CN103672295A - Peristaltic pipeline robot crawling mechanism - Google Patents
Peristaltic pipeline robot crawling mechanism Download PDFInfo
- Publication number
- CN103672295A CN103672295A CN201310656981.0A CN201310656981A CN103672295A CN 103672295 A CN103672295 A CN 103672295A CN 201310656981 A CN201310656981 A CN 201310656981A CN 103672295 A CN103672295 A CN 103672295A
- Authority
- CN
- China
- Prior art keywords
- locking mechanism
- lead screw
- coupling
- guide rod
- motor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000007246 mechanism Effects 0.000 title claims abstract description 153
- 230000002572 peristaltic effect Effects 0.000 title claims abstract description 31
- 230000009193 crawling Effects 0.000 title claims abstract description 23
- 230000008878 coupling Effects 0.000 claims description 43
- 238000010168 coupling process Methods 0.000 claims description 43
- 238000005859 coupling reaction Methods 0.000 claims description 43
- 238000000034 method Methods 0.000 claims description 6
- 230000009471 action Effects 0.000 claims description 3
- 230000003044 adaptive effect Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 3
- 238000007689 inspection Methods 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 238000009412 basement excavation Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229910001285 shape-memory alloy Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L55/00—Devices or appurtenances for use in, or in connection with, pipes or pipe systems
- F16L55/26—Pigs or moles, i.e. devices movable in a pipe or conduit with or without self-contained propulsion means
- F16L55/28—Constructional aspects
- F16L55/30—Constructional aspects of the propulsion means, e.g. towed by cables
- F16L55/32—Constructional aspects of the propulsion means, e.g. towed by cables being self-contained
- F16L55/34—Constructional aspects of the propulsion means, e.g. towed by cables being self-contained the pig or mole being moved step by step
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L2101/00—Uses or applications of pigs or moles
- F16L2101/10—Treating the inside of pipes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L2101/00—Uses or applications of pigs or moles
- F16L2101/30—Inspecting, measuring or testing
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manipulator (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种蠕动式管道机器人爬行机构。The invention relates to a crawling mechanism of a peristaltic pipeline robot.
背景技术Background technique
目前,管道在石油、化工、给排水等许多行业得到了广泛的应用,这些管道在经过长时间使用后,容易发生腐蚀、疲劳破坏或者破损而引起泄漏事故等。因此,需要定期地对管道进行维护和检修,然而由于管道所处的环境往往是人力所限或人所不及,检修难度很大。管道机器人的研究为管道的检测、维护提供了新的技术手段,改变了传统管道开挖抽检的单一模式。国内对于管道机器人的研究已有了一定基础,但与国外相比还有一定的差距。At present, pipelines are widely used in many industries such as petroleum, chemical industry, water supply and drainage, etc. After a long period of use, these pipelines are prone to corrosion, fatigue damage or damage, which may cause leakage accidents. Therefore, the pipeline needs to be regularly maintained and overhauled. However, because the environment where the pipeline is located is often limited or out of reach of manpower, the overhaul is very difficult. The research on pipeline robots provides new technical means for pipeline detection and maintenance, and changes the single mode of traditional pipeline excavation and sampling inspection. Domestic research on pipeline robots has a certain foundation, but there is still a certain gap compared with foreign countries.
目前国内外研制的机器人按移动方式可分为轮式、履带式、蠕动式等类型,轮式管道机器人牵引力大,有很高的承载能力,容易设计与制造。但其越障能力较弱,管道适应性差。履带式管道机器人,克服了轮式管道机器人的缺点,但履带与管道壁之间过大的摩擦力会对管道内壁产生冲击,容易损伤管道。蠕动式机器人越障能力强,运行稳定,但采用形状记忆合金、压电金属和电磁驱动的蠕动机器人对管道的要求过高,适应能力差,运行速度比较慢,承载能力弱。At present, the robots developed at home and abroad can be divided into wheeled, crawler, peristaltic and other types according to the moving mode. The wheeled pipeline robot has a large traction force, a high carrying capacity, and is easy to design and manufacture. But its ability to overcome obstacles is weak, and its pipeline adaptability is poor. The crawler-type pipeline robot overcomes the shortcomings of the wheel-type pipeline robot, but the excessive friction between the crawler and the pipeline wall will impact the inner wall of the pipeline and easily damage the pipeline. Peristaltic robots have strong obstacle-surmounting ability and stable operation, but peristaltic robots using shape memory alloys, piezoelectric metals, and electromagnetic drives have high requirements on pipelines, poor adaptability, relatively slow running speed, and weak carrying capacity.
