技有限公司 | Free gait walking training method and device, terminal and storage medium |
| CN111469117A (en) * | 2020-04-14 | 2020-07-31 | 武汉理工大学 | Human motion mode detection method of rigid-flexible coupling active exoskeleton |
| CN111481197A (en) * | 2020-04-22 | 2020-08-04 | 东北大学 | A living-machine multimode information acquisition fuses device for man-machine natural interaction |
| CN111571572A (en) * | 2020-06-02 | 2020-08-25 | 中国科学技术大学先进技术研究院 | A wearable power-assisted flexible exoskeleton |
| CN111658447A (en) * | 2014-07-24 | 2020-09-15 | 三星电子株式会社 | Methods of controlling exercise aids |
| CN112137779A (en) * | 2020-09-30 | 2020-12-29 | 哈工大机器人湖州国际创新研究院 | Intelligent prosthesis and mode judgment method of intelligent prosthesis |
| CN112296983A (en) * | 2019-08-02 | 2021-02-02 | 深圳市肯綮科技有限公司 | Exoskeleton equipment and control method and control device thereof |
| CN112741757A (en) * | 2020-12-30 | 2021-05-04 | 华南理工大学 | Ankle joint line drives ectoskeleton control system based on biped pressure sensor |
| CN112891144A (en) * | 2021-01-28 | 2021-06-04 | 北京理工大学 | Positive-negative pressure hybrid drive flexible knee joint exoskeleton |
| CN113208583A (en) * | 2021-04-12 | 2021-08-06 | 华南理工大学 | Gait recognition method, medium and device under assistance of exoskeleton |
| CN114043459A (en) * | 2021-11-25 | 2022-02-15 | 湖南大学 | Flexible lower limb exoskeleton control method, exoskeleton control system and use method |
| CN114298115A (en) * | 2022-03-07 | 2022-04-08 | 南开大学 | A method and system for acquiring sensor interaction motion intent |
| CN114404214A (en) * | 2020-10-28 | 2022-04-29 | 北京机械设备研究所 | Exoskeleton gait identification method and device |
| CN116172547A (en) * | 2023-01-13 | 2023-05-30 | 电子科技大学 | System and method for gait phase and terrain recognition of lower limb assisted exoskeleton |
| CN117462314A (en) * | 2023-11-09 | 2024-01-30 | 浙江强脑科技有限公司 | Damping adjustment method, damping adjustment device, intelligent artificial limb, intelligent artificial terminal and storage medium |
| CN117484473A (en) * | 2022-07-25 | 2024-02-02 | 广州视源电子科技股份有限公司 | Walking recognition method, signal collection shoes and exoskeleton based on exoskeleton |
| CN116172547B (en) * | 2023-01-13 | 2025-12-09 | 电子科技大学 | System and method for gait phase and topography recognition of lower limb assistance exoskeleton |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2001277159A (en) * | 2000-04-03 | 2001-10-09 | Sony Corp | Legged mobile robot, control method thereof, and relative movement measurement sensor for legged mobile robot |
| WO2005074373A2 (en) * | 2004-02-05 | 2005-08-18 | Motorika Inc. | Methods and apparatus for rehabilitation and training |
| US20090149855A1 (en) * | 2005-03-31 | 2009-06-11 | Thk Co., Ltd. | Power assist control method, power assist control apparatus, and reduction apparatus |
| CN102670207A (en) * | 2012-05-15 | 2012-09-19 | 北京大学 | Gait analysis method based on plantar pressure |
| CN103040586A (en) * | 2012-12-20 | 2013-04-17 | 上海大学 | External skeleton robot for exercising lower limbs and exercise control method thereof |
-
2014
- 2014-04-18 CN CN201410155426.4A patent/CN103876756A/en active Pending
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2001277159A (en) * | 2000-04-03 | 2001-10-09 | Sony Corp | Legged mobile robot, control method thereof, and relative movement measurement sensor for legged mobile robot |
| WO2005074373A2 (en) * | 2004-02-05 | 2005-08-18 | Motorika Inc. | Methods and apparatus for rehabilitation and training |
| US20090149855A1 (en) * | 2005-03-31 | 2009-06-11 | Thk Co., Ltd. | Power assist control method, power assist control apparatus, and reduction apparatus |
| CN102670207A (en) * | 2012-05-15 | 2012-09-19 | 北京大学 | Gait analysis method based on plantar pressure |
| CN103040586A (en) * | 2012-12-20 | 2013-04-17 | 上海大学 | External skeleton robot for exercising lower limbs and exercise control method thereof |
Non-Patent Citations (2)
| Title |
|---|
| 邢学彬: "《下肢康复柔性关节机器人的研究》", 《沈阳工业大学硕士学位论文》 * |
| 邢学彬: "下肢康复柔性关节机器人的研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 * |
