CN103699136B - Intelligent home service robot system based on the algorithm that leapfrogs and method of servicing - Google Patents
Intelligent home service robot system based on the algorithm that leapfrogs and method of servicing Download PDFInfo
- Publication number
- CN103699136B CN103699136B CN201410015086.5A CN201410015086A CN103699136B CN 103699136 B CN103699136 B CN 103699136B CN 201410015086 A CN201410015086 A CN 201410015086A CN 103699136 B CN103699136 B CN 103699136B
- Authority
- CN
- China
- Prior art keywords
- robot
- target
- rana nigromaculata
- algorithm
- theta
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 38
- 238000004891 communication Methods 0.000 claims abstract description 14
- 230000007613 environmental effect Effects 0.000 claims description 14
- 239000011159 matrix material Substances 0.000 claims description 2
- 241000270959 Pelophylax nigromaculatus Species 0.000 claims 25
- 230000004888 barrier function Effects 0.000 claims 7
- 238000006073 displacement reaction Methods 0.000 claims 3
- 239000000523 sample Substances 0.000 claims 2
- 241000269350 Anura Species 0.000 description 20
- 238000005516 engineering process Methods 0.000 description 6
- 238000012545 processing Methods 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000005457 optimization Methods 0.000 description 3
- 238000013528 artificial neural network Methods 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 239000011664 nicotinic acid Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
Landscapes
- Manipulator (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
本发明提供了一种基于蛙跳算法的智能家庭服务机器人系统及服务方法,机器人利用语音识别模块或者无线通信模块接收来自服务对象的指令,确定需要抓取的目标以及服务对象的位置,并利用环境地图进行目标和服务对象定位;机器人根据环境地图,利用改进的蛙跳算法制定机器人的路径规划,计算出从机器人当前位置到目标所要经过的所有最佳位置点;机器人控制电机驱动器驱动机器人向前运动;到达目标,则驱动机械手运动到目标位置抓取目标,自动运行到服务对象处,完成服务工作。本发明提出的智能家庭服务机器人系统,结构简单,具有良好的智能性,灵活性,能节省运算时间和存储量,提高了机器人路径规划的准确度,提高家庭服务机器人工作效率。
The present invention provides an intelligent home service robot system and service method based on leapfrog algorithm. The robot uses a voice recognition module or a wireless communication module to receive instructions from service objects, determine the target to be grasped and the location of the service object, and use The environment map is used to locate the target and the service object; the robot uses the improved leapfrog algorithm to formulate the path planning of the robot according to the environment map, and calculates all the best position points to be passed from the current position of the robot to the target; the robot controls the motor driver to drive the robot to When reaching the target, the manipulator is driven to move to the target position to grab the target, and automatically runs to the service object to complete the service work. The intelligent home service robot system proposed by the present invention has simple structure, good intelligence and flexibility, can save computing time and storage capacity, improves the accuracy of robot path planning, and improves the work efficiency of the home service robot.
Description
技术领域technical field
本发明涉及家庭服务机器人,属于未知环境中机器人的路径规划领域,是机器人技术与群体智能技术相结合的应用,特别涉及基于蛙跳算法的智能家庭服务机器人系统及方法。The invention relates to a home service robot, belongs to the field of robot path planning in an unknown environment, is an application combining robot technology and swarm intelligence technology, and particularly relates to an intelligent home service robot system and method based on leapfrog algorithm.
背景技术Background technique
随着服务机器人技术和家庭应用科技的不断发展,家庭服务机器人越来越受到人们的关注,也越来越贴近人们的日常生活,具有广阔的应用前景。With the continuous development of service robot technology and home application technology, home service robots have attracted more and more people's attention, and are getting closer to people's daily life, and have broad application prospects.
在移动机器人相关技术的研究中,路径规划是一个重要环节和关键课题,是移动机器人研究领域的热点问题,同时也是移动机器人导航中一个非常具有挑战的问题。目前,路径规划的方法有很多种,比如人工势场法、遗传算法、神经网络法、蚁群算法等等。但传统的人工势场法存在几大缺陷:存在陷阱区;在相近障碍物之间不能发现路径;在狭窄通道中摆动;当目标点附近处有障碍物时机器人无法到达目标点;遗传算法具有很好的全局搜索能力,但运算速度慢、占据存储空间大、容易陷入早熟等缺点;神经网络法具有很好的学习能力,但当障碍物较多且环境为动态时,网络结构庞大且神经元的阈值随时间的变化而需要不断地改变;蚁群算法收敛速度慢,容易陷入局部最优。In the research of mobile robot-related technologies, path planning is an important link and a key topic. It is a hot issue in the field of mobile robot research, and it is also a very challenging problem in mobile robot navigation. At present, there are many methods of path planning, such as artificial potential field method, genetic algorithm, neural network method, ant colony algorithm and so on. However, there are several defects in the traditional artificial potential field method: there is a trap area; paths cannot be found between similar obstacles; swings in narrow passages; when there are obstacles near the target point, the robot cannot reach the target point; the genetic algorithm has Good global search ability, but the disadvantages of slow calculation speed, large storage space, and easy to fall into premature maturity; neural network method has good learning ability, but when there are many obstacles and the environment is dynamic, the network structure is huge and neural The threshold value of the element needs to be changed continuously with the change of time; the convergence speed of the ant colony algorithm is slow, and it is easy to fall into the local optimum.