因此,在克服以上三种管道机器人缺点的基础上,设计开发一种新型的蠕动式管道机器人爬行机构。具有重要的现实意义。Therefore, on the basis of overcoming the shortcomings of the above three pipeline robots, a new type of peristaltic pipeline robot crawling mechanism is designed and developed. has important practical significance.
发明内容Contents of the invention
本发明的目的是提供一种蠕动式管道机器人爬行机构,采用模块化设计,能够适应160-220mm之间的管道直径。The object of the present invention is to provide a peristaltic pipeline robot crawling mechanism, which adopts a modular design and can adapt to pipeline diameters between 160-220mm.
本发明的目的通过以下技术方案来实现:The purpose of the present invention is achieved through the following technical solutions:
蠕动式管道机器人爬行机构,包括前锁紧机构、伸缩机构、后锁紧机构,其特征在于:前锁紧机构通过联轴器安装在伸缩机构的前端,后锁紧机构通过联轴器安装在伸缩机构的后端。The peristaltic pipeline robot crawling mechanism includes a front locking mechanism, a telescopic mechanism and a rear locking mechanism. It is characterized in that the front locking mechanism is installed on the front end of the telescopic mechanism through a coupling, and the rear locking mechanism is installed on the The rear end of the telescoping mechanism.
当管道机器人前进时,首先前锁紧机构松开,后锁紧机构锁紧,伸缩机构伸长时,带动前锁紧机构向前移动,随后前锁紧机构锁紧,后锁紧机构松开,伸缩机构收缩时,带动后锁紧机构向前移动,实现管道机器人的一个前进运动周期;When the pipeline robot moves forward, the front locking mechanism is first released, and the rear locking mechanism is locked. When the telescopic mechanism is extended, the front locking mechanism is driven to move forward, and then the front locking mechanism is locked, and the rear locking mechanism is released. , when the telescopic mechanism shrinks, it drives the rear locking mechanism to move forward, realizing a forward motion cycle of the pipeline robot;
当管道机器人后退时,首先前锁紧机构锁紧,后锁紧机构松开,伸缩机构伸长时,带动后锁紧机构向后移动,随后前锁紧机构松开,后锁紧机构锁紧,伸缩机构收缩时,带动前锁紧机构向后移动,实现管道机器人的一个后退运动周期;When the pipeline robot moves backwards, the front locking mechanism is first locked, and the rear locking mechanism is released. When the telescopic mechanism is extended, the rear locking mechanism is driven to move backward, and then the front locking mechanism is released, and the rear locking mechanism is locked. , when the telescopic mechanism shrinks, it drives the front locking mechanism to move backward, realizing a backward movement cycle of the pipeline robot;
当前锁紧机构和后锁紧机构都锁紧时,可使管道机器人稳定地停留在某处,为管道机器人进行管道检测维修等作业提供一个工作平台。When both the front locking mechanism and the rear locking mechanism are locked, the pipeline robot can be stably stopped at a certain place, providing a working platform for the pipeline robot to perform operations such as pipeline inspection and maintenance.
根据本发明的一个方面,提供了一种蠕动式管道机器人爬行机构,其特征在于包括:According to one aspect of the present invention, a peristaltic pipeline robot crawling mechanism is provided, which is characterized by comprising:
伸缩机构;telescopic mechanism;
与伸缩机构的前端连接的前联轴器,a front coupling connected to the front end of the telescoping mechanism,
与伸缩机构的后端连接的后联轴器,a rear coupling connected to the rear end of the telescoping mechanism,
前锁紧机构,其通过前联轴器与伸缩机构的前端连接,用于与管道内壁锁紧或松开;The front locking mechanism, which is connected to the front end of the telescopic mechanism through the front coupling, is used to lock or loosen the inner wall of the pipeline;
后锁紧机构,其通过后联轴器与伸缩机构的后端连接,用于与管道内壁锁紧或松开。The rear locking mechanism is connected to the rear end of the telescopic mechanism through a rear coupling, and is used for locking or releasing the inner wall of the pipeline.