Cited By (66)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN111658447A (en) * | 2014-07-24 | 2020-09-15 | 三星电子株式会社 | Methods of controlling exercise aids |
| US11833067B2 (en) | 2014-07-24 | 2023-12-05 | Samsung Electronics Co., Ltd. | Motion assistance apparatus and method of controlling the same |
| CN111658447B (en) * | 2014-07-24 | 2023-01-13 | 三星电子株式会社 | Method for controlling a motor-assisted device |
| US11304828B2 (en) | 2014-07-24 | 2022-04-19 | Samsung Electronics Co., Ltd. | Motion assistance apparatus and method of controlling the same |
| CN104523403A (en) * | 2014-11-05 | 2015-04-22 | 陶宇虹 | Method for judging lower-limb movement intentions of exoskeleton walking aid robot wearer |
| CN104523403B (en) * | 2014-11-05 | 2019-06-18 | 陶宇虹 | A method of judging that ectoskeleton assistant robot wearer's lower limb action is intended to |
| WO2016168463A1 (en) * | 2015-04-14 | 2016-10-20 | Ekso Bionics, Inc. | Methods of exoskeleton communication and control |
| US10694948B2 (en) | 2015-04-14 | 2020-06-30 | Ekso Bionics | Methods of exoskeleton communication and control |
| CN105030260A (en) * | 2015-07-27 | 2015-11-11 | 深圳市豪恩声学股份有限公司 | Judgment method for motion state and footwear |
| CN105030260B (en) * | 2015-07-27 | 2018-07-03 | 深圳市豪恩声学股份有限公司 | Motion state judgment method and foot's wear |
| CN105310654A (en) * | 2015-08-06 | 2016-02-10 | 跑动(厦门)信息科技有限公司 | Foot pronation detection method and smart shoe pad for detecting pronation |
| CN105249973A (en) * | 2015-08-29 | 2016-01-20 | 广东铭凯医疗机器人有限公司 | Shoe pad-based gait detection system |
| CN105268171B (en) * | 2015-09-06 | 2018-09-18 | 安徽华米信息科技有限公司 | gait monitoring method, device and wearable device |
| CN105268171A (en) * | 2015-09-06 | 2016-01-27 | 安徽华米信息科技有限公司 | Gait monitoring method, gait monitoring device and wearable device |
| CN106691770A (en) * | 2015-11-12 | 2017-05-24 | 摩托瑞克有限公司 | Session program for generating and executing training |
| CN105716752A (en) * | 2016-01-19 | 2016-06-29 | 东南大学 | Detection system for acting force on human body imposed by wearable device |
| CN105795571A (en) * | 2016-04-13 | 2016-07-27 | 电子科技大学 | Data acquisition system and method for exoskeleton pressure shoe |
| CN105662419A (en) * | 2016-04-25 | 2016-06-15 | 电子科技大学 | Plantar pressure measuring device and method for exoskeleton control |
| CN107536613A (en) * | 2016-06-29 | 2018-01-05 | 深圳光启合众科技有限公司 | Robot and its human body lower limbs Gait Recognition apparatus and method |
| CN107536613B (en) * | 2016-06-29 | 2021-10-08 | 沭阳县成基实业有限公司 | Robot and its human lower limb gait recognition device and method |
| CN107260176A (en) * | 2017-06-07 | 2017-10-20 | 深圳市奇诺动力科技有限公司 | Plantar pressure measuring device and method |
| CN107520834A (en) * | 2017-07-13 | 2017-12-29 | 安徽工程大学 | A kind of lower limb exoskeleton biped supporting zone real time discriminating device |
| CN109421081A (en) * | 2017-09-01 | 2019-03-05 | 淮安信息职业技术学院 | A kind of method of production for the intelligent power-assisting robot system carried based on heavy duty |
| CN109693237A (en) * | 2017-10-23 | 2019-04-30 | 深圳市优必选科技有限公司 | Robot and its bouncing control method, device and computer-readable storage medium |
| CN109693237B (en) * | 2017-10-23 | 2021-01-08 | 深圳市优必选科技有限公司 | Robot, bounce control method and device thereof, and computer-readable storage medium |
| CN107693308A (en) * | 2017-10-26 | 2018-02-16 | 西南交通大学 | Wearable power-assisted walking aid rehabilitation Environmental-protection shoes |
| CN109718047A (en) * | 2017-10-31 | 2019-05-07 | 松下知识产权经营株式会社 | Auxiliary device, householder method and program |
| CN109718047B (en) * | 2017-10-31 | 2022-05-27 | 松下知识产权经营株式会社 | Support device, support method, and program |
| CN108013998A (en) * | 2017-12-12 | 2018-05-11 | 深圳市罗伯医疗科技有限公司 | A kind of lower limb rehabilitation instrument training method and system |
| CN108216420B (en) * | 2018-01-23 | 2024-03-19 | 杭州云深处科技有限公司 | Adjustable plantar mechanism carrying with film pressure sensor |
| CN108216420A (en) * | 2018-01-23 | 2018-06-29 | 杭州云深处科技有限公司 | A kind of adjustable foot bottom mechanism for carrying diaphragm pressure sensor |
| CN108542393A (en) * | 2018-03-30 | 2018-09-18 | 深圳市丞辉威世智能科技有限公司 | Vola sensing device and wearable ectoskeleton |