蛙跳算法(SFLA)是Eusuff等人于2003年提出的一种基于群体的亚启发式协同搜索群智能算法。该算法结合了模因算法和粒子群优化算法的优点。把蛙跳算法应用在路径规划上是一个新的尝试。通过模仿青蛙捕食的行为,可以使机器人找到一条到达目标的路径,但该算法容易陷入局部最优。Leaping Frog Algorithm (SFLA) is a group-based sub-heuristic collaborative search group intelligence algorithm proposed by Eusuff et al. in 2003. This algorithm combines the advantages of memetic algorithm and particle swarm optimization algorithm. It is a new attempt to apply the leapfrog algorithm to path planning. By imitating the behavior of frog predation, the robot can find a path to the goal, but the algorithm is easy to fall into local optimum.
发明内容Contents of the invention
本发明提供了一种基于蛙跳算法的智能家庭服务机器人系统及方法。对室内环境信息进行获取与处理后,采用改进的蛙跳算法对机器人进行路径规划,使得机器人在收到相应指令后,能自己规划出一条避开障碍物到达目标位置,抓取服务对象所需要的目标,并送到服务对象的手中,完成任务。The invention provides an intelligent home service robot system and method based on leapfrog algorithm. After acquiring and processing the indoor environment information, the improved leapfrog algorithm is used to plan the path of the robot, so that the robot can plan a path to avoid obstacles to reach the target position after receiving the corresponding instructions, and grab the objects required by the service object. The goal, and sent to the hands of the service object, to complete the task.
本发明实现上述发明目的的技术方案是:基于蛙跳算法的智能家庭服务机器人系统,其特征在于:包括The technical scheme of the present invention to realize the above-mentioned purpose of the invention is: an intelligent home service robot system based on leapfrog algorithm, characterized in that: comprising
一由可控运动的左、右轮带动行走的机器人,机器人具有由电机驱动器驱动的机械手;A walking robot driven by controllable left and right wheels, the robot has a manipulator driven by a motor driver;
所述机器人前端携带机载摄像头,用于扫描目标物体的高度信息;The front end of the robot carries an airborne camera for scanning the height information of the target object;
所述机器人正前方设置一个或多个超声波传感器,用来探测机器人前进过程中的障碍物;One or more ultrasonic sensors are arranged directly in front of the robot to detect obstacles in the progress of the robot;
所述机器人通过无线通信模块或者语音识别模块接收服务对象的指令,确定目标;The robot receives the instruction of the service object through the wireless communication module or the voice recognition module, and determines the target;
还包括一安装在室内屋顶用于拍摄室内环境图片的摄像头,摄像头通过无线网路将拍摄的图片发送给机器人;机器人对图片进行处理后,建立室内栅格地图,并进行目标、服务对象以及机器人自身位置定位,然后通过改进的蛙跳算法进行路径规划,根据计算得到机器人所要经过的最佳位置和机器人探测到的障碍物、目标位置以及自身位置,计算出机器人的左右轮的角速度,控制机器人到达目标点处。It also includes a camera installed on the indoor roof to take pictures of the indoor environment. The camera sends the pictures taken to the robot through the wireless network; Self position positioning, and then path planning through the improved leapfrog algorithm, according to the calculation of the best position the robot will pass through and the obstacles detected by the robot, the target position and its own position, calculate the angular velocity of the left and right wheels of the robot, and control the robot reach the target point.
基于蛙跳算法的智能家庭服务机器人服务方法,其特征在于:包括如下步骤:The intelligent home service robot service method based on leapfrog algorithm is characterized in that: comprising the following steps:
(1)机器人携带有存储设备,超声波传感器,机载摄像头,语音识别模块,无线通信模块,电机驱动器和机械手;(1) The robot carries a storage device, an ultrasonic sensor, an airborne camera, a voice recognition module, a wireless communication module, a motor driver and a manipulator;
(2)由室内屋顶安装的摄像头对室内环境图像进行获取,并发送给机器人进行处理,建立环境地图,完成机器人初始位置定位;(2) The camera installed on the indoor roof acquires the indoor environment image, and sends it to the robot for processing, establishes an environmental map, and completes the initial position positioning of the robot;
(3)机器人建立自身运动学模型,其运动状态变量为(x,y,θ)T,其中(x,y)为机器人在平面坐标系中的坐标,θ为机器人前进的方向角;(3) The robot establishes its own kinematics model, and its motion state variable is (x, y, θ) T , where (x, y) is the coordinate of the robot in the plane coordinate system, and θ is the direction angle of the robot;
(4)机器人利用语音识别模块或者无线通信模块接收来自服务对象的指令,确定需要抓取的目标以及服务对象的位置,并利用环境地图进行目标和服务对象定位;(4) The robot uses the speech recognition module or wireless communication module to receive instructions from the service object, determines the target to be grasped and the location of the service object, and uses the environmental map to locate the target and the service object;
(5)机器人根据环境地图,利用改进的蛙跳算法制定机器人的路径规划,计算出从机器人当前位置到目标所要经过的所有最佳位置点;(5) According to the environment map, the robot uses the improved leapfrog algorithm to formulate the path planning of the robot, and calculates all the best position points to pass from the current position of the robot to the target;
(6)机器人根据自身运动模型和下一个要到达的最佳位置点,计算其左、右轮的角速度,控制电机驱动器驱动机器人向前运动;(6) The robot calculates the angular velocity of its left and right wheels according to its own motion model and the next best position to be reached, and controls the motor driver to drive the robot to move forward;
(7)机器人判断是否到达目标,如果没有返回步骤(6),如果到达目标,则利用机载摄像头进行立体扫描,获取目标离地面的垂直高度,驱动机械手运动到目标位置抓取目标;(7) The robot judges whether it has reached the target. If it does not return to step (6), if it reaches the target, it uses the onboard camera to perform three-dimensional scanning, obtains the vertical height of the target from the ground, and drives the manipulator to move to the target position to grab the target;
(8)机器人抓取目标后,自动运行到服务对象处,完成服务工作。(8) After the robot grabs the target, it automatically runs to the service object to complete the service work.
