CN103684182B - A kind of permagnetic synchronous motor parameter identification method - Google Patents

A kind of permagnetic synchronous motor parameter identification method Download PDF

Info

Publication number
CN103684182B
CN103684182B CN201310573844.0A CN201310573844A CN103684182B CN 103684182 B CN103684182 B CN 103684182B CN 201310573844 A CN201310573844 A CN 201310573844A CN 103684182 B CN103684182 B CN 103684182B
Authority
CN
China
Prior art keywords
identification
rotor
module
rotor speed
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310573844.0A
Other languages
Chinese (zh)
Other versions
CN103684182A (en
Inventor
尹忠刚
张延庆
孙向东
钟彦儒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Technology
Original Assignee
Xian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Technology filed Critical Xian University of Technology
Priority to CN201310573844.0A priority Critical patent/CN103684182B/en
Publication of CN103684182A publication Critical patent/CN103684182A/en
Application granted granted Critical
Publication of CN103684182B publication Critical patent/CN103684182B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

一种永磁同步电机参数辨识方法,将传统的模型参考自适应结构进行改进,即在保留原有MRAS1模块的基础上,新建立MRAS2模块,构建为级联模型参考自适应(CMRAS)模块;其中MRAS1实现转子速度的辨识,MRAS2实现定子电阻与转子磁链的辨识。本发明将在实时反馈转子速度的同时,将定子电阻与转子磁链辨识值也反馈回矢量控制系统,能够有效削弱电机参数变化对系统的影响,在低速时由于实时更新定子电阻辨识值,可以有效提高系统的低速控制性能。

A parameter identification method for permanent magnet synchronous motors, which improves the traditional model reference adaptive structure, that is, on the basis of retaining the original MRAS1 module, a new MRAS2 module is established and constructed as a cascaded model reference adaptive (CMRAS) module; Among them, MRAS1 realizes the identification of rotor speed, and MRAS2 realizes the identification of stator resistance and rotor flux linkage. The present invention will feed back the identification value of stator resistance and rotor flux linkage back to the vector control system while feeding back the rotor speed in real time, which can effectively weaken the influence of motor parameter changes on the system, and update the identification value of stator resistance in real time at low speed. Effectively improve the low-speed control performance of the system.

Description

一种永磁同步电机参数辨识方法A parameter identification method for permanent magnet synchronous motor

技术领域technical field

本发明属于电机控制技术领域,涉及一种基于级联模型参考自适应(CMRAS)的永磁同步电机参数辨识方法。The invention belongs to the technical field of motor control, and relates to a parameter identification method of a permanent magnet synchronous motor based on cascade model reference self-adaptation (CMRAS).

背景技术Background technique

永磁同步电机(Permanent Magnet Synchronous Motor,PMSM)是一个多变量、强耦合、非线性、变参数的复杂对象,具有高精度、高动态性能、高可靠性、小体积等优势,在高精度和高可靠性要求场合获得广泛应用。近年来在永磁同步电机矢量控制系统中,为了克服使用机械传感器带来的高成本、安装维护困难、抗干扰能力下降、可靠性降低等缺陷,通过各种不同的估计方法而得到速度和位置信息的无速度传感器技术,已成为电机控制领域中的研究热点之一。在众多无速度传感器电机控制方法中,模型参考自适应(Model Reference Adapt System,MRAS)因其具有算法不太复杂、抗干扰性能好、保证参数估计的渐进收敛性、稳态精度较高等优点而受到人们重视,已经被提出并应用于永磁同步电机无速度传感器矢量控制中。其基本思想是将不含未知参数的方程作为参考模型,含有待估计参数的方程作为可调模型,输入信号同时作用于参考模型和可调模型,自适应机构根据两模型构成的广义误差调整控制器参数使广义误差趋于零以达到可调模型跟踪参考模型的目的。传统MRAS需要准确估计位置偏差,虽然数学模型是精确的,但是估计精度受到电机参数变化的影响,无法摆脱对电机参数的依赖性。The permanent magnet synchronous motor (Permanent Magnet Synchronous Motor, PMSM) is a complex object with multiple variables, strong coupling, nonlinearity, and variable parameters. It has the advantages of high precision, high dynamic performance, high reliability, and small size. High reliability requirements are widely used in occasions. In recent years, in the permanent magnet synchronous motor vector control system, in order to overcome the defects of high cost, difficult installation and maintenance, reduced anti-interference ability, and reduced reliability caused by the use of mechanical sensors, the speed and position are obtained through various estimation methods. Information-free speed sensor technology has become one of the research hotspots in the field of motor control. Among many speed sensorless motor control methods, Model Reference Adapt System (MRAS) is favored because of its less complex algorithm, good anti-interference performance, guaranteed asymptotic convergence of parameter estimation, and high steady-state accuracy. It has attracted people's attention, and has been proposed and applied to the sensorless vector control of permanent magnet synchronous motors. The basic idea is to use the equation without unknown parameters as a reference model, and the equation with parameters to be estimated as an adjustable model, the input signal acts on both the reference model and the adjustable model, and the adaptive mechanism adjusts the control according to the generalized error formed by the two models. The parameters of the controller make the generalized error tend to zero to achieve the purpose of the adjustable model tracking the reference model. Traditional MRAS needs to accurately estimate the position deviation. Although the mathematical model is accurate, the estimation accuracy is affected by the change of motor parameters and cannot get rid of the dependence on motor parameters.

发明内容Contents of the invention

本发明的目的在于提供一种永磁同步电机参数辨识方法,能够同时进行转子速度、定子电阻与转子磁链的辨识,有效削弱电机参数变化对系统的影响,提高系统的低速控制性能。The purpose of the present invention is to provide a permanent magnet synchronous motor parameter identification method, which can simultaneously identify rotor speed, stator resistance and rotor flux linkage, effectively weaken the influence of motor parameter changes on the system, and improve the low-speed control performance of the system.

本发明的技术方案是,一种永磁同步电机参数辨识方法,将传统的模型参考自适应结构进行改进,即在保留原有MRAS1模块的基础上,新建立MRAS2模块,构建级联模型参考自适应(CMRAS)模块;其中MRAS1实现转子速度的辨识,MRAS2实现定子电阻与转子磁链的辨识。The technical solution of the present invention is a permanent magnet synchronous motor parameter identification method, which improves the traditional model reference adaptive structure, that is, on the basis of retaining the original MRAS1 module, a new MRAS2 module is established, and the cascaded model is constructed with reference to the self-adaptive structure. Adaptation (CMRAS) module; among them, MRAS1 realizes the identification of rotor speed, and MRAS2 realizes the identification of stator resistance and rotor flux linkage.