根据本发明的一个进一步的方面,提供了蠕动式管道机器人爬行机构的爬行方法,其特征在于包括:According to a further aspect of the present invention, a crawling method of a peristaltic pipeline robot crawling mechanism is provided, which is characterized by comprising:
A)使前锁紧机构中的第二电机正转,从而通过第二联轴器带动第二丝杠正转,使第二丝杠螺母向左移动,带动曲柄滑块机构动作,使铰接在大导杆上支撑臂向内移动,从而实现前锁紧机构与管壁的松开;使后锁紧机构中的第二电机反转,实现后锁紧机构与管壁的锁紧;A) Make the second motor in the front locking mechanism rotate forward, so that the second screw nut is driven to rotate forward through the second coupling, so that the second screw nut moves to the left, and the crank slider mechanism is driven to make the hinged on the The upper support arm of the large guide rod moves inward, thereby realizing the loosening of the front locking mechanism and the pipe wall; the second motor in the rear locking mechanism is reversed to realize the locking of the rear locking mechanism and the pipe wall;
B)使伸缩机构中第一电机正转,从而通过第一联轴器带动第一丝杠正转,由于后锁紧机构与管道处于锁紧状态,此时通过后联轴器与后锁紧机构连接的后端盖固定不定,进而第一丝杠螺母、固定块、外壳也处于固定不动状态,从而使第一电机、第一联轴器、第一丝杠绕自身轴线转动,带动第一前端盖、第一导杆、第一前箱体、第一中箱体、第一后箱体、第一圆螺母,第一套筒,第一轴承作为一个整体移动;B) Make the first motor in the telescopic mechanism rotate forward, thereby driving the first lead screw to rotate forward through the first coupling. Since the rear locking mechanism and the pipeline are in a locked state, at this time, the rear coupling is locked with the rear The rear end cover connected by the mechanism is fixed, and the first lead screw nut, the fixed block, and the casing are also in a fixed state, so that the first motor, the first coupling, and the first lead screw rotate around their own axes to drive the first screw. A front end cover, a first guide rod, a first front box, a first middle box, a first rear box, a first round nut, a first sleeve, and a first bearing move as a whole;
C)使前锁紧机构中的第二电机反转,从而通过第二联轴器带动第二丝杠反转,使第二丝杠螺母移动,带动曲柄滑块机构动作,使铰接在大导杆上支撑臂向外移动,从而实现前锁紧机构与管壁的锁紧;使后锁紧机构中的第二电机正转,从而实现后锁紧机构与管壁的松开;C) The second motor in the front locking mechanism is reversed, so that the second screw is driven to reverse through the second coupling, the second screw nut is moved, and the crank slider mechanism is driven to make the hinge on the large guide The support arm on the rod moves outward, so as to realize the locking of the front locking mechanism and the pipe wall; make the second motor in the rear locking mechanism rotate forward, so as to realize the release of the rear locking mechanism and the pipe wall;
D)使伸缩机构中第一电机反转,从而通过第一联轴器带动第一丝杠反转,由于前锁紧机构与管道处于锁紧状态,此时通过前联轴器与前锁紧机构连接的第一前端盖、第一导杆、第一前箱体、第一中箱体、第一后箱体、第一圆螺母、第一套筒、第一轴承作为一个整体固定不动,而第一丝杠螺母带动固定块、外壳、后端盖、后联轴器和后锁紧机构作为一个整体移动。D) Reverse the first motor in the telescopic mechanism, thereby driving the first lead screw to reverse through the first coupling. Since the front locking mechanism and the pipeline are in a locked state, at this time, the front coupling is locked with the front The first front end cover, the first guide rod, the first front box, the first middle box, the first rear box, the first round nut, the first sleeve, and the first bearing connected by the mechanism are fixed as a whole , and the first lead screw nut drives the fixed block, the casing, the rear end cover, the rear coupling and the rear locking mechanism to move as a whole.
本发明技术方案的突出的实质性特点和显著的进步主要体现在:The outstanding substantive features and remarkable progress of the technical solution of the present invention are mainly reflected in:
本发明结构紧凑、易于实现,越障能力强,管道适应能力强,越障能力强的优点,其动力源不再是由驱动轮与管壁之间的摩擦力提供的,所以运行时不会冲击管道内壁,运行稳定。管道机器人能够适用160-220mm之间不同的管径,应用前景看好。The present invention has the advantages of compact structure, easy realization, strong obstacle surmounting ability, strong pipeline adaptability, and strong obstacle surmounting ability. Its power source is no longer provided by the friction between the driving wheel and the pipe wall, so it will not It impacts the inner wall of the pipe and runs stably. The pipeline robot can be applied to different pipe diameters between 160-220mm, and the application prospect is promising.