| CN108652636A (en) * | 2018-06-29 | 2018-10-16 | 东莞英汉思机器人科技有限公司 | Gait detection method and system based on pressure sensor |
| CN108652636B (en) * | 2018-06-29 | 2023-01-13 | 东莞英汉思机器人科技有限公司 | Gait detection method and system based on pressure sensor |
| CN108942887A (en) * | 2018-08-20 | 2018-12-07 | 上海司羿智能科技有限公司 | A kind of control system of lower limb assistance exoskeleton robot |
| CN109260647A (en) * | 2018-09-10 | 2019-01-25 | 郑州大学 | Human body jump index comprehensive test and training system based on multi-modal signal |
| CN109498375A (en) * | 2018-11-23 | 2019-03-22 | 电子科技大学 | A kind of human motion intention assessment control device and control method |
| CN109498375B (en) * | 2018-11-23 | 2020-12-25 | 电子科技大学 | Human motion intention recognition control device and control method |
| CN110051361A (en) * | 2019-05-16 | 2019-07-26 | 南京晓庄学院 | A kind of wearable lower limb skeleton motion detection device |
| CN110123329A (en) * | 2019-05-17 | 2019-08-16 | 浙江大学城市学院 | A kind of intelligent machine frame and its control method carrying out position of human body adjustment for cooperative movement auxiliary lower limb exoskeleton |
| CN110123329B (en) * | 2019-05-17 | 2024-04-02 | 浙大城市学院 | Intelligent mechanical frame for matching with exercise-assisted lower limb exoskeleton to adjust human body position and control method thereof |
| CN112296983A (en) * | 2019-08-02 | 2021-02-02 | 深圳市肯綮科技有限公司 | Exoskeleton equipment and control method and control device thereof |
| CN112296983B (en) * | 2019-08-02 | 2022-02-15 | 深圳市肯綮科技有限公司 | Exoskeleton equipment and control method and control device thereof |
| CN110693501A (en) * | 2019-10-12 | 2020-01-17 | 上海应用技术大学 | Wireless walking gait detection system based on multi-sensor fusion |
| CN110974609A (en) * | 2019-12-09 | 2020-04-10 | 宿州学院 | Foot sole pressure sensing system of exoskeleton device for lower limb rehabilitation training |
| CN111312361A (en) * | 2020-01-20 | 2020-06-19 | 深圳市丞辉威世智能科技有限公司 | Free gait walking training method and device, terminal and storage medium |
| CN111312361B (en) * | 2020-01-20 | 2024-05-10 | 深圳市丞辉威世智能科技有限公司 | Exercise gait control method, device, terminal and storage medium |
| CN111469117A (en) * | 2020-04-14 | 2020-07-31 | 武汉理工大学 | Human motion mode detection method of rigid-flexible coupling active exoskeleton |
| CN111469117B (en) * | 2020-04-14 | 2022-06-03 | 武汉理工大学 | A human motion pattern detection method based on rigid-flexible active exoskeleton |
| CN111481197B (en) * | 2020-04-22 | 2021-01-26 | 东北大学 | Vibrant multimodal information collection and fusion device for natural human-computer interaction |
| CN111481197A (en) * | 2020-04-22 | 2020-08-04 | 东北大学 | A living-machine multimode information acquisition fuses device for man-machine natural interaction |
| CN111571572A (en) * | 2020-06-02 | 2020-08-25 | 中国科学技术大学先进技术研究院 | A wearable power-assisted flexible exoskeleton |
| CN111571572B (en) * | 2020-06-02 | 2021-11-05 | 中国科学技术大学先进技术研究院 | Wearable power-assisted flexible exoskeleton |
| CN112137779A (en) * | 2020-09-30 | 2020-12-29 | 哈工大机器人湖州国际创新研究院 | Intelligent prosthesis and mode judgment method of intelligent prosthesis |
| CN114404214A (en) * | 2020-10-28 | 2022-04-29 | 北京机械设备研究所 | Exoskeleton gait identification method and device |
| CN114404214B (en) * | 2020-10-28 | 2024-02-13 | 北京机械设备研究所 | Exoskeleton gait recognition device |
| CN112741757A (en) * | 2020-12-30 | 2021-05-04 | 华南理工大学 | Ankle joint line drives ectoskeleton control system based on biped pressure sensor |
| CN112891144A (en) * | 2021-01-28 | 2021-06-04 | 北京理工大学 | Positive-negative pressure hybrid drive flexible knee joint exoskeleton |
| CN113208583A (en) * | 2021-04-12 | 2021-08-06 | 华南理工大学 | Gait recognition method, medium and device under assistance of exoskeleton |
| CN114043459A (en) * | 2021-11-25 | 2022-02-15 | 湖南大学 | Flexible lower limb exoskeleton control method, exoskeleton control system and use method |
| CN114298115A (en) * | 2022-03-07 | 2022-04-08 | 南开大学 | A method and system for acquiring sensor interaction motion intent |
| CN117484473A (en) * | 2022-07-25 | 2024-02-02 | 广州视源电子科技股份有限公司 | Walking recognition method, signal collection shoes and exoskeleton based on exoskeleton |