本发明的特点还在于:The present invention is also characterized in that:

MRAS1模块将永磁同步电机本身作为参考模型,将含有永磁同步电机转子速度的电流模型作为可调模型,把辨识的转子速度反馈给电流模型,输出的转子速度辨识值经PI调节后反馈至电流模型实现闭环控制。根据自适应输入误差不断调整直到误差为零,转子速度辨识值也就达到了真实值ωr;在获得稳定的转子速度辨识值后,将其送入MRAS2模块,MRAS2模块选取PMSM本身作为参考模型,可调模型的参数以电机输出为参考,电机的状态方程采用基于dq轴的状态方程,采用与MRAS1相同的Popov超稳定性定理推导,可得定子电阻与转子磁链的辨识算法。The MRAS1 module takes the permanent magnet synchronous motor itself as a reference model, uses the current model containing the rotor speed of the permanent magnet synchronous motor as an adjustable model, feeds the identified rotor speed back to the current model, and outputs the rotor speed identification value After PI adjustment, it is fed back to the current model to realize closed-loop control. According to the adaptive input error keep adjusting until error is zero, the rotor speed identification value Then the real value ω r is reached; after obtaining the stable rotor speed identification value, it is sent to the MRAS2 module, and the MRAS2 module selects the PMSM itself as the reference model, and the parameters of the adjustable model take the motor output as the reference, and the state equation of the motor Using the state equation based on the dq axis, using the same Popov superstability theorem derivation as MRAS1, the identification algorithm of stator resistance and rotor flux linkage can be obtained.

CMRAS的输入为电机测量量:id,iq,ud,uq。其中,id与iq通过以下方式获得:将永磁同步电机模块的定子绕组电流ia、ib、ic,输入到控制电路中的3/2坐标变换模块,得到两相静止坐标系下的电流分量iα、iβ,再输入到2/2坐标变换模块,得到两相旋转坐标系下的电流分量id、iq;ud与uq通过以下方式获得:参考转子速度wr*和反馈转子速度wr的差值通过PI控制器得到参考电流iq*,iq*和反馈电流iq的差值经PI控制器获得参考电压uq,参考电流id*和反馈电流id的差值通过PI控制器得到参考电压ud。CMRAS的输出为转子速度、定子电阻与转子磁链,其中对转子速度进行积分运算可得转子的位置信息;The input of CMRAS is the motor measurement quantity: i d , i q , u d , u q . Among them, i d and i q are obtained by the following method: input the stator winding currents i a , i b , i c of the permanent magnet synchronous motor module into the 3/2 coordinate transformation module in the control circuit to obtain a two-phase stationary coordinate system The current components i α , i β under , are then input to the 2/2 coordinate transformation module to obtain the current components i d , i q under the two-phase rotating coordinate system; u d and u q are obtained by the following method: refer to the rotor speed w The difference between r * and the feedback rotor speed w r gets the reference current i q * through the PI controller, and the difference between i q * and the feedback current i q gets the reference voltage u q , the reference current i d * and the feedback through the PI controller The difference of the current id gets the reference voltage ud through the PI controller. The output of CMRAS is the rotor speed, stator resistance and rotor flux linkage, and the rotor position information can be obtained by integrating the rotor speed;

根据Popov超稳定性定理,永磁同步电机转子速度、定子电阻与转子磁链的辨识算法可表示为:According to the Popov superstability theorem, the identification algorithm of permanent magnet synchronous motor rotor speed, stator resistance and rotor flux linkage can be expressed as:

ωω ^^ rr == ∫∫ 00 tt KK ii 11 (( ii dd ii ^^ qq -- ii qq ii ^^ dd -- ψψ ^^ rr LL sthe s (( ii qq -- ii ^^ qq )) )) dd tt ++ KK pp 11 (( ii dd ii ^^ qq -- ii qq ii ^^ dd -- ψψ ^^ rr LL sthe s (( ii qq -- ii ^^ qq )) )) ++ ωω ^^ rr (( 00 )) -- -- -- (( 11 ))

RR ^^ sthe s LL sthe s == RR sthe s LL sthe s -- KK 11 ∫∫ 00 tt (( uu dd (( ii dd -- ii ^^ dd )) ++ uu qq (( ii qq -- ii ^^ qq )) )) dd tt -- KK 22 (( uu dd (( ii dd -- ii ^^ dd )) ++ uu qq (( ii qq -- ii ^^ qq )) )) -- -- -- (( 22 ))

ψψ ^^ rr LL sthe s == ψψ rr LL sthe s -- KK 11 ∫∫ 00 tt ωω ^^ rr (( ii qq -- ii ^^ qq )) dd tt -- KK 22 ωω ^^ rr (( ii qq -- ii ^^ qq )) -- -- -- (( 33 ))

其中,为可调模型输出的定子电流在dq轴的分量,Rs,Ls为定子电阻、电感;ψr为转子磁链;in, is the component of the stator current output by the adjustable model on the dq axis, R s and L s are the stator resistance and inductance; ψ r is the rotor flux linkage;

辨识过程中,首先利用定子电阻与转子磁链的离线辨识值进行转子速度ωr的辨识,当估算转子速度已经稳定且转子速度给定值不变时,其辨识过程步骤如下:In the identification process, firstly, the rotor speed ω r is identified by using the offline identification value of the stator resistance and the rotor flux linkage. When the rotor speed is estimated to be stable and the given value of the rotor speed remains unchanged, the identification process steps are as follows:

1)首先通过(1)式计算出转子速度辨识结果 1) First, calculate the rotor speed identification result by formula (1)

2)将计算得到的代入(2)式计算出即得到定子电阻辨识结果 2) Will calculate the obtained Substitute into formula (2) to calculate That is, the stator resistance identification result is obtained

3)将计算得到的代入(3)式计算出即得到转子磁链辨识结果 3) Will calculate the obtained Substituting into formula (3) to calculate That is, the identification result of the rotor flux linkage is obtained

4)令更新辨识结果。4) order Update the identification result.

将CMRAS模块辨识获得的转子速度、定子电阻以及转子磁链信息反馈到永磁同步电机矢量控制系统回路中,从而实现基于CMRAS的PMSM矢量控制。Feedback the rotor speed, stator resistance and rotor flux linkage information obtained by CMRAS module identification to the permanent magnet synchronous motor vector control system loop, so as to realize the PMSM vector control based on CMRAS.