根据本发明的一个方面,提供了一种蠕动式管道机器人爬行机构,其特征在于包括:According to one aspect of the present invention, a peristaltic pipeline robot crawling mechanism is provided, which is characterized by comprising:
前锁紧机构和后锁紧机构,用于管道机器人与管道内壁的放松或锁紧;The front locking mechanism and the rear locking mechanism are used to loosen or lock the pipeline robot and the inner wall of the pipeline;
伸缩机构,与前锁紧机构和后锁紧机构相互配合,实现管道机器人在管道内的蠕动式前进或后退。The telescopic mechanism cooperates with the front locking mechanism and the rear locking mechanism to realize the peristaltic forward or backward movement of the pipeline robot in the pipeline.
附图说明Description of drawings
下面结合附图对本发明技术方案作进一步说明:Below in conjunction with accompanying drawing, technical solution of the present invention will be further described:
图1是根据本发明的一个实施例的蠕动式管道机器人爬行机构总体结构示意图;Fig. 1 is a schematic diagram of the overall structure of a crawling mechanism of a peristaltic pipeline robot according to an embodiment of the present invention;
图2是根据本发明的一个实施例的伸缩机构结构示意图。Fig. 2 is a schematic structural diagram of a telescoping mechanism according to an embodiment of the present invention.
图3是根据本发明的一个实施例的前锁紧机构或后锁紧机构结构示意图。Fig. 3 is a structural schematic diagram of a front locking mechanism or a rear locking mechanism according to an embodiment of the present invention.
附图标记:Reference signs:
具体实施方式Detailed ways
参见图1、图2和图3,根据本发明的一个实施例的蠕动式管道机器人爬行机构采用模块化设计,分为前锁紧机构、伸缩机构、后锁紧机构共3个模块。Referring to Fig. 1, Fig. 2 and Fig. 3, the crawling mechanism of the peristaltic pipeline robot according to an embodiment of the present invention adopts a modular design and is divided into three modules: a front locking mechanism, a telescopic mechanism, and a rear locking mechanism.
前锁紧机构1和后锁紧机构3结构相同,分别通过前联轴器4和后联轴器5安装在伸缩机构2的前端和后端,各包括第二前端盖21、第二丝杠22、第二导杆23、第二丝杠螺母24、第二前箱体25、第二中箱体26、第二后箱体27、第二电机28、第二联轴器29、第二圆螺母30、第二套筒31、第二轴承32、小导杆33、支撑臂34、螺栓35、螺母36、销轴37、大导杆38、固定块39。The front locking mechanism 1 and the
其中小导杆33、大导杆38、固定块39和第二导杆23组成一组曲柄滑块机构,在整个圆周方向以120度对称分布3组该曲柄滑块机构。第二电机28和第二丝杠22通过第二联轴器29连接在一起,第二丝杠22通过第二轴承32和第二圆螺母30支承在第二前箱体25上。第二前箱体25、第二中箱体26、第二后箱体27用螺栓44、45连接在一起。第二丝杠螺母24装在第二丝杠22上,沿着第二导杆23左右移动。固定块39和第二丝杠螺母24通过锁紧螺栓40安装在一起,并随第二丝杠螺母24一起移动,进而带动曲柄滑块机构动作,使与大导杆38铰接的支撑臂34向内或向外移动,从而实现机器人与管壁的松开或锁紧。Wherein the
参见图2,伸缩机构2包括第一前端盖6,固定块7,第一导杆8,第一丝杠螺母9,外壳10,第一丝杠11,第一前箱体12,第一中箱体13,第一后箱体14,后端盖15,第一电机16,第一联轴器17,第一圆螺母18,第一套筒19,第一轴承20。Referring to Fig. 2, the
其中,第一电机16和第一丝杠11通过第一联轴器17连接在一起,第一丝杠11通过第一轴承20和第一圆螺母18支承在第一前箱体12上。第一前箱体12、第一中箱体13、第一后箱体14用螺栓41、42连接在一起。第一丝杠螺母9装在第一丝杠11上,沿着第一导杆8左右移动。第一丝杠螺母9、固定块7、外壳10和后端盖15通过螺栓43连接在一起,第一导杆8和第一前端盖6通过第一导杆8前端的螺纹连接在一起。Wherein, the first motor 16 and the first lead screw 11 are connected together through a first coupling 17 , and the first lead screw 11 is supported on the first front box body 12 through a
具体应用中,当管道机器人前进(假设前进方向是图中向左)时,整个过程可分为四步。In a specific application, when the pipeline robot moves forward (assuming that the forward direction is to the left in the figure), the whole process can be divided into four steps.