| CN116172547A (en) * | 2023-01-13 | 2023-05-30 | 电子科技大学 | System and method for gait phase and terrain recognition of lower limb assisted exoskeleton |
| CN116172547B (en) * | 2023-01-13 | 2025-12-09 | 电子科技大学 | System and method for gait phase and topography recognition of lower limb assistance exoskeleton |
| CN117462314A (en) * | 2023-11-09 | 2024-01-30 | 浙江强脑科技有限公司 | Damping adjustment method, damping adjustment device, intelligent artificial limb, intelligent artificial terminal and storage medium |
| CN117462314B (en) * | 2023-11-09 | 2024-04-09 | 浙江强脑科技有限公司 | Damping adjustment method, damping adjustment device, intelligent artificial limb, intelligent artificial terminal and storage medium |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN103876756A (en) | Lower limb power-assisted exoskeleton robot gait pattern identification method and system | |
| CN105795571B (en) | A kind of data collecting system and method for ectoskeleton pressure footwear | |
| CN108379038B (en) | A lower limb rehabilitation exoskeleton system and its walking control method | |
| CN105125216B (en) | A kind of gait detecting system based on plantar pressure | |
| Chen et al. | Locomotion mode classification using a wearable capacitive sensing system | |
| Yu et al. | Adaptive method for real-time gait phase detection based on ground contact forces | |
| Joshi et al. | Terrain and direction classification of locomotion transitions using neuromuscular and mechanical input | |
| Mansour et al. | Analysis of several methods and inertial sensors locations to assess gait parameters in able-bodied subjects | |
| el Achkar et al. | Instrumented shoes for activity classification in the elderly | |
| CN103462619A (en) | Plantar pressure measuring device and gait mode identification method using same | |
| CN103519819A (en) | Gait analysis method and gait analysis system | |
| KR20160031246A (en) | Method and apparatus for gait task recognition | |
| Negi et al. | FSR and IMU sensors-based human gait phase detection and its correlation with EMG signal for different terrain walk | |
| WO2015149197A1 (en) | Non-contact capacitance sensor system for intelligent prosthesis | |
| CN113576467A (en) | Wearable real-time gait detection system integrating plantar pressure sensor and IMU | |
| WO2018003910A1 (en) | Walking state determination device, walking state determination system, walking state determination method, and storage medium | |
| Ye et al. | An adaptive method for gait event detection of gait rehabilitation robots | |
| CN108334827A (en) | A gait identity authentication method based on smart shoes and smart shoes | |
| CN101554894A (en) | Foot plate structure of humanoid robot capable of perceiving ground counterforces | |
| CN116458875A (en) | Method for evaluating cognitive condition based on intelligent mobile phone sensor gait analysis | |
| KR101829356B1 (en) | An EMG Signal-Based Gait Phase Recognition Method Using a GPES library and ISMF | |
| CN105249973A (en) | Shoe pad-based gait detection system | |
| CN111469117B (en) | A human motion pattern detection method based on rigid-flexible active exoskeleton | |
| KR102251104B1 (en) | Wearable gait analysis device | |
| CN117975559A (en) | A striding gait phase recognition method based on multi-source perception fusion |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C53 | Correction of patent of invention or patent application | ||
| CB03 | Change of inventor or designer information |
Inventor after: Han Yali Inventor after: Zhu Songqing Inventor after: Yu Jianming Inventor after: Gao Haitao Inventor after: Qi Bing Inventor before: Han Yali Inventor before: Zhu Songqing Inventor before: Gao Haitao Inventor before: Qi Bing Inventor before: Yu Jianming |
|
| COR | Change of bibliographic data |
Free format text: CORRECT: INVENTOR; FROM: HAN YALI ZHU SONGQING GAO HAITAO QI BING YU JIANMING TO: HAN YALI ZHU SONGQING YU JIANMING GAO HAITAO QI BING |
|
| RJ01 | Rejection of invention patent application after publication |
Application publication date: 20140625 |
|
| RJ01 | Rejection of invention patent application after publication |