上述矢量控制系统包括速度外环和电流内环两部分,还包括主电路、电流信号检测电路和控制电路;CMRAS模块辨识获得的电机转子速度及其转子位置信息作为控制的反馈量,参考转子速度wr*和反馈转子速度wr的差值通过PI控制器得到参考电流iq*,iq*和反馈电流iq的差值经PI控制器获得参考电压uq,参考电流id*和反馈电流id的差值通过PI控制器得到参考电压ud,得到的uq和ud经过反Park变换得到uα、uβ,得到的uα、uβ通过SVPWM发生模块的调节,产生PWM波控制逆变器工作,从而驱动永磁同步电机模块运作;而CMRAS模块辨识获得的定子电阻与转子磁链将通过软件的方式反馈到矢量控制算法中,从而提高系统的控制性能。The above-mentioned vector control system includes two parts, the speed outer loop and the current inner loop, and also includes the main circuit, the current signal detection circuit and the control circuit; the motor rotor speed and its rotor position information obtained by the identification of the CMRAS module are used as the feedback quantity of the control, and the reference rotor speed The difference between w r * and the feedback rotor speed w r is obtained by the PI controller to obtain the reference current i q *, and the difference between i q * and the feedback current i q is obtained by the PI controller to obtain the reference voltage u q , the reference current i d * and The difference of the feedback current id gets the reference voltage u d through the PI controller, and the obtained u q and u d undergo inverse Park transformation to obtain u α and u β , and the obtained u α and u β are regulated by the SVPWM generating module to generate The PWM wave controls the work of the inverter, thereby driving the operation of the permanent magnet synchronous motor module; and the stator resistance and rotor flux linkage obtained by the identification of the CMRAS module will be fed back to the vector control algorithm through software, thereby improving the control performance of the system.

本发明具有如下有益效果:The present invention has following beneficial effect:

1、本发明在保留原有MRAS1模块的基础上,新建立MRAS2模块,其中MRAS1进行转子速度的辨识,MRAS2进行定子电阻与转子磁链的辨识,这就构成了级联模型参考自适应系统,可以同时进行转子速度、定子电阻和转子磁链的辨识。1. The present invention builds a new MRAS2 module on the basis of retaining the original MRAS1 module, wherein MRAS1 carries out the identification of the rotor speed, and MRAS2 carries out the identification of the stator resistance and the rotor flux linkage, which constitutes a cascade model reference adaptive system, The identification of rotor speed, stator resistance and rotor flux linkage can be performed simultaneously.

2、本发明将在实时反馈转子速度的同时,将定子电阻与转子磁链辨识值也反馈回矢量控制系统,能够有效削弱电机参数变化对系统的影响,在低速时由于实时更新定子电阻辨识值,可以有效提高系统的低速控制性能。2. The present invention will feed back the identification value of stator resistance and rotor flux linkage back to the vector control system while feeding back the rotor speed in real time, which can effectively weaken the influence of motor parameter changes on the system, and update the identification value of stator resistance in real time at low speed , can effectively improve the low-speed control performance of the system.

3、经实验验证,本发明CMRAS算法在低速时由于实时更新定子电阻辨识值,能够有效削弱低速时定子电阻变化对系统的影响,比传统MRAS算法具有更好的低速控制性能。3. It has been verified by experiments that the CMRAS algorithm of the present invention can effectively weaken the impact of stator resistance changes on the system at low speeds due to the real-time update of the stator resistance identification value at low speeds, and has better low-speed control performance than the traditional MRAS algorithm.

附图说明Description of drawings

图1为本发明基于级联模型参考自适应(CMRAS)的永磁同步电机矢量控制系统框图;Fig. 1 is the block diagram of the permanent magnet synchronous motor vector control system based on cascade model reference self-adaptation (CMRAS) of the present invention;

图2为本发明基于传统模型参考自适应算法的基本结构框图;Fig. 2 is the basic structural block diagram of the present invention based on traditional model reference adaptive algorithm;

图3为本发明基于传统模型参考自适应算法的转子速度辨识原理框图;Fig. 3 is a schematic block diagram of the rotor speed identification based on the traditional model reference adaptive algorithm of the present invention;

图4为本发明基于传统模型参考自适应算法的定子电阻与转子磁链辨识原理框图;Fig. 4 is the principle block diagram of the identification of stator resistance and rotor flux linkage based on the traditional model reference adaptive algorithm of the present invention;

图5为本发明基于级联模型参考自适应的永磁同步电机参数(包括转子速度、定子电阻与转子磁链)辨识算法框图;5 is a block diagram of an identification algorithm based on cascaded model reference adaptive permanent magnet synchronous motor parameters (including rotor speed, stator resistance and rotor flux linkage) in the present invention;

图1中,1.逆变器,2.PMSM模块,3.信号检测电路,4.Clark变换,5.Park变换,6.SVPWM模块,7.反Park变换,8.级联模型参考自适应(CMRAS)模块。In Figure 1, 1. Inverter, 2. PMSM module, 3. Signal detection circuit, 4. Clark transformation, 5. Park transformation, 6. SVPWM module, 7. Inverse Park transformation, 8. Cascade model reference self-adaptation (CMRAS) module.

具体实施方式detailed description

下面结合附图和具体实施方式对本发明作进一步说明。The present invention will be further described below in conjunction with the accompanying drawings and specific embodiments.

一种永磁同步电机参数辨识方法,将传统的模型参考自适应结构进行改进,即在保留原有MRAS1模块的基础上,新建立MRAS2模块,构建为级联模型参考自适应(CMRAS)模块;其中MRAS1实现转子速度的辨识,MRAS2实现PMSM定子电阻和转子磁链的辨识。在实时反馈转子速度时,将定子电阻与转子磁链辨识值也同时反馈回矢量控制系统,能够有效削弱电机参数变化对系统的影响。在低速时由于实时更新定子电阻辨识值,可以有效提高系统的低速控制性能。A parameter identification method for permanent magnet synchronous motors, which improves the traditional model reference adaptive structure, that is, on the basis of retaining the original MRAS1 module, a new MRAS2 module is established and constructed as a cascaded model reference adaptive (CMRAS) module; Among them, MRAS1 realizes the identification of rotor speed, and MRAS2 realizes the identification of PMSM stator resistance and rotor flux linkage. When the rotor speed is fed back in real time, the identification value of stator resistance and rotor flux linkage is also fed back to the vector control system at the same time, which can effectively weaken the influence of motor parameter changes on the system. At low speed, due to the real-time update of the stator resistance identification value, the low-speed control performance of the system can be effectively improved.