第一步:前锁紧机构1中第二电机28正转,通过第二联轴器29带动第二丝杠22正转,其上的第二丝杠螺母24向左移动,带动3组曲柄滑块机构动作,使铰接在大导杆38上支撑臂34向内移动,从而实现前锁紧机构1与管壁的松开。依据同样原理,后锁紧机构3中第二电机28反转,实现后锁紧机构3与管壁的锁紧。The first step: the
第二步:伸缩机构2中第一电机16正转,通过第一联轴器17带动第一丝杠11正转,而由于后锁紧机构3与管道处于锁紧状态,此时通过后联轴器5与后锁紧机构3连接的后端盖15固定不定,进而第一丝杠螺母9、固定块7、外壳10也处于固定不动状态,从而使第一电机16、第一联轴器17、第一丝杠11绕自身轴线转动,带动第一前端盖6、第一导杆8、第一前箱体12、第一中箱体13、第一后箱体14、第一圆螺母18,第一套筒19,第一轴承20作为一个整体向左移动。The second step: the first motor 16 in the
第三步:前锁紧机构1中第二电机28反转,通过第二联轴器29带动第二丝杠22反转,其上的第二丝杠螺母24向右移动,带动3组曲柄滑块机构动作,使铰接在大导杆38上支撑臂34向外移动,从而实现前锁紧机构1与管壁的锁紧。依据同样原理,后锁紧机构3中第二电机28正转,实现后锁紧机构3与管壁的松开。The third step: the
第四步:伸缩机构2中第一电机16反转,通过第一联轴器17带动第一丝杠11反转,而由于前锁紧机构1与管道处于锁紧状态,此时通过前联轴器4与前锁紧机构1连接的第一前端盖6、第一导杆8、第一前箱体12、第一中箱体13、第一后箱体14、第一圆螺母18、第一套筒19、第一轴承20作为一个整体固定不动,第一丝杠螺母9带动固定块7、外壳10、后端盖15、后联轴器5和后锁紧机构3作为一个整体向左移动。Step 4: The first motor 16 in the
至此已完成一个前进运动周期,通过循环以上四步即可实现管道机器人的蠕动式前进。当和以上四步运动控制相反时,即可实现管道机器人的蠕动式后退。So far, a forward movement cycle has been completed, and the peristaltic forward movement of the pipeline robot can be realized by cycling the above four steps. When the above four-step motion control is reversed, the peristaltic retreat of the pipeline robot can be realized.
当前锁紧机构1和后锁紧机构3都锁紧时,可使管道机器人稳定地停留在管道内某处,为检测维修等作业提供一个工作平台。When both the front locking mechanism 1 and the
根据本发明的一个实施例的蠕动式管道机器人爬行机构适用于例如约160-220mm的管道直径,可实现在管道内的蠕动式前进和后退,也可作为工作平台稳定停留在管道内部某处。The peristaltic pipeline robot crawling mechanism according to an embodiment of the present invention is suitable for a pipeline diameter of about 160-220mm, and can realize peristaltic forward and backward in the pipeline, and can also be used as a working platform to stably stay somewhere inside the pipeline.
以上仅是本发明的具体应用范例,对本发明的保护范围不构成任何限制。凡采用等同变换或者等效替换而形成的技术方案,均落在本发明权利保护范围之内。The above are only specific application examples of the present invention, and do not constitute any limitation to the protection scope of the present invention. All technical solutions formed by equivalent transformation or equivalent replacement fall within the protection scope of the present invention.