所述步骤(2)室内屋顶安装有摄像头对室内环境图像进行获取,并发送给机器人进行处理,建立环境地图,完成机器人初始位置定位是指:The step (2) indoor roof is equipped with a camera to obtain the indoor environment image, and send it to the robot for processing, to set up the environment map, and to complete the initial position positioning of the robot refers to:
(2a)室内屋顶安装有摄像头进行室内环境图像拍摄,并将拍摄到的图片经无线通信模块发送给机器人,机器人接收到图片后,首先用尺寸相同的栅格对图像进行划分,并依据事先存储好的常用物体形状以及地板的颜色样式知识建立环境栅格地图,若某一个栅格内不含任何障碍物,则为自由栅格,反之为障碍物栅格;自由空间和障碍物均可表示成栅格块的集合,将障碍物栅格集记为O;(2a) A camera is installed on the indoor roof to capture indoor environment images, and the captured pictures are sent to the robot through the wireless communication module. Good common object shape and floor color style knowledge to build an environmental grid map, if a certain grid does not contain any obstacles, it is a free grid, otherwise it is an obstacle grid; both free space and obstacles can be represented form a set of grid blocks, and mark the obstacle grid set as O;
(2b)采用直角坐标法对栅格进行标识:以栅格地图左上角为坐标原点,水平向右方向为X轴正方向,竖直向下方向为Y轴正方向,每一个栅格区间对应坐标轴上的一个单位长度,任何一个栅格均用直角坐标(x,y)唯一标识,从而将环境地图用一个二维数矩阵map(p,q)表示:(2b) Cartesian coordinate method is used to mark the grid: the upper left corner of the grid map is taken as the coordinate origin, the horizontal direction to the right is the positive direction of the X-axis, and the vertical downward direction is the positive direction of the Y-axis. Each grid interval corresponds to A unit length on the coordinate axis, any grid is uniquely identified by Cartesian coordinates (x, y), so that the environment map is represented by a two-dimensional matrix map(p, q):
所述步骤(3)的具体步骤为:The concrete steps of described step (3) are:
(3a)设x,y分别为机器人在平面坐标系中的横、纵坐标,θ为机器人的方向角,v是机器人质心的速度,ω是机器人的角速度,则得到机器人运动的非完整约束为机器人质心运动的动态函数为:(3a) Let x and y be the abscissa and ordinate of the robot in the plane coordinate system respectively, θ is the direction angle of the robot, v is the velocity of the center of mass of the robot, and ω is the angular velocity of the robot, then the nonholonomic constraint of the robot motion is obtained as The dynamic function of the robot center of mass motion is:
(3b)由公式(1)可得机器人运动的离散时间模型,如下所示:(3b) The discrete-time model of robot motion can be obtained from formula (1), as follows:
根据刚体运动学的运动原理,机器人的运动通过左右轮的角速度来控制,即:According to the motion principle of rigid body kinematics, the motion of the robot is controlled by the angular velocity of the left and right wheels, namely:
其中ωL和ωR分别为机器人的左、右轮的角速度,r是机器人轮子的半径,d是两个轮子之间轴的距离长度。Among them, ω L and ω R are the angular velocity of the left and right wheels of the robot, r is the radius of the robot wheel, and d is the distance between the two wheels.
所述步骤(5)中的具体步骤为:Concrete steps in the described step (5) are:
(4a)参数初始化:设种群内青蛙总的个数为N,子种群数为k,子种群内青蛙的个数为n,满足N=k*n;局部搜索迭代次数为L,全局迭代次数为G,青蛙所允许移动距离的最大步长为Smax;(4a) Parameter initialization: set the total number of frogs in the population as N, the number of subpopulations as k, and the number of frogs in the subpopulation as n, satisfying N=k*n; the number of local search iterations is L, and the number of global iterations G, the maximum step size allowed by the frog to move is S max ;
(4b)生成初始蛙群:随机生成N只青蛙作为初始蛙群P={X1,X2,...XN},第j只青蛙代表第j个解,用Xj=(xj1,xj2,...xjs)表示,其中,0≤j≤N,s表示每个解的维数;(4b) Generate the initial frog group: randomly generate N frogs as the initial frog group P={X 1 ,X 2 ,...X N }, the jth frog represents the jth solution, use X j =(x j1 , x j2 ,...x j s) represents, where, 0≤j≤N, s represents the dimension of each solution;
(4c)计算适应度值:定义适应度函数如下所示:(4c) Calculate the fitness value: define the fitness function as follows:
根据公式(4)来计算每只青蛙的适应度值,其中ω1、ω2为常数,||·||是计算两者之间的欧几里得距离,Oj代表的是障碍物,T表示目标位置;当Xi离目标较近时,||Xi-T||的值较小,当Xi离障碍物较远时,min||Xi-Oj||的值将变大,从而使得f(Xi)的值变小;Calculate the fitness value of each frog according to the formula (4), where ω 1 and ω 2 are constants, ||·|| is to calculate the Euclidean distance between them, O j represents the obstacle, T represents the target position; when X i is closer to the target, the value of ||X i -T|| is smaller, and when X i is farther away from the obstacle, the value of min||X i -O j || will be becomes larger, so that the value of f(X i ) becomes smaller;
(4d)划分青蛙族群:对N只青蛙按照适应度值由好到坏排序,记全局适应度最好的青蛙为Xg;采用随机分组的方法将整个蛙群分成k个族群,每个族群包含n只青蛙,满足N=kn;(4d) Divide the frog population: sort the N frogs according to their fitness values from good to bad, record the frog with the best global fitness as X g ; divide the whole frog population into k groups by random grouping, each group Contains n frogs, satisfying N=kn;
(4e)局部搜索:记每个子种群中适应度最好的青蛙为Xb=(xb1,xb2,…,xbs),适应度最差的青蛙为Xω=(xω1,xω2,…,xωs),然后对子种群中最差适应度的青蛙个体采用中值策略进行更新操作,重复执行更新过程,直到达到设定的迭代次数L后,才停止各子种群的局部搜索;(4e) Local search: record the frog with the best fitness in each subpopulation as X b =(x b1 ,x b2 ,…,x b s), and the frog with the worst fitness as X ω =(x ω1 ,x ω2 ,…,x ωs ), and then use the median strategy to update the frog individuals with the worst fitness in the subpopulation, and repeat the update process until the set number of iterations L is reached, then stop the local search;
(4f)局部搜索完成后,则将所有族群的青蛙重新混合,记下当前最佳的青蛙,然后执行步骤(4d)和步骤(4e),重复此操作直到达到设定的全局迭代次数G。(4f) After the local search is completed, the frogs of all groups are remixed, and the current best frog is recorded, and then step (4d) and step (4e) are performed, and this operation is repeated until the set global iteration number G is reached.