MRAS1模块将永磁同步电机本身作为参考模型,将含有永磁同步电机转子速度的电流模型作为可调模型,把辨识的转子速度反馈给电流模型,输出的转子速度辨识值经PI调节后反馈至电流模型实现闭环控制。根据自适应输入误差不断调整直到误差为零,转子速度辨识值也就达到了真实值ωr;在获得稳定的转子速度辨识值后,将其送入MRAS2模块,MRAS2模块选取PMSM本身作为参考模型,可调模型的参数以电机输出为参考,电机的状态方程采用基于dq轴的状态方程,采用与MRAS1相同的Popov超稳定性定理推导,可得定子电阻与转子磁链的辨识算法。The MRAS1 module takes the permanent magnet synchronous motor itself as a reference model, uses the current model containing the rotor speed of the permanent magnet synchronous motor as an adjustable model, feeds the identified rotor speed back to the current model, and outputs the rotor speed identification value After PI adjustment, it is fed back to the current model to realize closed-loop control. According to the adaptive input error keep adjusting until error is zero, the rotor speed identification value Then the real value ω r is reached; after obtaining the stable rotor speed identification value, it is sent to the MRAS2 module, and the MRAS2 module selects the PMSM itself as the reference model, and the parameters of the adjustable model take the motor output as the reference, and the state equation of the motor Using the state equation based on the dq axis, using the same Popov superstability theorem derivation as MRAS1, the identification algorithm of stator resistance and rotor flux linkage can be obtained.

CMRAS的输入为电机测量量:id,iq,ud,uq。其中,id与iq通过以下方式获得:将永磁同步电机模块的定子绕组电流ia、ib、ic,输入到控制电路中的3/2坐标变换模块,得到两相静止坐标系下的电流分量iα、iβ,再输入到2/2坐标变换模块,得到两相旋转坐标系下的电流分量id、iq;ud与uq通过以下方式获得:参考转子速度wr*和反馈转子速度wr的差值通过PI控制器得到参考电流iq*,iq*和反馈电流iq的差值经PI控制器获得参考电压uq,参考电流id*和反馈电流id的差值通过PI控制器得到参考电压ud。CMRAS的输出为转子速度、定子电阻与转子磁链,其中对转子速度进行积分运算可得转子的位置信息。The input of CMRAS is the motor measurement quantity: i d , i q , u d , u q . Among them, i d and i q are obtained by the following method: input the stator winding currents i a , i b , i c of the permanent magnet synchronous motor module into the 3/2 coordinate transformation module in the control circuit to obtain a two-phase stationary coordinate system The current components i α , i β under , are then input to the 2/2 coordinate transformation module to obtain the current components i d , i q under the two-phase rotating coordinate system; u d and u q are obtained by the following method: refer to the rotor speed w The difference between r * and the feedback rotor speed w r gets the reference current i q * through the PI controller, and the difference between i q * and the feedback current i q gets the reference voltage u q , the reference current i d * and the feedback through the PI controller The difference of the current id gets the reference voltage ud through the PI controller. The output of CMRAS is rotor speed, stator resistance and rotor flux linkage, among which the position information of the rotor can be obtained by integrating the rotor speed.

将CMRAS模块辨识获得的转子速度、定子电阻以及转子磁链信息反馈到永磁同步电机矢量控制系统回路中,从而实现基于CMRAS的PMSM矢量控制。Feedback the rotor speed, stator resistance and rotor flux linkage information obtained by CMRAS module identification to the permanent magnet synchronous motor vector control system loop, so as to realize the PMSM vector control based on CMRAS.

MRAS是一种基于稳定性设计的参数辨识方法,保证了参数辨识的渐进收敛。如图2所示,其主要思想是将不含未知参数的方程作为参考模型,而将含有待辨识参数的方程作为可调模型,利用两个模型具有相同物理意义的输出量的误差构成合适的自适应律来实时调节可调模型待辨识的参数,最终达到控制对象的输出跟踪参考模型的目的。MRAS is a parameter identification method based on stability design, which guarantees the gradual convergence of parameter identification. As shown in Figure 2, the main idea is to use the equation without unknown parameters as a reference model, and the equation with parameters to be identified as an adjustable model, and use the error of the output of the two models with the same physical meaning to form a suitable The adaptive law is used to adjust the parameters of the adjustable model to be identified in real time, and finally achieve the purpose of the output of the control object tracking the reference model.

下面结合永磁同步电机数学模型对本发明所涉及的参数辨识方法做如下推导:Below in conjunction with the permanent magnet synchronous motor mathematical model, the parameter identification method involved in the present invention is deduced as follows:

已知永磁同步电机在旋转坐标系下的定子电流数学模型为It is known that the mathematical model of the stator current of the permanent magnet synchronous motor in the rotating coordinate system is

didi dd dd tt == -- RR sthe s LL sthe s ii dd ++ ωω rr ii qq ++ uu dd LL sthe s didi qq dd tt == -- ωω rr ii dd -- RR sthe s LL ii qq ++ uu qq -- ωω rr ψψ rr LL -- -- -- (( 44 ))

式中,ud,uq为定子电压在dq轴的分量;id,iq为定子电流在dq轴的分量;Rs,Ls为定子电阻、电感;ωr为转子速度,ψr为转子磁链。In the formula, u d , u q are the components of the stator voltage on the dq axis; id , i q are the components of the stator current on the dq axis; R s , L s are the stator resistance and inductance; ω r is the rotor speed, ψ r is the rotor flux linkage.