Claims (7)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201310656981.0A CN103672295B (en) | 2013-12-06 | 2013-12-06 | Creeping type pipeline robot crawling mechanism |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201310656981.0A CN103672295B (en) | 2013-12-06 | 2013-12-06 | Creeping type pipeline robot crawling mechanism |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN103672295A true CN103672295A (en) | 2014-03-26 |
| CN103672295B CN103672295B (en) | 2016-04-20 |
Family
ID=50310685
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201310656981.0A Expired - Fee Related CN103672295B (en) | 2013-12-06 | 2013-12-06 | Creeping type pipeline robot crawling mechanism |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN103672295B (en) |
Cited By (24)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104165257A (en) * | 2013-12-30 | 2014-11-26 | 山东北方光学电子有限公司 | Step-length-fixed telescopic automatic walking mechanism |
| CN104266037A (en) * | 2014-08-11 | 2015-01-07 | 北京航空航天大学 | Telescopic pipeline robot device |
| CN105689785A (en) * | 2016-05-01 | 2016-06-22 | 羊丁 | Steel strip tube internal support ring-cutting robot |
| CN106015832A (en) * | 2016-06-16 | 2016-10-12 | 桂林电子科技大学 | Pneumatic pipeline robot |
| CN106214116A (en) * | 2016-07-14 | 2016-12-14 | 上海交通大学 | Expanding mechanism for intestinal microrobot |
| CN107270028A (en) * | 2017-06-29 | 2017-10-20 | 广东科朗管道修复技术有限公司 | A kind of automatically walk pipeline rehabilitation device and pipe repairing method |
| CN107355637A (en) * | 2017-07-31 | 2017-11-17 | 广州大学 | Segment type clean robot for central air-conditioning pipe |
| CN107489856A (en) * | 2017-09-11 | 2017-12-19 | 三峡大学 | Stepped pipe pipeline robot |
| CN108006368A (en) * | 2017-12-29 | 2018-05-08 | 南京工程学院 | Creeping motion type pipe robot |
| CN108555894A (en) * | 2018-07-24 | 2018-09-21 | 北京市和平街第中学 | Pipeline creepage robot |
| CN108555915A (en) * | 2016-07-13 | 2018-09-21 | 张悦 | A method of quick and precisely making an inspection tour steel tower |
| CN109723932A (en) * | 2019-01-10 | 2019-05-07 | 辽宁石油化工大学 | A maintenance equipment for pipelines in the case of buried laying or crossing rivers |
| CN109807120A (en) * | 2019-03-08 | 2019-05-28 | 长沙理工大学 | An Adaptive Pipeline Cleaning Method |
| CN109990166A (en) * | 2019-03-27 | 2019-07-09 | 上海理工大学 | A kind of petroleum pipeline construction machinery and its working method |
| CN110566751A (en) * | 2019-08-20 | 2019-12-13 | 南京航空航天大学 | Rigid/flexible pipeline crawling robot |
| CN111251328A (en) * | 2019-07-28 | 2020-06-09 | 南京驭逡通信科技有限公司 | Manipulator clamp for pipeline plugging robot |
| CN111895220A (en) * | 2019-05-06 | 2020-11-06 | 中国石油天然气股份有限公司 | A robot of crawling in pipe for pipeline is detected a flaw |
| CN112815177A (en) * | 2021-01-13 | 2021-05-18 | 北京理工大学 | Robot structure capable of adapting to complex pipeline |
| CN114678810A (en) * | 2022-04-14 | 2022-06-28 | 国网山东省电力公司临沭县供电公司 | Cable pulling device for threading |
| CN115388271A (en) * | 2022-08-04 | 2022-11-25 | 广东蚂蚁工场制造有限公司 | A Supporting Structure Design Based on TIR Robot |
| CN116480356A (en) * | 2023-04-07 | 2023-07-25 | 中铁隧道股份有限公司 | Variable-resistance-based shield tunneling machine host translation device and application method thereof |
| CN116591136A (en) * | 2023-07-18 | 2023-08-15 | 中国海洋大学 | Submarine transverse detection introduction device and method |
| CN116906732A (en) * | 2023-07-11 | 2023-10-20 | 哈尔滨工程大学 | Peristaltic pipeline robot for oilfield logging |
| WO2025102137A1 (en) * | 2023-11-13 | 2025-05-22 | Petróleo Brasileiro S.A. - Petrobras | Robot and system for moving inside in pipes based on a linear electromagnetic actuator |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5018451A (en) * | 1990-01-05 | 1991-05-28 | The United States Of America As Represented By The United States Department Of Energy | Extendable pipe crawler |
| US6427602B1 (en) * | 2001-07-02 | 2002-08-06 | Westinghouse Savannah River Company, Llc | Pipe crawler apparatus |
| CN101169214A (en) * | 2007-11-29 | 2008-04-30 | 上海交通大学 | Inchworm type oil well pipeline robot device |
| CN102913715A (en) * | 2012-09-14 | 2013-02-06 | 北京信息科技大学 | Robot for detecting small pipeline |
| CN203671142U (en) * | 2013-12-06 | 2014-06-25 | 北京信息科技大学 | Crawling mechanism of squirming pipeline robot |
-
2013
- 2013-12-06 CN CN201310656981.0A patent/CN103672295B/en not_active Expired - Fee Related
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5018451A (en) * | 1990-01-05 | 1991-05-28 | The United States Of America As Represented By The United States Department Of Energy | Extendable pipe crawler |
| US6427602B1 (en) * | 2001-07-02 | 2002-08-06 | Westinghouse Savannah River Company, Llc | Pipe crawler apparatus |
| CN101169214A (en) * | 2007-11-29 | 2008-04-30 | 上海交通大学 | Inchworm type oil well pipeline robot device |
| CN102913715A (en) * | 2012-09-14 | 2013-02-06 | 北京信息科技大学 | Robot for detecting small pipeline |
| CN203671142U (en) * | 2013-12-06 | 2014-06-25 | 北京信息科技大学 | Crawling mechanism of squirming pipeline robot |
Cited By (36)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104165257B (en) * | 2013-12-30 | 2018-01-30 | 山东北方光学电子有限公司 | The telescopic automatic traveling mechanism of fixed step size |
| CN104165257A (en) * | 2013-12-30 | 2014-11-26 | 山东北方光学电子有限公司 | Step-length-fixed telescopic automatic walking mechanism |
| CN104266037A (en) * | 2014-08-11 | 2015-01-07 | 北京航空航天大学 | Telescopic pipeline robot device |
| CN104266037B (en) * | 2014-08-11 | 2016-02-03 | 北京航空航天大学 | Telescopic pipeline robot device |
| CN105689785A (en) * | 2016-05-01 | 2016-06-22 | 羊丁 | Steel strip tube internal support ring-cutting robot |
| CN106015832A (en) * | 2016-06-16 | 2016-10-12 | 桂林电子科技大学 | Pneumatic pipeline robot |
| CN108555915B (en) * | 2016-07-13 | 2020-11-17 | 山东诺创电力科技有限公司 | Method for quickly and accurately inspecting iron tower |
| CN108555915A (en) * | 2016-07-13 | 2018-09-21 | 张悦 | A method of quick and precisely making an inspection tour steel tower |
| CN106214116A (en) * | 2016-07-14 | 2016-12-14 | 上海交通大学 | Expanding mechanism for intestinal microrobot |
| CN107270028A (en) * | 2017-06-29 | 2017-10-20 | 广东科朗管道修复技术有限公司 | A kind of automatically walk pipeline rehabilitation device and pipe repairing method |
| CN107355637A (en) * | 2017-07-31 | 2017-11-17 | 广州大学 | Segment type clean robot for central air-conditioning pipe |
| CN107355637B (en) * | 2017-07-31 | 2022-11-11 | 广州大学 | Sectional cleaning robot for central air-conditioning pipeline |
| CN107489856A (en) * | 2017-09-11 | 2017-12-19 | 三峡大学 | Stepped pipe pipeline robot |
| CN108006368A (en) * | 2017-12-29 | 2018-05-08 | 南京工程学院 | Creeping motion type pipe robot |
| CN108006368B (en) * | 2017-12-29 | 2023-11-10 | 南京工程学院 | Peristaltic pipe robot |
| CN108555894A (en) * | 2018-07-24 | 2018-09-21 | 北京市和平街第中学 | Pipeline creepage robot |
| CN109723932A (en) * | 2019-01-10 | 2019-05-07 | 辽宁石油化工大学 | A maintenance equipment for pipelines in the case of buried laying or crossing rivers |
| CN109723932B (en) * | 2019-01-10 | 2021-03-19 | 辽宁石油化工大学 | Maintenance equipment for pipeline under condition of buried laying or river crossing |
| CN109807120A (en) * | 2019-03-08 | 2019-05-28 | 长沙理工大学 | An Adaptive Pipeline Cleaning Method |
| CN109990166A (en) * | 2019-03-27 | 2019-07-09 | 上海理工大学 | A kind of petroleum pipeline construction machinery and its working method |
| CN111895220A (en) * | 2019-05-06 | 2020-11-06 | 中国石油天然气股份有限公司 | A robot of crawling in pipe for pipeline is detected a flaw |
| CN111895220B (en) * | 2019-05-06 | 2022-01-04 | 中国石油天然气股份有限公司 | A robot of crawling in pipe for pipeline is detected a flaw |
| CN111251328B (en) * | 2019-07-28 | 2021-07-30 | 南京驭逡通信科技有限公司 | Manipulator clamp for pipeline plugging robot |
| CN111251328A (en) * | 2019-07-28 | 2020-06-09 | 南京驭逡通信科技有限公司 | Manipulator clamp for pipeline plugging robot |
| CN110566751A (en) * | 2019-08-20 | 2019-12-13 | 南京航空航天大学 | Rigid/flexible pipeline crawling robot |
| CN110566751B (en) * | 2019-08-20 | 2020-12-08 | 南京航空航天大学 | A rigid/flexible pipe crawling robot |
| CN112815177A (en) * | 2021-01-13 | 2021-05-18 | 北京理工大学 | Robot structure capable of adapting to complex pipeline |
| CN114678810A (en) * | 2022-04-14 | 2022-06-28 | 国网山东省电力公司临沭县供电公司 | Cable pulling device for threading |
| CN115388271A (en) * | 2022-08-04 | 2022-11-25 | 广东蚂蚁工场制造有限公司 | A Supporting Structure Design Based on TIR Robot |
| CN116480356A (en) * | 2023-04-07 | 2023-07-25 | 中铁隧道股份有限公司 | Variable-resistance-based shield tunneling machine host translation device and application method thereof |
| CN116480356B (en) * | 2023-04-07 | 2024-01-26 | 中铁隧道股份有限公司 | Variable-resistance-based shield tunneling machine host translation device and application method thereof |
| CN116906732A (en) * | 2023-07-11 | 2023-10-20 | 哈尔滨工程大学 | Peristaltic pipeline robot for oilfield logging |
| CN116906732B (en) * | 2023-07-11 | 2025-08-12 | 哈尔滨工程大学 | A peristaltic pipeline robot for oilfield logging |
| CN116591136A (en) * | 2023-07-18 | 2023-08-15 | 中国海洋大学 | Submarine transverse detection introduction device and method |
| CN116591136B (en) * | 2023-07-18 | 2023-09-19 | 中国海洋大学 | A seabed lateral detection introduction device and introduction method |
| WO2025102137A1 (en) * | 2023-11-13 | 2025-05-22 | Petróleo Brasileiro S.A. - Petrobras | Robot and system for moving inside in pipes based on a linear electromagnetic actuator |
Also Published As
| Publication number | Publication date |
|---|---|
| CN103672295B (en) | 2016-04-20 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN103672295B (en) | Creeping type pipeline robot crawling mechanism | |
| CN203671142U (en) | Crawling mechanism of squirming pipeline robot | |
| CN103697285B (en) | A kind of wheel carries out compound radial adjustable pipeline robot | |
| CN106364588B (en) | A kind of creeping motion type pipe walking robot | |
| CN102506266B (en) | A bionic peristaltic pipeline running mechanism and its control method | |
| CN101435521B (en) | Self-adapting pipe moving mechanism | |
| CN105003790B (en) | A kind of multi-functional composite flooding pipe robot | |
| CN101307855B (en) | Flexible wiggle pipeline robot | |
| CN102644831B (en) | A peristaltic pipeline robot-driven walking mechanism | |
| CN103307408B (en) | Bionic peristaltic pipeline running mechanism and control method thereof | |
| CN201154426Y (en) | Friction transmission type welding trolley walking device | |
| CN110508572A (en) | A multi-support wheeled peristaltic pipeline cleaning robot | |
| CN107061926B (en) | A push-pull self-locking pipeline inspection robot | |
| CN102661470A (en) | Novel crawling pipeline robot | |
| CN101319747A (en) | An Adaptive Pipeline Robot | |
| CN109158239A (en) | A kind of pipe inner-wall spraying robot | |
| CN109807120A (en) | An Adaptive Pipeline Cleaning Method | |
| CN205183264U (en) | Colliery drainage pipe scale removal belt cleaning device | |
| CN101255942A (en) | Automatic spraying machine for on-site overhaul of pipeline | |
| CN207145859U (en) | A kind of pipeline detection robot | |
| CN203010110U (en) | Pipe robot | |
| CN203656480U (en) | Wheel and track composited radial adjustable type pipeline robot | |
| CN203162435U (en) | Pipeline exploration robot based on real-time image transmission system | |
| CN109731864A (en) | An adaptive pipeline cleaning robot | |
| CN101749520B (en) | A spiral pipeline moving mechanism |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160420 Termination date: 20161206 |