所述步骤(4d)中随机分组的方法是指:The method of random grouping in the step (4d) refers to:
整个蛙群中,前k只青蛙分别随机进入k个族群,每只青蛙只能进入一个族群,然后,第k+1只至2k只青蛙随机进入k个族群,每只青蛙只能进入一个族群,第2k+1只至3k只青蛙随机进入k个族群,每只青蛙只能进入一个族群,依次类推,一直到所有的青蛙都分配完成。In the entire frog population, the first k frogs are randomly entered into k populations, and each frog can only enter one population, and then, the k+1 to 2k frogs randomly enter k populations, and each frog can only enter one population , the 2k+1 to 3k frogs randomly enter k groups, and each frog can only enter one group, and so on, until all the frogs are allocated.
所述步骤(4e)中对最差青蛙个体采用中值策略更新,具体步骤如下:In the step (4e), the worst individual frog is updated using the median strategy, and the specific steps are as follows:
(6a)设每个族群的中心点为Xz=(xz1,xz2,…,xzs),则(6a) Suppose the center point of each group is X z =(x z1 ,x z2 ,…,x zs ), then
S=rand×(Xz-Xω) (6)S=rand×(X z -X ω ) (6)
newXω=Xω+S,-Smax≤S≤Smax (7)newX ω =X ω +S,-S max ≤S≤S max (7)
其中,rand表示0与1之间的随机数,S表示青蛙个体的调整矢量,Smax表示青蛙允许移动的最大步长,newXω表示更新以后的最差解;Among them, rand represents a random number between 0 and 1, S represents the adjustment vector of the individual frog, S max represents the maximum step size that the frog is allowed to move, and newX ω represents the worst solution after the update;
(6b)重新计算所得到的新解的适应度值,判断其是否得到改进,如果改进,则用newXω取代Xω;如果没有改进,则用整个种群最优解Xg代替公式(6)中的Xz重新更新最差解;如果新解仍然没有改进,则对最差解Xω进行随机更新。(6b) Recalculate the fitness value of the new solution to determine whether it has been improved, if improved, replace X ω with newX ω ; if not improved, replace the formula (6) with the optimal solution X g of the entire population X z in re-updates the worst solution; if the new solution is still not improved, the worst solution X ω is randomly updated.
所述步骤(6)中,具体步骤如下:In described step (6), concrete steps are as follows:
(7a)机器人根据蛙跳算法计算得到到达目标点所要经过的所有最佳位置,机器人根据当前位置和下一步的位置,利用公式(1)和公式(2)计算出 和 (7a) The robot calculates all the best positions to reach the target point according to the leapfrog algorithm, and the robot uses formula (1) and formula (2) to calculate and
(7b)机器人根据计算得到的和利用公式(3)算出机器人的左右轮的角速度ωL和ωR,控制机器人运动。(7b) The robot obtains according to the calculation and Use formula (3) to calculate the angular velocity ω L and ω R of the left and right wheels of the robot, and control the movement of the robot.
本发明具有如下优点:The present invention has the following advantages:
(1)、本发明提出的智能家庭服务机器人系统,采用室内屋顶安装摄像头采集室内环境信息,建立环境地图,结构简单,能有效地完成家庭服务工作;(1), the intelligent home service robot system proposed by the present invention adopts the indoor roof installation camera to collect indoor environmental information, establishes an environmental map, has a simple structure, and can effectively complete home service work;
(2)、本发明采用蛙跳算法实现室内服务机器人路径规划,扩展了仿生技术的应用范围,提高了家庭服务机器人的工作可靠性和安全性;(2), the present invention adopts leapfrog algorithm to realize indoor service robot path planning, expands the application range of bionic technology, and improves the working reliability and safety of home service robot;
(3)、本发明采用随机分组方法和中值策略对蛙跳算法进行改进,强化了算法的寻优能力,较好地平衡了算法的全局搜索与局部搜索能力;(3), the present invention adopts random grouping method and median strategy to improve leapfrog algorithm, has strengthened the optimization ability of algorithm, has better balanced global search and local search ability of algorithm;
(4)、本发明提出了基于蛙跳算法的智能家庭服务机器人系统及方法,本方法能够模仿青蛙捕食的特征,具有良好的智能性,灵活性,能节省运算时间和存储量,且大大提高了机器人路径规划的准确度,提高家庭服务机器人工作效率。(4), the present invention proposes an intelligent home service robot system and method based on the leapfrog algorithm. This method can imitate the characteristics of frog predation, has good intelligence, flexibility, can save computing time and storage capacity, and greatly improve The accuracy of robot path planning is improved, and the work efficiency of home service robots is improved.
附图说明Description of drawings
图1为本发明的硬件设备组成方框图;Fig. 1 is a block diagram of hardware equipment of the present invention;
图2为本发明中基于蛙跳算法的机器人路径规划流程图;Fig. 2 is the flow chart of robot path planning based on leapfrog algorithm in the present invention;
图3为本发明中改进的蛙跳算法流程图;Fig. 3 is the leapfrog algorithm flow chart improved among the present invention;
图4为本发明中基于蛙跳算法的智能家庭服务机器人工作原理示意图。Fig. 4 is a schematic diagram of the working principle of the smart home service robot based on the leapfrog algorithm in the present invention.
具体实施方式detailed description
下面结合附图对本发明做进一步的说明。The present invention will be further described below in conjunction with the accompanying drawings.
实施本发明的一种硬件设备组成框图如附图1所示,包括机器人、若干个超声波传感器、存储设备、机载摄像头、语音识别模块、电机驱动器、机械手、无线通信模块。机器人携带有存储设备,超声波传感器,机载摄像头,语音识别模块,无线通信模块,电机驱动器和机械手等装备。其中,机器人携带有两个轮子,用来控制机器人的运行;超声波传感器均匀地分布在机器人的正前方,用来探测机器人前进过程中的障碍物;机器人通过无线通信模块或者语音识别模块接收服务对象的指令,确定目标。安装在室内屋顶的摄像头拍摄室内环境图片,通过无线网路发送给机器人,机器人进行处理后,建立室内栅格地图,并进行目标、服务对象以及机器人自身位置定位,然后通过改进的蛙跳算法进行路径规划,根据计算得到机器人所要经过的最佳位置和机器人探测到的障碍物、目标位置以及自身位置等信息,计算出机器人的左右轮的角速度,从而控制机器人到达目标点处,再通过机器人自身携带的机载摄像头,扫描目标物体的高度信息,驱动机械手抓取物体,然后规划到达服务对象的路径,将物体交至服务对象手中,完成任务。A block diagram of a hardware device implementing the present invention is shown in Figure 1, including a robot, several ultrasonic sensors, a storage device, an airborne camera, a speech recognition module, a motor driver, a manipulator, and a wireless communication module. The robot carries equipment such as storage devices, ultrasonic sensors, onboard cameras, voice recognition modules, wireless communication modules, motor drivers and manipulators. Among them, the robot carries two wheels to control the operation of the robot; ultrasonic sensors are evenly distributed in front of the robot to detect obstacles in the progress of the robot; the robot receives service objects through a wireless communication module or a voice recognition module instructions to determine the target. The camera installed on the indoor roof takes pictures of the indoor environment and sends them to the robot through the wireless network. After processing, the robot builds an indoor grid map, and locates the target, service object and the robot itself, and then uses the improved leapfrog algorithm. Path planning, calculate the angular velocity of the left and right wheels of the robot according to the calculation of the best position the robot will pass through, the obstacles detected by the robot, the target position, and its own position, so as to control the robot to reach the target point, and then pass the robot itself The carried airborne camera scans the height information of the target object, drives the manipulator to grab the object, then plans the path to the service object, and delivers the object to the service object to complete the task.
本发明是基于蛙跳算法的智能家庭服务机器人系统及方法,其具体流程如附图2所示,包括如下步骤:The present invention is an intelligent home service robot system and method based on leapfrog algorithm, and its specific process is shown in Figure 2, including the following steps:
(1)机器人携带有存储设备,超声波传感器,机载摄像头,语音识别模块,无线通信模块,电机驱动器和机械手等装备;(1) The robot carries equipment such as storage devices, ultrasonic sensors, onboard cameras, voice recognition modules, wireless communication modules, motor drivers, and manipulators;
(2)由室内屋顶安装的摄像头对室内环境图像进行获取,并发送给机器人进行处理,建立环境地图,完成机器人初始位置定位;(2) The camera installed on the indoor roof acquires the indoor environment image, and sends it to the robot for processing, establishes an environmental map, and completes the initial position positioning of the robot;
(3)机器人建立自身运动学模型,其运动状态变量为(x,y,θ)T,其中(x,y)为机器人在平面坐标系中的坐标,θ为机器人前进的方向角;(3) The robot establishes its own kinematics model, and its motion state variable is (x, y, θ) T , where (x, y) is the coordinate of the robot in the plane coordinate system, and θ is the direction angle of the robot;
(4)机器人利用语音识别模块或者无线通信模块接收来自服务对象的指令,确定需要抓取的目标以及服务对象的位置,并利用环境地图进行目标和服务对象定位;(4) The robot uses the speech recognition module or wireless communication module to receive instructions from the service object, determines the target to be grasped and the location of the service object, and uses the environmental map to locate the target and the service object;
(5)机器人根据环境地图,利用改进的蛙跳算法制定机器人的路径规划,计算出从机器人当前位置到目标所要经过的所有最佳位置点;(5) According to the environment map, the robot uses the improved leapfrog algorithm to formulate the path planning of the robot, and calculates all the best position points to pass from the current position of the robot to the target;
(6)机器人根据自身运动模型和下一个要到达的最佳位置点,计算其左右轮的角速度,控制电机驱动器驱动机器人向前运动;(6) The robot calculates the angular velocity of its left and right wheels according to its own motion model and the next best position to be reached, and controls the motor driver to drive the robot to move forward;
(7)机器人判断是否到达目标,如果没有返回步骤(6),如果到达目标,则利用机载摄像头进行立体扫描,获取目标离地面的垂直高度,驱动机械手运动到目标位置抓取目标;(7) The robot judges whether it has reached the target. If it does not return to step (6), if it reaches the target, it uses the onboard camera to perform three-dimensional scanning, obtains the vertical height of the target from the ground, and drives the manipulator to move to the target position to grab the target;
(8)机器人抓取目标后,自动运行到服务对象处,完成服务工作。(8) After the robot grabs the target, it automatically runs to the service object to complete the service work.
本发明中改进的蛙跳算法的搜索方法,其具体流程如附图3所示,包括如下步骤:The search method of the leapfrog algorithm improved among the present invention, its concrete process is as shown in accompanying drawing 3, comprises the following steps:
(1)参数初始化。设种群内青蛙总的个数为N,子种群数为k,子种群内青蛙的个数为n,满足N=k*n。局部搜索迭代次数为L,全局迭代次数为G,青蛙所允许移动距离的最大步长为Smax。(1) Parameter initialization. Suppose the total number of frogs in the population is N, the number of sub-populations is k, and the number of frogs in the sub-population is n, satisfying N=k*n. The number of local search iterations is L, the number of global iterations is G, and the maximum step size allowed by the frog to move is S max .
(2)生成初始蛙群。随机生成N只青蛙作为初始蛙群P={X1,X2,...XN},第j(0≤j≤N)只青蛙代表第j个解,用Xj=(xj1,xj2,...xjs)表示,s表示每个解的维数。(2) Generate the initial frog group. Randomly generate N frogs as the initial frog group P={X 1 ,X 2 ,...X N }, the jth (0≤j≤N) frog represents the jth solution, use X j =(x j1 , x j2 ,...x js ), and s represents the dimension of each solution.
(3)计算适应度值。定义适应度函数如下所示:(3) Calculate the fitness value. Define the fitness function as follows:
根据公式(4)来计算每只青蛙的适应度值,其中ω1、ω2为常数,||·||是计算两者之间的欧几里得距离,Oj代表的是障碍物,T表示目标位置;当Xi离目标较近时,||Xi-T||的值较小,当Xi离障碍物较远时,min||Xi-Oj||的值将变大,从而使得f(Xi)的值变小。Calculate the fitness value of each frog according to the formula (4), where ω 1 and ω 2 are constants, ||·|| is to calculate the Euclidean distance between them, O j represents the obstacle, T represents the target position; when X i is closer to the target, the value of ||X i -T|| is smaller, and when X i is farther away from the obstacle, the value of min||X i -O j || will be becomes larger, so that the value of f(X i ) becomes smaller.
(4)划分青蛙族群。对N只青蛙按照适应度值由好到坏排序,记全局适应度最好的青蛙为Xg。采用随机分组的方法将整个蛙群分成k个族群,每个族群包含n只青蛙,满足N=kn。(4) Divide frog populations. Sort the N frogs according to their fitness values from good to bad, and record the frog with the best global fitness as X g . The entire frog population is divided into k groups by random grouping, and each group contains n frogs, satisfying N=kn.
(5)局部搜索。记每个子种群中适应度最好的青蛙为Xb=(xb1,xb2,…,xbs),适应度最差的青蛙为Xω=(xω1,xω2,…,xωs),然后对子种群中最差适应度的青蛙个体采用中值策略进行更新操作,重复执行更新过程,直到达到设定的迭代次数L后,才停止各子种群的局部搜索。(5) Local search. Note that the frog with the best fitness in each subpopulation is X b = (x b1 ,x b2 ,…,x bs ), and the frog with the worst fitness is X ω =(x ω1 ,x ω2 ,…,x ωs ) , and then use the median strategy to update the frog individuals with the worst fitness in the subpopulation, repeat the update process, and stop the local search of each subpopulation until the set iteration number L is reached.
(6)局部搜索完成后,则将所有族群的青蛙重新混合,记下当前最佳的青蛙,然后执行步骤(4d)和步骤(4e),重复此操作直到达到设定的全局迭代次数G。(6) After the local search is completed, the frogs of all groups are remixed, and the current best frog is recorded, and then step (4d) and step (4e) are performed, and this operation is repeated until the set global iteration number G is reached.
所述步骤(4)中随机分组的方法是指:The method of random grouping in the described step (4) refers to:
整个蛙群中,前k只青蛙分别随机进入k个族群,每只青蛙只能进入一个族群,然后,第k+1只至2k只青蛙随机进入k个族群,每只青蛙只能进入一个族群,第2k+1只至3k只青蛙随机进入k个族群,每只青蛙只能进入一个族群,依次类推,一直到所有的青蛙都分配完成。In the entire frog population, the first k frogs are randomly entered into k populations, and each frog can only enter one population, and then, the k+1 to 2k frogs randomly enter k populations, and each frog can only enter one population , the 2k+1 to 3k frogs randomly enter k groups, and each frog can only enter one group, and so on, until all the frogs are allocated.
所述步骤(5)中对最差青蛙个体采用中值策略更新,具体步骤如下:In the step (5), the median strategy is used to update the worst frog individual, and the specific steps are as follows:
(5a)设每个子种群的中心点为Xz=(xz1,xz2,…,xzs),则(5a) Suppose the center point of each subpopulation is X z =(x z1 ,x z2 ,…,x zs ), then
S=rand×(Xz-Xω) (6)S=rand×(X z -X ω ) (6)
newXω=Xω+S,-Smax≤S≤Smax (7)newX ω =X ω +S,-S max ≤S≤S max (7)
其中,rand表示0与1之间的随机数,S表示青蛙个体的调整矢量,Smax表示青蛙允许移动的最大步长,newXω表示更新以后的最差解。Among them, rand represents a random number between 0 and 1, S represents the adjustment vector of the individual frog, S max represents the maximum step size that the frog is allowed to move, and newX ω represents the worst solution after the update.
(5b)重新计算所得到的新解的适应度值,判断其是否得到改进,如果改进,则用newXω取代Xω;如果没有改进,则用整个种群最优解Xg代替公式(6)中的Xz重新更新最差解;如果新解仍然没有改进,则对最差解Xω进行随机更新。(5b) Recalculate the fitness value of the new solution to determine whether it has been improved, if improved, replace X ω with newX ω ; if not improved, replace the formula (6) with the optimal solution X g of the entire population X z in re-updates the worst solution; if the new solution is still not improved, the worst solution X ω is randomly updated.
本发明中基于蛙跳算法的智能家庭服务机器人系统及方法示意图如图4所示,三角形代表机器人,方形部分是障碍物,圆形部分是目标点,星号是蛙跳算法每步产生的最佳位置,蛙跳算法中的适应度函数的构建,可以保证目标所在位置点的适应度值最小,而障碍物所在位置的适应度值最大,这样根据这个模型机器人的运动轨迹将是一条能自动绕开障碍物,避免与障碍物相撞,又能快速到达所要求的目标的最佳路径。机器人到达目标处,拿到所需要的物体,然后原路返回,将物体送至服务对象手中,完成任务。The schematic diagram of the intelligent home service robot system and method based on leapfrog algorithm in the present invention is shown in Fig. The best position, the construction of the fitness function in the leapfrog algorithm can ensure that the fitness value of the point where the target is located is the smallest, and the fitness value of the obstacle is the largest, so that according to this model, the trajectory of the robot will be a path that can automatically The best path to avoid obstacles, avoid collisions with obstacles, and quickly reach the required target. The robot arrives at the target, gets the required object, and then returns to the original path, delivering the object to the service object to complete the task.
本发明提出的智能家庭服务机器人系统,采用室内屋顶安装摄像头采集室内环境信息,建立环境地图,结构简单,不需要增加太多设备,通过采用蛙跳算法实现室内服务机器人路径规划,扩展了仿生技术的应用范围,提高了家庭服务机器人的工作可靠性和安全性,通过对蛙跳算法进行改进,强化了算法的寻优能力,较好地平衡了算法的全局搜索与局部搜索能力。本发明提出的基于蛙跳算法的智能家庭服务机器人系统及方法,能够模仿青蛙捕食的特征,具有良好的智能性,灵活性,能节省运算时间和存储量,且大大提高了机器人路径规划的准确度,提高家庭服务机器人工作效率,可以较好完成家庭服务机器人的工作。The intelligent home service robot system proposed by the present invention adopts indoor roof-installed cameras to collect indoor environmental information and establishes environmental maps. The scope of application improves the reliability and safety of home service robots. By improving the leapfrog algorithm, the optimization ability of the algorithm is strengthened, and the global search and local search capabilities of the algorithm are better balanced. The intelligent home service robot system and method based on the leapfrog algorithm proposed by the present invention can imitate the characteristics of frog predation, has good intelligence and flexibility, can save computing time and storage capacity, and greatly improves the accuracy of robot path planning To improve the working efficiency of the home service robot, it can better complete the work of the home service robot.
Claims (8)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410015086.5A CN103699136B (en) | 2014-01-14 | 2014-01-14 | Intelligent home service robot system based on the algorithm that leapfrogs and method of servicing |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410015086.5A CN103699136B (en) | 2014-01-14 | 2014-01-14 | Intelligent home service robot system based on the algorithm that leapfrogs and method of servicing |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN103699136A CN103699136A (en) | 2014-04-02 |
| CN103699136B true CN103699136B (en) | 2016-08-31 |
Family
ID=50360700
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201410015086.5A Expired - Fee Related CN103699136B (en) | 2014-01-14 | 2014-01-14 | Intelligent home service robot system based on the algorithm that leapfrogs and method of servicing |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN103699136B (en) |
Families Citing this family (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104142151A (en) * | 2014-07-31 | 2014-11-12 | 上海闻泰电子科技有限公司 | Navigation method |
| CN104467999B (en) * | 2014-11-18 | 2017-02-22 | 北京邮电大学 | Spectrum sensing algorithm based on quantum leapfrog |
| CN104503453A (en) * | 2014-12-16 | 2015-04-08 | 重庆邮电大学 | Mobile robot path planning method based on bacterial foraging potential field method |
| CN105094011A (en) * | 2015-06-30 | 2015-11-25 | 青岛海尔智能家电科技有限公司 | House chore management robot and task processing method |
| CN105279723A (en) * | 2015-09-10 | 2016-01-27 | 上海中科深江电动车辆有限公司 | Mobile blood donation assistant system, service system including electric blood donation vehicle, and method |
| CN108236786B (en) * | 2016-12-23 | 2020-11-27 | 深圳光启合众科技有限公司 | Virtual feeding method of machine animal and machine animal |
| CN110546680B (en) * | 2017-04-07 | 2025-05-09 | 英特尔公司 | Advanced AI agents for modeling physical interactions |
| CN108415434B (en) * | 2018-03-29 | 2021-05-25 | 五邑大学 | Robot scheduling method |
| CN109739219B (en) | 2018-12-05 | 2022-02-11 | 阿波罗智能技术(北京)有限公司 | Method, device and equipment for planning passing path and readable storage medium |
| CN111289002A (en) * | 2019-09-24 | 2020-06-16 | 陈水弟 | Robot path planning method and system |
| CN112991255B (en) * | 2019-12-16 | 2023-11-28 | 信扬科技(佛山)有限公司 | Robot balance determination device and robot balance determination method |
| TWI715353B (en) * | 2019-12-16 | 2021-01-01 | 新煒科技有限公司 | Robot balance determination device and robot balance determination method |
| CN111274682B (en) * | 2020-01-15 | 2024-01-05 | 桂林电子科技大学 | Online testing path optimization method for digital microfluidic chip based on frog-leaping algorithm |
| CN113787529B (en) * | 2021-09-22 | 2023-03-21 | 国网宁夏电力有限公司培训中心 | Terminal robot that electric power marketing was used |
| CN115468561A (en) * | 2022-09-21 | 2022-12-13 | 中煤科工智能储装技术有限公司 | A navigation method for a combined continuous reclaiming transport vehicle in a bulk material yard |
| CN119476889A (en) * | 2025-01-15 | 2025-02-18 | 杭州浙滨典学教育科技有限公司 | A smart vocational education method and control system |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1381340A (en) * | 2001-04-18 | 2002-11-27 | 三星光州电子株式会社 | Robot cleaning machine, robot cleaning system and method for controlling them |
| KR100877072B1 (en) * | 2007-06-28 | 2009-01-07 | 삼성전자주식회사 | Method and apparatus for simultaneously creating and cleaning maps for mobile robots |
| CN201673507U (en) * | 2010-05-21 | 2010-12-15 | 杭州瓦瑞科技有限公司 | Mobile household information integrated management system |
| CN102794758A (en) * | 2012-07-16 | 2012-11-28 | 西安交通大学 | Multifunctional household service robot |
| CN103439973A (en) * | 2013-08-12 | 2013-12-11 | 桂林电子科技大学 | Household cleaning robot capable of establishing map by self and cleaning method |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3994950B2 (en) * | 2003-09-19 | 2007-10-24 | ソニー株式会社 | Environment recognition apparatus and method, path planning apparatus and method, and robot apparatus |
-
2014
- 2014-01-14 CN CN201410015086.5A patent/CN103699136B/en not_active Expired - Fee Related
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1381340A (en) * | 2001-04-18 | 2002-11-27 | 三星光州电子株式会社 | Robot cleaning machine, robot cleaning system and method for controlling them |
| KR100877072B1 (en) * | 2007-06-28 | 2009-01-07 | 삼성전자주식회사 | Method and apparatus for simultaneously creating and cleaning maps for mobile robots |
| CN201673507U (en) * | 2010-05-21 | 2010-12-15 | 杭州瓦瑞科技有限公司 | Mobile household information integrated management system |
| CN102794758A (en) * | 2012-07-16 | 2012-11-28 | 西安交通大学 | Multifunctional household service robot |
| CN103439973A (en) * | 2013-08-12 | 2013-12-11 | 桂林电子科技大学 | Household cleaning robot capable of establishing map by self and cleaning method |
Non-Patent Citations (2)
| Title |
|---|
| 基于栅格地图的分层式机器人路径规划算法;余翀等;《中国科学院大学学报》;20130731;第30卷(第4期);第529页第1栏第1-21行 * |
| 混合型蛙跳算法及其应用研究;许金元;《计算机应用研究》;20110831;第28卷(第8期);第2835-2837页 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN103699136A (en) | 2014-04-02 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN103699136B (en) | Intelligent home service robot system based on the algorithm that leapfrogs and method of servicing | |
| CN110924340B (en) | Mobile robot system for intelligently picking up garbage and implementation method | |
| Deo et al. | Trajectory forecasts in unknown environments conditioned on grid-based plans | |
| Ruan et al. | Mobile robot navigation based on deep reinforcement learning | |
| CN109202885B (en) | Material carrying and moving composite robot | |
| CN102915465B (en) | Multi-robot combined team-organizing method based on mobile biostimulation nerve network | |
| CN111055281B (en) | A ROS-based autonomous mobile grasping system and method | |
| CN103699126B (en) | The guidance method of intelligent guide robot | |
| CN102915039B (en) | A kind of multirobot joint objective method for searching of imitative animal spatial cognition | |
| JP3994950B2 (en) | Environment recognition apparatus and method, path planning apparatus and method, and robot apparatus | |
| US20210146540A1 (en) | Method of identifying dynamic obstacle and robot implementing same | |
| CN104699102B (en) | A kind of unmanned plane and intelligent vehicle collaborative navigation and investigation monitoring system and method | |
| CN110285813A (en) | A human-machine fusion navigation device and method for an indoor mobile robot | |
| CN107491071B (en) | Intelligent multi-robot cooperative mapping system and method thereof | |
| CN111823212B (en) | Garbage bottle picking robot and control method | |
| CN107139179A (en) | A kind of intellect service robot and method of work | |
| CN110488874A (en) | A kind of education auxiliary robot and its control method | |
| CN105527960A (en) | Mobile robot formation control method based on leader-follow | |
| CN104298239A (en) | Enhanced map learning path planning method for indoor mobile robot | |
| CN112097769A (en) | Simultaneous positioning and mapping navigation system and method of unmanned aerial vehicle imitating carrier pigeon brain-hippocampus | |
| KR102837653B1 (en) | Method of estimating position in local area in large sapce and robot and cloud server implementing thereof | |
| CN118023799B (en) | Autonomous welding operation and planning method of humanoid welding robot based on camera | |
| CN107818333A (en) | Robot obstacle-avoiding action learning and Target Searching Method based on depth belief network | |
| CN112857370A (en) | Robot map-free navigation method based on time sequence information modeling | |
| JP2019185465A (en) | Mobile device and program |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160831 |