将式(4)改写为:Rewrite formula (4) as:

dd dd tt ii dd ++ ψψ rr LL sthe s ii qq == -- RR sthe s LL sthe s ωω rr -- ωω rr -- RR sthe s LL sthe s ii dd ++ ψψ rr LL sthe s ii qq ++ 11 LL sthe s uu dd ++ RR sthe s ψψ rr LL sthe s uu qq -- -- -- (( 55 ))

make

ii dd ′′ == ii dd ++ ψψ rr LL sthe s ii qq ′′ == ii qq uu dd ′′ == uu dd ++ RR sthe s ψψ rr LL sthe s uu qq ′′ == uu qq

则由式(5)可得Then from formula (5) we can get

dd dd tt ii dd ′′ ii qq ′′ == -- RR sthe s LL sthe s ωω rr -- ωω rr -- RR sthe s LL sthe s ii dd ′′ ii qq ′′ ++ 11 LL sthe s uu dd ′′ uu qq ′′ -- -- -- (( 66 ))

将式(6)简写为Formula (6) can be abbreviated as

dd dd tt ii sthe s ′′ == AiAi sthe s ′′ ++ BuBu sthe s ′′ -- -- -- (( 77 ))

式中 In the formula

可调模型为The adjustable model is

dd ii dd ′′ ^^ dd tt dd ii qq ′′ ^^ dd tt == -- RR sthe s LL sthe s ωω ^^ rr -- ωω ^^ rr -- RR sthe s LL sthe s ii dd ′′ ^^ ii qq ′′ ^^ ++ 11 LL sthe s uu dd ′′ uu qq ′′ -- -- -- (( 88 ))

简写为abbreviated as

dd dd tt ii sthe s ′′ ^^ == AA ′′ ii sthe s ′′ ^^ ++ BuBu sthe s ′′ -- -- -- (( 99 ))

根据Popov超稳定性定理,可得如式(1)所示的转子速度辨识算法:According to the Popov superstability theorem, the rotor speed identification algorithm shown in formula (1) can be obtained:

ωω ^^ rr == ∫∫ 00 tt KK ii 11 (( ii dd ii ^^ qq -- ii qq ii ^^ dd -- ψψ ^^ rr LL sthe s (( ii qq -- ii ^^ qq )) )) dd tt ++ KK pp 11 (( ii dd ii ^^ qq -- ii qq ii ^^ dd -- ψψ ^^ rr LL sthe s (( ii qq -- ii ^^ qq )) )) ++ ωω ^^ rr (( 00 )) -- -- -- (( 11 ))

式(1)中,id和iq是电机实测值,由可调模型计算得到,转子速度的自适应规律如图3所示,经过PI调节器作用后产生了速度信号会迫使可调模型(自适应模型)估计的与实际的is′趋向一致,令定子电流矢量误差收敛于零,也就使转子速度估计值逐渐逼近转子速度实际值ωrIn formula (1), i d and i q are the measured values of the motor, and Calculated by the adjustable model, the adaptive law of the rotor speed is shown in Fig. 3, The speed signal is generated after the action of the PI regulator will force the adjustable model (adaptive model) to estimate the It tends to be consistent with the actual i s ′, so that the stator current vector error converges to zero, that is, the estimated rotor speed The actual rotor speed value ω r is gradually approached.

图4所示为基于MRAS的定子电阻与转子磁链辨识原理框图,选取电机本身作为参考模型,可调模型的参数以电机输出为参考,电机的状态方程依旧采用基于dq轴的状态方程,同时在辨识定子电阻与转子磁链时,使用到的估算转子速度值要对实际估算值进行一阶滤波,且滤波时间较大,从而保证转子速度值的平滑稳定。根据Popov超稳定性定理,可得如式(2)、(3)所示的定子电阻与转子磁链辨识算法:Figure 4 shows the block diagram of the identification principle of stator resistance and rotor flux linkage based on MRAS. The motor itself is selected as the reference model, and the parameters of the adjustable model are based on the motor output. The state equation of the motor still adopts the state equation based on the dq axis. When identifying stator resistance and rotor flux linkage, the estimated rotor speed value used needs to be first-order filtered on the actual estimated value, and the filtering time is relatively long, so as to ensure the smoothness and stability of the rotor speed value. According to the Popov superstability theorem, the stator resistance and rotor flux linkage identification algorithm shown in equations (2) and (3) can be obtained:

RR ^^ sthe s LL sthe s == RR sthe s LL sthe s -- KK ii 22 ∫∫ 00 tt (( uu dd (( ii dd -- ii ^^ dd )) ++ uu qq (( ii qq -- ii ^^ qq )) )) dd tt -- KK pp 22 (( uu dd (( ii dd -- ii ^^ dd )) ++ uu qq (( ii qq -- ii ^^ qq )) )) -- -- -- (( 22 ))

ψψ ^^ rr LL sthe s == ψψ rr LL sthe s -- KK ii 33 ∫∫ 00 tt ωω ^^ rr (( ii qq -- ii ^^ qq )) dd tt -- KK pp 33 ωω ^^ rr (( ii qq -- ii ^^ qq )) -- -- -- (( 33 ))

式(2)、(3)中,等式中仅仅含有id,iq,ud和uq这些电机运行测量量,ωr为已辨识量,等式的形式是基本的乘法、加法以及积分累加计算。In formulas (2) and (3), the equations only contain the measured quantities of motor running such as i d , i q , u d and u q , ω r is the identified quantity, and the form of the equation is the basic multiplication, addition and Points are accumulated.

在图5所示的基于级联模型参考自适应的永磁同步电机参数(包括转子速度、定子电阻与转子磁链)辨识算法框图中,首先采用定子电阻和转子磁链的离线辨识值进行转子速度ωr的辨识,当估算转子速度已经稳定且转子速度给定值不变时,其辨识过程步骤如下:In the block diagram of the identification algorithm for permanent magnet synchronous motor parameters (including rotor speed, stator resistance and rotor flux linkage) based on cascaded model reference self-adaptation shown in Fig. For the identification of the speed ω r , when the estimated rotor speed has been stabilized and the given value of the rotor speed remains unchanged, the steps of the identification process are as follows:

1)首先通过(1)式计算出转子速度辨识结果 1) First, calculate the rotor speed identification result by formula (1)

2)再通过(2)式计算出即得到定子电阻辨识结果 2) and then calculated by formula (2) That is, the stator resistance identification result is obtained

3)将计算得到的代入(3)式计算出即得到转子磁链辨识结果 3) Will calculate the obtained Substituting into formula (3) to calculate That is, the identification result of the rotor flux linkage is obtained

4)令更新辨识结果。4) order Update the identification result.

将CMRAS模块辨识获得的转子速度、定子电阻以及转子磁链信息反馈到永磁同步电机矢量控制系统回路中,从而实现基于CMRAS的PMSM矢量控制,可以同时进行转子速度、定子电阻与转子磁链的辨识,能够有效削弱电机参数变化对系统的影响。在低速时由于实时更新定子电阻辨识值,可以有效提高系统的低速控制性能。The rotor speed, stator resistance and rotor flux linkage information obtained by CMRAS module identification are fed back to the permanent magnet synchronous motor vector control system loop, so as to realize the PMSM vector control based on CMRAS, and the rotor speed, stator resistance and rotor flux linkage can be controlled simultaneously. Identification can effectively weaken the influence of motor parameter changes on the system. At low speed, due to the real-time update of the stator resistance identification value, the low-speed control performance of the system can be effectively improved.

本发明永磁同步电机参数辨识方法,采用矢量控制系统,还包括主电路、电流信号检测电路和控制电路;矢量控制系统包括速度外环和电流内环两部分,参见图1。主电路包括逆变器1和PMSM模块2,电流信号检测电路3通过霍尔传感器检测电机在三相静止坐标系下的三相电流,取其中的两相输出电流ia,ib,经过Clarke变换4,转换为静止两相坐标系下的电流值iα,iβ。在速度环,CMRAS模块8辨识获得的电机转子速度及其转子位置信息作为控制的反馈量,参考转子速速wr*和反馈转子速速wr的差值通过PI控制器得到参考电流iq*,iq*和反馈电流iq的差值经PI控制器获得参考电压uq,参考电流id*和反馈电流id的差值通过PI控制器得到参考电压ud,得到的uq和ud经过反Park变换模块7得到uα、uβ,得到的uα、uβ通过SVPWM发生模块6的调节,产生PWM波控制逆变器1工作,从而驱动永磁同步电机模块2运作;而CMRAS模块8辨识获得的定子电阻与转子磁链将通过软件的方式反馈到矢量控制算法中,从而提高系统的控制性能。The parameter identification method of the permanent magnet synchronous motor of the present invention adopts a vector control system, and also includes a main circuit, a current signal detection circuit and a control circuit; the vector control system includes two parts of a speed outer loop and a current inner loop, see FIG. 1 . The main circuit includes the inverter 1 and the PMSM module 2. The current signal detection circuit 3 detects the three-phase current of the motor in the three-phase stationary coordinate system through the Hall sensor, and takes the two-phase output current i a , i b , and passes through the Clarke Transformation 4, transforming into current values i α , i β in the stationary two-phase coordinate system. In the speed loop, the CMRAS module 8 identifies the motor rotor speed and its rotor position information as the feedback quantity of the control, and the difference between the reference rotor speed w r * and the feedback rotor speed w r is obtained by the PI controller to obtain the reference current i q *, the difference between i q * and the feedback current i q is obtained by the PI controller to obtain the reference voltage u q , the difference between the reference current id * and the feedback current id is obtained by the PI controller to obtain the reference voltage u d , and the obtained u q and u d get u α and u β through the inverse Park transformation module 7, and the obtained u α and u β are adjusted by the SVPWM generation module 6 to generate PWM waves to control the inverter 1 to work, thereby driving the permanent magnet synchronous motor module 2 to operate ; The stator resistance and rotor flux linkage obtained by identification of the CMRAS module 8 will be fed back to the vector control algorithm through software, thereby improving the control performance of the system.

本发明针对电机参数变化导致的传统MRAS估计精度不高的问题,提出了一种基于级联模型参考自适应(CMRAS)的永磁同步电机无速度传感器矢量控制策略,可以同时进行转子速度、定子电阻与转子磁链的辨识。通过实验验证,CMRAS算法能够有效削弱电机参数变化对系统的影响;在低速时由于实时更新定子电阻辨识值,可以有效提高系统的低速控制性能。该方法对于永磁同步电机无速度传感器矢量控制的研究和工程应用具有一定的参考价值。Aiming at the problem of low estimation accuracy of traditional MRAS caused by motor parameter changes, the present invention proposes a speed sensorless vector control strategy for permanent magnet synchronous motors based on cascaded model reference adaptive (CMRAS), which can simultaneously control rotor speed, stator Identification of resistance and rotor flux linkage. It is verified by experiments that the CMRAS algorithm can effectively weaken the influence of motor parameter changes on the system; at low speeds, the low-speed control performance of the system can be effectively improved due to the real-time update of the stator resistance identification value. This method has certain reference value for the research and engineering application of sensorless vector control of permanent magnet synchronous motor.

Claims (1)

1.一种永磁同步电机参数辨识方法,其特征在于:将传统的模型参考自适应结构进行改进,即在保留原有MRAS1模块的基础上,新建立MRAS2模块,构建为级联模型参考自适应CMRAS模块;其中MRAS1实现转子速度的辨识,MRAS2实现定子电阻与转子磁链的辨识;1. A permanent magnet synchronous motor parameter identification method is characterized in that: the traditional model reference adaptive structure is improved, that is, on the basis of retaining the original MRAS1 module, a new MRAS2 module is established, and it is constructed as a cascaded model reference self-adaptive structure Adapt to CMRAS module; among them, MRAS1 realizes the identification of rotor speed, and MRAS2 realizes the identification of stator resistance and rotor flux linkage; MRAS1模块将永磁同步电机本身作为参考模型,将含有永磁同步电机转子速度的电流模型作为可调模型,把辨识的转子速度反馈给电流模型,输出的转子速度辨识值经PI调节后反馈至电流模型实现闭环控制;根据自适应输入误差不断调整直到误差为零,转子速度辨识值也就达到了真实值ωr;在获得稳定的转子速度辨识值后,将其送入MRAS2模块,MRAS2模块选取PMSM本身作为参考模型,可调模型的参数以电机输出为参考,电机的状态方程采用基于dq轴的状态方程,采用与MRAS1相同的Popov超稳定性定理推导,可得定子电阻与转子磁链的辨识算法;The MRAS1 module takes the permanent magnet synchronous motor itself as a reference model, uses the current model containing the rotor speed of the permanent magnet synchronous motor as an adjustable model, feeds the identified rotor speed back to the current model, and outputs the rotor speed identification value After PI adjustment, it is fed back to the current model to realize closed-loop control; according to the adaptive input error keep adjusting until error is zero, the rotor speed identification value Then the real value ω r is reached; after obtaining the stable rotor speed identification value, it is sent to the MRAS2 module, and the MRAS2 module selects the PMSM itself as the reference model, and the parameters of the adjustable model take the motor output as the reference, and the state equation of the motor Using the state equation based on the dq axis, using the same Popov superstability theorem derivation as MRAS1, the identification algorithm of stator resistance and rotor flux linkage can be obtained; CMRAS的输入为电机测量量:id,iq,ud,uq,其中,id与iq通过以下方式获得:将永磁同步电机模块的定子绕组电流ia、ib、ic,输入到控制电路中的3/2坐标变换模块,得到两相静止坐标系下的电流分量iα、iβ,再输入到2/2坐标变换模块,得到两相旋转坐标系下的电流分量id、iq;ud与uq通过以下方式获得:参考转子速度wr*和反馈转子速度wr的差值通过PI控制器得到参考电流iq*,iq*和反馈电流iq的差值经PI控制器获得参考电压uq,参考电流id*和反馈电流id的差值通过PI控制器得到参考电压ud,CMRAS的输出为转子速度、定子电阻与转子磁链,其中对转子速度进行积分运算可得转子的位置信息;The input of CMRAS is motor measurement: i d , i q , u d , u q , where, i d and i q are obtained by the following method: the stator winding currents i a , i b , i c of the permanent magnet synchronous motor module , input to the 3/2 coordinate transformation module in the control circuit to obtain the current components i α and i β in the two-phase stationary coordinate system, and then input to the 2/2 coordinate transformation module to obtain the current components in the two-phase rotating coordinate system i d , i q ; u d and u q are obtained in the following way: the difference between the reference rotor speed w r * and the feedback rotor speed w r obtains the reference current i q *, i q * and the feedback current i q through the PI controller The difference between the reference voltage u q is obtained through the PI controller, the difference between the reference current id * and the feedback current id is obtained through the PI controller to the reference voltage u d , the output of CMRAS is the rotor speed, stator resistance and rotor flux linkage, The position information of the rotor can be obtained by integrating the rotor speed; 根据Popov超稳定性定理,永磁同步电机转子速度、定子电阻与转子磁链的辨识算法可表示为:According to the Popov superstability theorem, the identification algorithm of permanent magnet synchronous motor rotor speed, stator resistance and rotor flux linkage can be expressed as: ωω ^^ rr == ∫∫ 00 tt KK ii 11 (( ii dd ii ^^ qq -- ii qq ii ^^ dd -- ψψ ^^ rr LL sthe s (( ii qq -- ii ^^ qq )) )) dd tt ++ KK pp 11 (( ii dd ii ^^ qq -- ii qq ii ^^ dd -- ψψ ^^ rr LL sthe s (( ii qq -- ii ^^ qq )) )) ++ ωω ^^ rr (( 00 )) -- -- -- (( 11 )) RR ^^ sthe s LL sthe s == RR sthe s LL sthe s -- KK ii 22 ∫∫ 00 tt (( uu dd (( ii dd -- ii ^^ dd )) ++ uu qq (( ii qq -- ii ^^ qq )) )) dd tt -- KK pp 22 (( uu dd (( ii dd -- ii ^^ dd )) ++ uu qq (( ii qq -- ii ^^ qq )) )) -- -- -- (( 22 )) ψψ ^^ rr LL sthe s == ψψ rr LL sthe s -- KK ii 33 ∫∫ 00 tt ωω ^^ rr (( ii qq -- ii ^^ qq )) dd tt -- KK pp 33 ωω ^^ rr (( ii qq -- ii ^^ qq )) -- -- -- (( 33 )) 其中,为可调模型输出的定子电流在dq轴的分量,Rs,Ls为定子电阻、电感;ψr为转子磁链in, is the component of the stator current output by the adjustable model on the dq axis, R s and L s are the stator resistance and inductance; ψ r is the rotor flux linkage 首先利用定子电阻与转子磁链的离线辨识值进行转子速度的辨识,当估算转子速度已经稳定且转子速度给定值不变时,其辨识过程步骤如下:Firstly, the rotor speed is calculated by using the offline identification value of stator resistance and rotor flux linkage When the rotor speed is estimated to be stable and the given value of the rotor speed remains unchanged, the steps of the identification process are as follows: 1)首先通过(1)式计算出转子速度辨识结果 1) First, calculate the rotor speed identification result by formula (1) 2)再通过(2)式计算出即得到定子电阻辨识结果 2) and then calculated by formula (2) That is, the stator resistance identification result is obtained 3)将计算得到的代入(3)式计算出即得到转子磁链辨识结果 3) Will calculate the obtained Substituting into formula (3) to calculate That is, the identification result of the rotor flux linkage is obtained 4)令更新辨识结果;4) order Update the identification result; 将CMRAS模块辨识获得的转子速度、定子电阻以及转子磁链信息反馈到永磁同步电机矢量控制系统回路中,从而实现基于CMRAS的PMSM矢量控制;The rotor speed, stator resistance and rotor flux linkage information obtained by CMRAS module identification are fed back to the permanent magnet synchronous motor vector control system loop, so as to realize the PMSM vector control based on CMRAS; 所述矢量控制系统包括速度外环和电流内环两部分,还包括主电路、电流信号检测电路和控制电路;CMRAS模块辨识获得的电机转子速度及其转子位置信息作为控制的反馈量,参考转子速度wr*和反馈转子速度wr的差值通过PI控制器得到参考电流iq*,iq*和反馈电流iq的差值经PI控制器获得参考电压uq,参考电流id*和反馈电流id的差值通过PI控制器得到参考电压ud,得到的uq和ud经过反Park变换得到uα、uβ,得到的uα、uβ通过SVPWM发生模块的调节,产生PWM波控制逆变器工作,从而驱动永磁同步电机模块运作;而CMRAS模块(8)辨识获得的定子电阻与转子磁链将通过软件的方式反馈到矢量控制算法中,从而提高系统的控制性能。The vector control system includes two parts: the speed outer loop and the current inner loop, and also includes the main circuit, the current signal detection circuit and the control circuit; the motor rotor speed and its rotor position information obtained by the identification of the CMRAS module are used as the feedback quantity of the control, referring to the rotor The difference between the speed w r * and the feedback rotor speed w r gets the reference current i q * through the PI controller, and the difference between i q * and the feedback current i q gets the reference voltage u q and the reference current i d * through the PI controller The difference between the feedback current id and the feedback current id is obtained by the PI controller to obtain the reference voltage u d , the obtained u q and u d are subjected to inverse Park transformation to obtain u α , u β , and the obtained u α , u β are adjusted by the SVPWM generation module, Generate PWM waves to control the work of the inverter, thereby driving the permanent magnet synchronous motor module to operate; and the stator resistance and rotor flux linkage obtained by the identification of the CMRAS module (8) will be fed back to the vector control algorithm through software, thereby improving the control of the system performance.
CN201310573844.0A 2013-11-14 2013-11-14 A kind of permagnetic synchronous motor parameter identification method Active CN103684182B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310573844.0A CN103684182B (en) 2013-11-14 2013-11-14 A kind of permagnetic synchronous motor parameter identification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310573844.0A CN103684182B (en) 2013-11-14 2013-11-14 A kind of permagnetic synchronous motor parameter identification method

Publications (2)

Publication Number Publication Date
CN103684182A CN103684182A (en) 2014-03-26
CN103684182B true CN103684182B (en) 2016-10-05

Family

ID=50320714

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310573844.0A Active CN103684182B (en) 2013-11-14 2013-11-14 A kind of permagnetic synchronous motor parameter identification method

Country Status (1)

Country Link
CN (1) CN103684182B (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104579089A (en) * 2014-12-30 2015-04-29 广西科技大学 Estimation method of rotating speed of permanent-magnet synchronous motor
CN105048910A (en) * 2015-07-09 2015-11-11 国家电网公司 Sensorless High Voltage Cascaded Frequency Converter Vector Control System and Its Control Method
CN105375848B (en) * 2015-11-26 2018-04-20 上海无线电设备研究所 A kind of permanent magnet synchronous motor Adaptive Identification control method and its control system
CN105429544B (en) * 2015-12-16 2019-01-22 四川长虹电器股份有限公司 A kind of method and apparatus obtaining the parameter of electric machine
CN105743405B (en) * 2016-03-18 2017-12-26 四川长虹电器股份有限公司 Permagnetic synchronous motor rotating speed position detecting system and method based on POPOV superstabilities
CN105827170B (en) * 2016-03-18 2018-03-02 四川长虹电器股份有限公司 Permagnetic synchronous motor rotating speed position detecting system and method based on Lyapunov stability
CN105978430B (en) * 2016-06-20 2019-03-19 盘锦市兴隆成套电器制造有限公司 A kind of electric motor resistance automatic setting method and system
CN106208867A (en) * 2016-07-16 2016-12-07 沈阳航空航天大学 A kind of control system for permanent-magnet synchronous motor pid parameter optimization method
CN106953571B (en) * 2017-05-25 2019-01-18 湖南大学 A kind of list stator and double-rotor disc type is to turning permanent-magnetic synchronous motor stator magnetic linkage identification model building method, model and method
CN110224648B (en) * 2019-06-19 2020-11-24 南京奇智控制技术有限公司 Permanent magnet synchronous motor parameter identification and position sensorless control method and system
CN110417320B (en) * 2019-07-04 2021-06-01 东南大学 Up-down no-position control method for vertical operation magnetic flux switching permanent magnet linear motor
CN111564999B (en) * 2019-12-30 2021-12-14 哈尔滨工业大学(深圳) A low-speed motor speed measurement method based on MRAS algorithm
CN111092580A (en) * 2019-12-31 2020-05-01 上海应用技术大学 Improved MRAS control method based on limited memory least square method
CN111064406A (en) * 2019-12-31 2020-04-24 上海应用技术大学 Improved model reference self-adaptive control system based on limited memory least square method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7193387B1 (en) * 2006-03-14 2007-03-20 Rockwell Automation Technologies, Inc. System and method for motor speed estimation using hybrid model reference adaptive system
CN102208894A (en) * 2011-03-16 2011-10-05 浙江理工大学 Rotating speed evaluation method used for speed-sensorless induction motor vector controlling
CN102624320A (en) * 2012-01-13 2012-08-01 重庆交通大学 Electromotor dynamic/stable stage parameter identification method based on stator resistance observer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7193387B1 (en) * 2006-03-14 2007-03-20 Rockwell Automation Technologies, Inc. System and method for motor speed estimation using hybrid model reference adaptive system
CN102208894A (en) * 2011-03-16 2011-10-05 浙江理工大学 Rotating speed evaluation method used for speed-sensorless induction motor vector controlling
CN102624320A (en) * 2012-01-13 2012-08-01 重庆交通大学 Electromotor dynamic/stable stage parameter identification method based on stator resistance observer

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
内埋式永磁同步电机永磁磁链的在线辨识;史宇超等;《电工技术学报》;20110930;第26卷(第9期);第48-53页 *
基于双参数模型参考自适应的感应电机无速度传感器矢量控制低速性能;尹忠刚等;《电工技术学报》;20120731;第27卷(第7期);第124-130页 *

Also Published As

Publication number Publication date
CN103684182A (en) 2014-03-26

Similar Documents

Publication Publication Date Title
CN103684182B (en) A kind of permagnetic synchronous motor parameter identification method
CN110224648B (en) Permanent magnet synchronous motor parameter identification and position sensorless control method and system
CN107046387B (en) Variable PID parameter current loop starting method of permanent magnet synchronous motor
CN103872951B (en) Permanent magnet synchronous motor torque control method based on sliding mode flux linkage observer
CN109194219B (en) A method and system for permanent magnet synchronous motor control based on model-free non-singular terminal sliding mode
CN102684592B (en) Torque and flux linkage control method for permanent synchronous motor
CN103904973B (en) A kind of method realizing salient pole permanent magnet synchronous motor senseless control
CN102647134B (en) Efficiency optimization control method without angle sensor for permanent magnet synchronous motor
CN105790660A (en) Rotary speed adaptive robust control system and method for ultra-high-speed permanent magnet synchronous motor
CN103684178A (en) Rotating speed filtering device and filtering method of PMSM
CN103414424B (en) AC motor stator flux linkage estimation method
CN108377117B (en) Compound current control system and method for permanent magnet synchronous motor based on predictive control
CN108092567A (en) A kind of Speed control of permanent magnet synchronous motor system and method
Zhou et al. Sensorless direct torque control for electrically excited synchronous motor based on injecting high-frequency ripple current into rotor winding
CN106788049B (en) Speed sensor-free torque control system and method based on cascading sliding mode observer
CN108365787A (en) A kind of Permanent-magnet Synchronous-motor Speed Servo System and its design method based on internal model control
CN103516280B (en) Improving one's methods of a kind of permagnetic synchronous motor electric current loop adjuster
CN104393815A (en) Permanent magnet synchronous motor fault-tolerant control device based on composite speed estimated rotating speed
CN110011587A (en) A sensorless vector control method for permanent magnet synchronous motor based on multi-parameter identification
CN108390605A (en) Permanent magnet synchronous motor method for estimating state based on fuzzy variable structure model reference adaptive observer
CN109936319B (en) Method and device for setting parameters of rotating speed controller
CN104767457A (en) Self-adapting method of parameters in running process of direct current frequency conversion compressor
CN103485978B (en) Control method for compensating electromagnetic torque to realize quick and smooth tracking of maximum wind energy
CN103095206A (en) Control method for two-degree of freedom fractional order of permanent magnetic synchronous motor
CN110350832A (en) Memory electrical machine stator flux observer and method with error compensation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant