CN103417205B - Neural information detecting system - Google Patents
Neural information detecting system Download PDFInfo
- Publication number
- CN103417205B CN103417205B CN201210162336.9A CN201210162336A CN103417205B CN 103417205 B CN103417205 B CN 103417205B CN 201210162336 A CN201210162336 A CN 201210162336A CN 103417205 B CN103417205 B CN 103417205B
- Authority
- CN
- China
- Prior art keywords
- analog switch
- module
- channels
- electrophysiological
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000001537 neural effect Effects 0.000 title claims description 22
- 238000001514 detection method Methods 0.000 claims abstract description 44
- 238000012545 processing Methods 0.000 claims abstract description 27
- 210000005036 nerve Anatomy 0.000 claims abstract description 15
- 230000000638 stimulation Effects 0.000 claims description 27
- 238000006243 chemical reaction Methods 0.000 claims description 11
- 238000005070 sampling Methods 0.000 claims description 8
- 230000005540 biological transmission Effects 0.000 claims description 5
- 238000013480 data collection Methods 0.000 claims description 4
- 230000003139 buffering effect Effects 0.000 claims 1
- 238000003491 array Methods 0.000 abstract description 8
- 238000000034 method Methods 0.000 description 15
- 238000010586 diagram Methods 0.000 description 10
- 230000003321 amplification Effects 0.000 description 8
- 238000003199 nucleic acid amplification method Methods 0.000 description 8
- 210000002569 neuron Anatomy 0.000 description 7
- 230000008569 process Effects 0.000 description 6
- 230000003957 neurotransmitter release Effects 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 210000000944 nerve tissue Anatomy 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- 238000000835 electrochemical detection Methods 0.000 description 2
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000002457 bidirectional effect Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 230000009916 joint effect Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000008 neuroelectric effect Effects 0.000 description 1
- 239000002858 neurotransmitter agent Substances 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Landscapes
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
本发明公开了一种神经信息检测系统,包括:电生理模块,包括N路的电生理信号通道;数据采集模块,与电生理信号模块相连接,用于对电生理模块中N路电生理信号通道采集的电生理数据进行采样和模数转换;模拟开关阵列,包括N路的模拟开关通道,该N路模拟开关通道中的每一条模拟开关通道包括:电生理信号开关,其前端连接至一条微电极,其后端连接至N路电生理信号通道中的一路电生理信号通道;中央处理模块,与模拟开关阵列和数据采集模块相连接,用于控制N路模拟开关通道中的每一条模拟开关通道中电生理信号开关的闭合与打开。本发明神经信息检测系统解决了固定通道数神经信息检测仪器不能和各种通道数的微电极阵列兼容的问题。
The invention discloses a nerve information detection system, comprising: an electrophysiological module, including N-channels of electrophysiological signal channels; a data acquisition module, connected with the electrophysiological signal module, and used for detecting N-channels of electrophysiological signals in the electrophysiological module The electrophysiological data collected by the channel is sampled and converted from analog to digital; the analog switch array includes N analog switch channels, and each analog switch channel in the N analog switch channels includes: an electrophysiological signal switch whose front end is connected to a The microelectrode is connected to one of the N electrophysiological signal channels at its rear end; the central processing module is connected to the analog switch array and the data acquisition module, and is used to control each of the N analog switch channels. Closing and opening of electrophysiological signal switches in switch channels. The nerve information detection system of the present invention solves the problem that the nerve information detection instrument with a fixed number of channels cannot be compatible with microelectrode arrays with various numbers of channels.
Description
技术领域 technical field
本发明涉及电子行业信号检测领域,尤其涉及一种神经信息检测系统。The invention relates to the field of signal detection in the electronic industry, in particular to a neural information detection system.
背景技术 Background technique
神经细胞的脉冲放电和神经递质(化学物质)的释放是一个快速瞬态的过程,神经信息检测在同步高速实时地捕获脉冲放电和神经递质释放的过程,籍以研究某些疾病的发病机理、神经信号传递、药物反应等方面具有重要科学意义和临床价值。同时生物体对于外界事件的响应以及信息处理的每一个过程,都需要涉及许多神经细胞的共同作用,因而对多个脑神经细胞的电生理活动同时进行检测已经是神经科学研究中一种便利的、常态的信息获取方法。The pulse discharge of nerve cells and the release of neurotransmitters (chemical substances) are a fast and transient process. Nerve information detection captures the process of pulse discharge and neurotransmitter release synchronously at high speed and in real time, so as to study the pathogenesis of certain diseases It has important scientific significance and clinical value in terms of mechanism, nerve signal transmission, and drug response. At the same time, the response of organisms to external events and every process of information processing requires the joint action of many nerve cells. Therefore, it is a convenient method in neuroscience research to simultaneously detect the electrophysiological activities of multiple brain nerve cells. , Normal information acquisition method.
由于在对多神经细胞电生理信息进行检测时往往要用到各种不同通道数的微电极阵列,图1为现有技术神经信息检测系统的结构示意图。如图1所示,该神经信息检测系统包括电生理模块、数据采集模块、中央处理模块、USB模块和缓存等等。但是,电生理模块至微电极阵列的信息通道数是一定的,因此其只能与特定通道数的微电极阵列相连接,而对其他通道数的微电极阵列不兼容,从而不能充分发挥仪器的利用潜力,满足临床和科研的需要。因此,设计能够和各种通道数的微电极阵列兼容的神经信息检测仪器对于降低神经科学研究成本、提高科研效率等具有非常重要的意义。Since various microelectrode arrays with different channel numbers are often used when detecting electrophysiological information of multiple nerve cells, FIG. 1 is a schematic structural diagram of a nerve information detection system in the prior art. As shown in Figure 1, the nerve information detection system includes an electrophysiological module, a data acquisition module, a central processing module, a USB module, a cache, and the like. However, the number of information channels from the electrophysiological module to the microelectrode array is certain, so it can only be connected to the microelectrode array with a specific channel number, and is not compatible with the microelectrode array with other channel numbers, so that the instrument cannot be fully utilized. Use the potential to meet the needs of clinical and scientific research. Therefore, it is of great significance to design neural information detection instruments compatible with microelectrode arrays with various channel numbers to reduce the cost of neuroscience research and improve scientific research efficiency.
发明内容 Contents of the invention
(一)要解决的技术问题(1) Technical problems to be solved
为解决上述的一个或多个问题,本发明提供了一种神经信息检测系统,以解决固定通道数的神经信息检测仪器不能和各种通道数的微电极阵列相匹配的问题。In order to solve one or more of the above problems, the present invention provides a nerve information detection system to solve the problem that a nerve information detection instrument with a fixed number of channels cannot match a microelectrode array with various numbers of channels.
(二)技术方案(2) Technical solution
本发明公开了一种神经信息检测系统,包括:电生理模块,包括N路的电生理信号通道;数据采集模块,与电生理信号模块相连接,用于对电生理模块中N路电生理信号通道采集的电生理数据进行采样和模数转换;模拟开关阵列,包括N路的模拟开关通道,该N路模拟开关通道中的每一条模拟开关通道包括:电生理信号开关,其前端连接至一条微电极,其后端连接至N路电生理信号通道中的一路电生理信号通道;中央处理模块,与模拟开关阵列和数据采集模块相连接,用于控制N路模拟开关通道中的每一条模拟开关通道中电生理信号开关的闭合与打开。The invention discloses a nerve information detection system, comprising: an electrophysiological module, including N-channels of electrophysiological signal channels; a data acquisition module, connected with the electrophysiological signal module, and used for detecting N-channels of electrophysiological signals in the electrophysiological module The electrophysiological data collected by the channel is sampled and converted from analog to digital; the analog switch array includes N analog switch channels, and each analog switch channel in the N analog switch channels includes: an electrophysiological signal switch whose front end is connected to a The microelectrode is connected to one of the N electrophysiological signal channels at its rear end; the central processing module is connected to the analog switch array and the data acquisition module, and is used to control each of the N analog switch channels. Closing and opening of electrophysiological signal switches in switch channels.
(三)有益效果(3) Beneficial effects
从上述技术方案可知,本发明神经信息检测系统具有以下有益效果:It can be seen from the above technical solutions that the neural information detection system of the present invention has the following beneficial effects:
(1)本发明神经信息检测系统中,模拟开关阵列内部分为四组,每组有18个接口与微电极阵列插拔相连,每组模拟开关阵列都可以单独与微电极阵列相连,使系统可以分别配置为16、32、48和64通道,而针对不同的微电极阵列进行使用,保证仪器能和各种通道数的微电极阵列兼容;(1) In the neural information detection system of the present invention, the analog switch array is internally divided into four groups, and each group has 18 interfaces connected to the microelectrode array, and each group of analog switch arrays can be individually connected to the microelectrode array, so that the system It can be configured as 16, 32, 48 and 64 channels respectively, and can be used for different microelectrode arrays to ensure that the instrument is compatible with microelectrode arrays with various channel numbers;
(2)本发明神经信息检测系统中,同时包括电生理模块、电化学模块和数据采集模块,并且模拟开关阵列可以配置每个电极接入仪器的方式,使电极阵列能同时用于测量电生理信号和电化学信号,保证仪器能同步高速实时地捕获脉冲放电和神经递质释放过程。(2) In the neural information detection system of the present invention, the electrophysiological module, the electrochemical module and the data acquisition module are included at the same time, and the analog switch array can be configured to connect each electrode to the instrument, so that the electrode array can be used to measure the electrophysiological Signal and electrochemical signal, to ensure that the instrument can capture pulse discharge and neurotransmitter release process synchronously at high speed and in real time.
附图说明 Description of drawings
图1为现有技术神经信息检测系统的结构示意图;FIG. 1 is a schematic structural diagram of a neural information detection system in the prior art;
图2为本发明实施例神经信息检测系统的结构示意图;2 is a schematic structural diagram of a neural information detection system according to an embodiment of the present invention;
图3为本发明实施例神经信息检测系统模拟开关阵列中某一模拟开关通道的结构示意图;3 is a schematic structural diagram of an analog switch channel in the analog switch array of the neural information detection system according to an embodiment of the present invention;
图4为本发明实施例神经信息检测系统中电生理模块的电路图;4 is a circuit diagram of an electrophysiological module in a neural information detection system according to an embodiment of the present invention;
图5为本发明实施例神经信息检测系统中电化学模块的电路图;Fig. 5 is the circuit diagram of the electrochemical module in the neural information detection system of the embodiment of the present invention;
图6为本发明实施例神经信息检测系统中数据采集模块的结构示意图。Fig. 6 is a schematic structural diagram of a data acquisition module in a neural information detection system according to an embodiment of the present invention.
具体实施方式 Detailed ways
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be described in further detail below in conjunction with specific embodiments and with reference to the accompanying drawings.
需要说明的是,在附图或说明书描述中,相似或相同的部分都使用相同的图号。且在附图中,实施例以简化或是方便标示。再者,附图中未绘示或描述的元件或实现方式,为所属技术领域中普通技术人员所知的形式。另外,虽然本文可提供包含特定值的参数的示范,但参数无需确切等于相应的值,而是可在可接受的误差容限或设计约束内近似于相应的值。It should be noted that, in the drawings or descriptions of the specification, similar or identical parts all use the same figure numbers. And in the drawings, the embodiments are marked for simplification or convenience. Furthermore, elements or implementations not shown or described in the drawings are forms known to those of ordinary skill in the art. Additionally, while illustrations of parameters comprising particular values may be provided herein, the parameters need not be exactly equal to the corresponding values, but rather may approximate the corresponding values within acceptable error margins or design constraints.
在本发明的一个示例性实施例中,提出了一种神经信息检测系统。图2为本发明实施例神经信息检测系统的结构示意图。如图2所示,本实施例神经信息检测系统包括:中央处理模块、模拟开关阵列、电刺激模块、电生理模块、电化学模块、数据采集模块、缓存模块、USB传输模块和上位机模块。以下分别对各个组成部分进行详细说明。图中每个带斜线的空心箭头表示一条总线,斜线下方的数字表示此总线包含的数据线的条数。In an exemplary embodiment of the present invention, a neural information detection system is proposed. FIG. 2 is a schematic structural diagram of a neural information detection system according to an embodiment of the present invention. As shown in Figure 2, the neural information detection system of this embodiment includes: a central processing module, an analog switch array, an electrical stimulation module, an electrophysiological module, an electrochemical module, a data acquisition module, a cache module, a USB transmission module and a host computer module. Each component will be described in detail below. Each hollow arrow with a slash in the figure represents a bus, and the number below the slash represents the number of data lines contained in the bus.
中央处理模块,用于控制模拟开关阵列中每一条模拟开关通道的状态,同时接收数据采集模块采集的数据,并把数据进行编码后通过USB接口传输给缓存模块。The central processing module is used to control the state of each analog switch channel in the analog switch array, and at the same time receive the data collected by the data acquisition module, and encode the data and transmit it to the buffer module through the USB interface.
上位机模块,属于上位机软件,其通过中央处理模块实现对模拟开关阵列、数据采集模块、电刺激模块等的配置;可以实现对存储于缓存模块的电生理信号和电化学信号进行同步打标,同步存储;同时可以对测量到的信号进行选择性存储,以减小数据存储量。The upper computer module belongs to the upper computer software, which realizes the configuration of the analog switch array, data acquisition module, electrical stimulation module, etc. through the central processing module; it can realize synchronous marking of the electrophysiological signals and electrochemical signals stored in the cache module , synchronous storage; at the same time, the measured signal can be selectively stored to reduce the amount of data storage.
模拟开关阵列,其控制端与中央处理模块相连接,包括64路模拟开关通道,对于每一模拟开关通道,其前端连接微电极阵列中的一条微电极,其后端择一连接至以下电路中的一条:电生理模块的一条电生理信号通道、电化学模块的一条电化学信号通道,电刺激模块中的一条电刺激通道,或地,该模拟开关阵列用于配置微电极接入仪器的方式。此处,64路只是通常的设置方式,本领域技术人员可以根据自己的需要设置模拟开关阵列所包含的模拟开关通道数。The analog switch array, whose control terminal is connected to the central processing module, includes 64 analog switch channels, for each analog switch channel, its front end is connected to a microelectrode in the microelectrode array, and its rear end is connected to the following circuit One of: an electrophysiological signal channel of the electrophysiological module, an electrochemical signal channel of the electrochemical module, an electrical stimulation channel of the electrical stimulation module, or ground, the analog switch array is used to configure the way the microelectrode is connected to the instrument . Here, 64 channels are just a common setting method, and those skilled in the art can set the number of analog switch channels included in the analog switch array according to their needs.
对于其中的一部分模拟开关通道,其可以包含四个开关,其与电极和各电路的连接关系如图3所示。通过中央处理模块对模拟开关进行设置,可以使每个电极选择为不同的用途,使之分别连接到电生理信号通道、电化学信号通道、电刺激电路、参考或地,由此可以根据具体的实验需求,随心所欲地更改微电极阵列的排列方式,特别地,其配合电生理模块、电化学模块和数据采集模块,可以实现检测位点可配置的电化学信号和电生理信号同步检测。通过中央处理模块控制各开关的状态还可以实现电路之间的互联,特别地在进行电刺激的时候将电生理信号通道和电化学信号通道与地相连,可以避免电生理信号通道和电化学放大电路受电刺激的影响而进入饱和状态,从而避免电极复用时电路间的相互干扰,极大地提高系统的性能。For some of the analog switch channels, it may include four switches, and their connections with electrodes and circuits are shown in FIG. 3 . By setting the analog switch through the central processing module, each electrode can be selected for different purposes, so that it can be connected to the electrophysiological signal channel, electrochemical signal channel, electrical stimulation circuit, reference or ground respectively, so that it can be used according to the specific According to the experimental requirements, the arrangement of the microelectrode array can be changed as one likes. In particular, it cooperates with the electrophysiological module, electrochemical module and data acquisition module to realize the synchronous detection of electrochemical signals and electrophysiological signals with configurable detection sites. Controlling the state of each switch through the central processing module can also realize the interconnection between the circuits, especially when the electrical stimulation is performed, the electrophysiological signal channel and the electrochemical signal channel are connected to the ground, which can avoid the electrophysiological signal channel and electrochemical amplification. The circuit enters a saturated state under the influence of electrical stimulation, thereby avoiding mutual interference between circuits when electrodes are multiplexed, and greatly improving the performance of the system.
此处,为了便于说明,对一条模拟开关支路中均包括了电生理信号开关、电化学信号开关、电刺激信号开关和参考/地开关。然而,本领域技术人员应当了解,对于另一部分模拟开关通道,其也可以包含三个开关,例如电生理信号开关、电化学信号开关和电刺激信号开关等等;也可以包含两个开关,例如电生理信号开关和电刺激信号开关,或电生理信号开关和参考/地等等;当然也可以只包含点生理信号开关。Here, for ease of description, an analog switch branch includes an electrophysiological signal switch, an electrochemical signal switch, an electrical stimulation signal switch, and a reference/ground switch. However, those skilled in the art should understand that for another part of the analog switch channel, it may also include three switches, such as an electrophysiological signal switch, an electrochemical signal switch, and an electrical stimulation signal switch, etc.; it may also include two switches, such as An electrophysiological signal switch and an electrical stimulation signal switch, or an electrophysiological signal switch and a reference/ground, etc.; of course, only point physiological signal switches may be included.
同时模拟开关阵列内部分为四组,每组包含16路的模拟开关通道。每组的16路的模拟开关通道,连同1路的参考接口和1路的接地接口,共18个接口与微电极阵列相连,如图2所示。每组模拟开关都可以单独与微电极阵列相连,使系统可以分别配置为16、32、48和64通道而针对不同的微电极阵列进行使用。本实施例中,通过模拟开关阵列,从而使系统可以分别配置为16、32、48和64通道进行使用,同时可以对每个电极的用途进行配置,使电极阵列可以同时用于测量电生理信号和电化学信号,因此,可以实现使系统能同时测量电生理信号和电化学信号,解决固定通道数神经信息检测仪器不能同步高速实时地捕获脉冲放电和神经递质释放过程的问题,和固定通道数神经信息检测仪器不能和各种通道数的微电极阵列兼容的问题。At the same time, the analog switch array is internally divided into four groups, and each group contains 16 analog switch channels. There are 16 analog switch channels in each group, together with 1 reference interface and 1 ground interface, a total of 18 interfaces are connected to the microelectrode array, as shown in FIG. 2 . Each group of analog switches can be individually connected to the microelectrode array, so that the system can be configured as 16, 32, 48 and 64 channels for different microelectrode arrays. In this embodiment, by simulating the switch array, the system can be configured as 16, 32, 48, and 64 channels for use, and at the same time, the use of each electrode can be configured, so that the electrode array can be used to measure electrophysiological signals at the same time And electrochemical signals, therefore, it can be realized that the system can measure electrophysiological signals and electrochemical signals at the same time, and solve the problem that the nerve information detection instrument with a fixed channel number cannot capture the pulse discharge and neurotransmitter release process simultaneously at high speed and in real time, and the fixed channel The problem that the number of nerve information detection instruments cannot be compatible with microelectrode arrays with various channel numbers.
如图2所示,对于模拟开关阵列中的每一路模拟开关,还可以包括:前置放大电路,位于模拟开关的前端,用于实现与微电极阵列的阻抗匹配,防止信号在传输的过程中过度衰减。该前置放大电路是通过射随器来实现的,本领域技术人员应当了解相关射随器的设计,此处不再赘述。As shown in Figure 2, for each analog switch in the analog switch array, it may also include: a preamplifier circuit, located at the front end of the analog switch, used to achieve impedance matching with the microelectrode array, to prevent the signal from being transmitted during transmission. Excessive attenuation. The pre-amplification circuit is realized by an emitter follower, and those skilled in the art should understand the design of the relevant emitter follower, and details will not be repeated here.
电生理模块,其控制端与中央处理模块相连接,其输入端与模拟开关阵列相连接,用于对电生理信号进行放大、滤波处理,提高信噪比。电生理模块,包括64路电生理信号通道,每一路通道的框图如图4所示,由三部分组成,按信号的流向分别是差分放大电路、低通滤波器(LFP)和高通滤波器(HFP)。差分放大电路将输入的电生理信号和参考信号(REF)进行差分放大,并将信号传递给下一级,同时抑制共模噪声。图中电阻R决定电路的放大倍数,R设为5.1K时,电路的放大倍数为10倍,仪表放大器AD620R是本电路的核心器件,它的输入阻抗为10GΩ,在放大倍数为10的时候共模抑制比为110db,输入噪声为各项参数能够满足微弱神经电信号的检测需要。低通滤波器(LFP)实现对信号的第二级放大(放大5倍),同时滤除电路中的高频噪声。高通滤波器(HFP)实现对信号的第三级放大(放大4倍),同时滤除电路中的低频噪声,并把信号传递给数据采集模块。整个电生理信号通道能实现将微伏级的信号放大1000倍,使其变成毫伏级易于被数据采集模块采集的信号,并遏制电路中的各种噪声,大大提高信噪比。需要说明的是,该64路的电生理信号通道也是通常的设置,不构成对本发明的限制。此外,中央处理模块对电生理模块的控制作用主要体现于控制电路中可调电阻的大小,从而控制电路的放大倍数、通频带等。The electrophysiological module, whose control end is connected with the central processing module, and whose input end is connected with the analog switch array, is used for amplifying and filtering the electrophysiological signal to improve the signal-to-noise ratio. The electrophysiological module includes 64 electrophysiological signal channels. The block diagram of each channel is shown in Figure 4. It consists of three parts. According to the flow direction of the signal, it is a differential amplifier circuit, a low-pass filter (LFP) and a high-pass filter ( HFP). The differential amplification circuit differentially amplifies the input electrophysiological signal and the reference signal (REF), and passes the signal to the next stage while suppressing common-mode noise. The resistor R in the figure determines the magnification of the circuit. When R is set to 5.1K, the magnification of the circuit is 10 times. The instrumentation amplifier AD620R is the core device of this circuit. Its input impedance is 10GΩ. When the magnification is 10, the total The mode rejection ratio is 110db, and the input noise is Various parameters can meet the detection needs of weak neuroelectric signals. The low-pass filter (LFP) realizes the second-stage amplification of the signal (magnification by 5 times), and at the same time filters out high-frequency noise in the circuit. The high-pass filter (HFP) realizes the third-stage amplification of the signal (magnification by 4 times), and at the same time filters out the low-frequency noise in the circuit, and passes the signal to the data acquisition module. The entire electrophysiological signal channel can amplify microvolt-level signals by 1000 times, making them into millivolt-level signals that can be easily collected by the data acquisition module, and suppress various noises in the circuit, greatly improving the signal-to-noise ratio. It should be noted that the 64 electrophysiological signal channels are also a common setting, which does not constitute a limitation to the present invention. In addition, the control function of the central processing module on the electrophysiological module is mainly reflected in the size of the adjustable resistance in the control circuit, thereby controlling the amplification factor and passband of the circuit.
电化学模块,其控制端与中央处理模块相连接,其输入端(即工作电极W)与模拟开关阵列相连接,用于产生电化学检测需要的恒电势,并将电化学电流信号转换成电压信号,并对信号进行放大处理。电化学模块,包括4路电化学信号通道,每一路电化学信号通道的框图如图5所示,是一个三电极体系的电化学信号检测电路,其三个电极分别为参比电极(R)、对电极(C)和工作电极(W)。电路由三部分组成,恒电势仪、电流电压转换电路和信号放大电路。恒电势仪部分通过DAC芯片MAX504产生电化学检测所需要的电压波形,此电压通过AD8606的一个运放U7A和参比电极(R)、对电极(C)接入到待测量的神经细胞或组织中,并和工作电极(W)形成电流回路;电流电压转换电路通过AD8606的另一个运放U7B和100M的取样电阻R16将工作电极(W)检测到的电流信号转换成电压信号,电路中1000P的电容C40用于抵消电路中的寄生电容,提高系统的响应速度;信号放大电路通过仪表运放AD620R将输入的电压信号进行差分放大,并将信号送入数据采集模块,电路中电阻R8决定放大倍数,R设为510欧时,电路的放大倍数为100倍。电化学信号检测电路的核心电路为电流电压转换电路。由于检测的电化学信号为pA量级,对所需的运放要求高,因而在选型时需选择偏置电流低,电流噪声密度小的芯片。本实施例所选的运放为AD8606,它是一个偏置电流只有0.2pA,电流噪声密度只有的低噪声高开环增益的FET运算放大器,能满足本仪器的需要。需要说明的是,该4路的电化学信号通道也是通常的设置,不构成对本发明的限制。此外,中央处理模块对电化学模块的控制作用主要体现于控制电化学扫描的方式和扫描电压的大小:扫描方式可以为电化学CV法、电化学IT法或快速CV法等;扫描电压设置范围在-4V到4V之间。The electrochemical module, whose control terminal is connected to the central processing module, and whose input terminal (i.e., the working electrode W) is connected to the analog switch array, is used to generate the constant potential required for electrochemical detection, and convert the electrochemical current signal into a voltage signal and amplify the signal. The electrochemical module includes 4 electrochemical signal channels. The block diagram of each electrochemical signal channel is shown in Figure 5. It is an electrochemical signal detection circuit with a three-electrode system, and its three electrodes are reference electrodes (R) , the counter electrode (C) and the working electrode (W). The circuit consists of three parts, a potentiostat, a current-voltage conversion circuit and a signal amplification circuit. The potentiostat part generates the voltage waveform required for electrochemical detection through the DAC chip MAX504, and this voltage is connected to the nerve cells or tissues to be measured through an operational amplifier U7A of AD8606, the reference electrode (R), and the counter electrode (C) , and form a current loop with the working electrode (W); the current-voltage conversion circuit converts the current signal detected by the working electrode (W) into a voltage signal through another operational amplifier U7B of AD8606 and a 100M sampling resistor R16, and the 1000P in the circuit The capacitor C40 is used to offset the parasitic capacitance in the circuit and improve the response speed of the system; the signal amplifier circuit differentially amplifies the input voltage signal through the instrument operational amplifier AD620R, and sends the signal to the data acquisition module, and the resistor R8 in the circuit determines the amplification Multiple, when R is set to 510 ohms, the magnification of the circuit is 100 times. The core circuit of the electrochemical signal detection circuit is a current-voltage conversion circuit. Since the detected electrochemical signal is at the pA level, the requirements for the required operational amplifier are high, so it is necessary to choose a chip with low bias current and low current noise density when selecting the type. The operational amplifier selected in this embodiment is AD8606, which has a bias current of only 0.2pA and a current noise density of only The FET operational amplifier with low noise and high open-loop gain can meet the needs of this instrument. It should be noted that the 4-way electrochemical signal channel is also a common setting, which does not constitute a limitation to the present invention. In addition, the control function of the central processing module on the electrochemical module is mainly reflected in the control of the electrochemical scanning method and the size of the scanning voltage: the scanning method can be electrochemical CV method, electrochemical IT method or fast CV method, etc.; the scanning voltage setting range Between -4V and 4V.
此外,为了实现电刺激功能,本实施例神经信息检测系统还包括:电刺激模块,用于实现对神经细胞和组织进行刺激的功能,此时:中央处理模块,还用于配置电刺激模块。In addition, in order to realize the electrical stimulation function, the nerve information detection system of this embodiment further includes: an electrical stimulation module, used to realize the function of stimulating nerve cells and tissues, and at this time: a central processing module, which is also used to configure the electrical stimulation module.
电刺激模块,包括4路电刺激信号发生电路,每一路信号发生电路采用双电源供电的高精度AD转换芯片,可以产生幅度、频率可调、波形自定义的双极性电压或电流波形。这种双极性波形可以使刺激后电极上的净电荷为零,这样可以降低对神经细胞和组织的损伤,同时可以避免剩余电荷对电极的电解,延长电极的使用寿命。其可由中央处理模块控制采用的二选一开关来实现选择双极性电压或电流波形的功能。其结合模拟开关阵列和电生理模块,可以实现电极的双向(检测与刺激)功能切换。The electrical stimulation module includes 4 electrical stimulation signal generation circuits. Each signal generation circuit uses a high-precision AD conversion chip powered by dual power supplies, which can generate bipolar voltage or current waveforms with adjustable amplitude and frequency and customized waveforms. This bipolar waveform can make the net charge on the electrode after stimulation zero, which can reduce the damage to nerve cells and tissues, and at the same time avoid the electrolysis of the electrode by the remaining charge, prolonging the service life of the electrode. It can be controlled by the central processing module to realize the function of selecting bipolar voltage or current waveform by using an alternative switch. It combines an analog switch array and an electrophysiological module to realize bidirectional (detection and stimulation) function switching of electrodes.
同时,为了实现数据的高速采集,神经信息检测系统中还包括:数据采集模块,用于对经过电生理模块和电化学模块处理的电生理信号和电化学信号进行采集。如图6所示,该数据采集模块包括:I/O接口、多路开关、采样参数配置子模块和模数转换控制(ADC)子模块两部分。采样参数配置子模块,其控制端与中央处理模块相连接,用于配置测量时的输入连接方式、采样率和测量范围等。I/O接口与电生理模块和电化学模块相连,接收传递过来的64路电生理信号和4路电化学信号。多路开关,用于将所述的64路电生理信号和4路电化学信号逐个地传递给模数转换模块,实现对模数转换模块的时分复用。模数转换模块,其控制端与采样参数配置模块相连接,其输入端与多路开关相连接,输出端与中央处理模块相连接,用于实现对电生理信号和电化学信号的数据采集。ADC模块的精度达16位,总采样速度高达1.25MS/s。选择任何路数模拟输入总速总能配置为高达1.25MS/s,特别地可以配置电化学信号检测的时间分别率达0.1ms以上,实现对细胞神经递质释放的检测。At the same time, in order to realize high-speed data collection, the neural information detection system also includes: a data collection module for collecting electrophysiological signals and electrochemical signals processed by the electrophysiological module and the electrochemical module. As shown in Fig. 6, the data acquisition module includes two parts: an I/O interface, a multi-way switch, a sampling parameter configuration sub-module and an analog-to-digital conversion control (ADC) sub-module. The sampling parameter configuration sub-module, whose control terminal is connected with the central processing module, is used to configure the input connection mode, sampling rate and measurement range during measurement. The I/O interface is connected with the electrophysiological module and the electrochemical module, and receives 64 electrophysiological signals and 4 electrochemical signals transmitted. The multi-channel switch is used to transmit the 64 channels of electrophysiological signals and 4 channels of electrochemical signals to the analog-to-digital conversion module one by one, so as to realize time-division multiplexing of the analog-to-digital conversion module. The analog-to-digital conversion module, its control end is connected with the sampling parameter configuration module, its input end is connected with the multi-way switch, and its output end is connected with the central processing module, which is used to realize the data acquisition of electrophysiological signals and electrochemical signals. The precision of the ADC module reaches 16 bits, and the total sampling speed is as high as 1.25MS/s. The total speed of any number of analog inputs can be configured as high as 1.25MS/s. In particular, the time resolution of electrochemical signal detection can be configured to reach more than 0.1ms to realize the detection of cell neurotransmitter release.
此外,在本实施例中,缓存模块与中央处理模块相连,用于对采集到的数据进行缓存;USB传输电路与中央处理模块相连,通过USB口与上位机模块相连,用于将缓存模块中的数据传递到上位机模块,同时将上位机模块的指令传送给中央处理模块,实现上位机模块对仪器的控制。此外,上位机模块还用于显示、存储、处理、分析测量到的信号,同时对仪器实施控制。In addition, in this embodiment, the cache module is connected to the central processing module for caching the collected data; the USB transmission circuit is connected to the central processing module and connected to the upper computer module through the USB port for storing the data in the cache module. The data of the upper computer module is transmitted to the upper computer module, and the instructions of the upper computer module are transmitted to the central processing module to realize the control of the upper computer module on the instrument. In addition, the upper computer module is also used to display, store, process and analyze the measured signals, and at the same time control the instrument.
需要说明的是,上述对各元件的定义并不仅限于实施方式中提到的各种具体结构或形状,本领域的普通技术人员可对其进行简单地熟知地替换,例如:(1)电生理模块滤波电路还可以先高通滤波,而后再低通滤波的形式;(2)电化学模块所使用的AD8606芯片可以用TLC2262芯片来代替。It should be noted that the above-mentioned definitions of each element are not limited to the various specific structures or shapes mentioned in the embodiments, and those skilled in the art can simply replace them with well-known ones, for example: (1) electrophysiological The filter circuit of the module can also be high-pass filtered first, and then low-pass filtered; (2) The AD8606 chip used in the electrochemical module can be replaced by a TLC2262 chip.
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above have further described the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.
Claims (8)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201210162336.9A CN103417205B (en) | 2012-05-23 | 2012-05-23 | Neural information detecting system |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201210162336.9A CN103417205B (en) | 2012-05-23 | 2012-05-23 | Neural information detecting system |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN103417205A CN103417205A (en) | 2013-12-04 |
| CN103417205B true CN103417205B (en) | 2015-05-06 |
Family
ID=49642988
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201210162336.9A Active CN103417205B (en) | 2012-05-23 | 2012-05-23 | Neural information detecting system |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN103417205B (en) |
Families Citing this family (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104490386B (en) * | 2014-12-16 | 2017-01-04 | 中国科学院深圳先进技术研究院 | The changing method of a kind of multi-channel electrode array and system |
| CN106108858A (en) * | 2016-09-21 | 2016-11-16 | 中国科学院电子学研究所 | A kind of light regulation and control nerve information detecting system |
| CN106175701A (en) * | 2016-09-30 | 2016-12-07 | 中国科学院电子学研究所 | A kind of nerve information photoelectricity regulation and control and bimodulus detecting system |
| CN110013242B (en) * | 2019-04-04 | 2024-02-02 | 深圳市润谊泰益科技有限责任公司 | Myoelectric signal collector and method |
| CN111803052A (en) * | 2020-06-30 | 2020-10-23 | 天津大学 | Method for evaluating signal recording performance of neural microelectrode |
| CN116584045A (en) * | 2020-12-31 | 2023-08-11 | 深圳市韶音科技有限公司 | Signal processing circuits and methods |
| CN114112865A (en) * | 2021-11-22 | 2022-03-01 | 中国人民解放军军事科学院军事医学研究院 | A microelectrode measuring device and its measuring method |
| CN115355929A (en) * | 2022-08-15 | 2022-11-18 | 上海大学 | An array piezoelectric sensor signal processing circuit |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1999034202A1 (en) * | 1997-12-25 | 1999-07-08 | Matsushita Electric Industrial Co., Ltd. | Cell potential measuring electrode and measuring apparatus using the same |
| CN1585355A (en) * | 2004-06-01 | 2005-02-23 | 中兴通讯股份有限公司 | Composite switching array and branching apparatus testing method therewith |
| KR20060112722A (en) * | 2005-04-27 | 2006-11-02 | 주식회사 팬택 | Antenna Matching Circuit for Multi-Band Terminals |
| CN101048194A (en) * | 2004-09-08 | 2007-10-03 | 脊髓调制公司 | Neurostimulation methods and systems |
| CN201114497Y (en) * | 2007-09-28 | 2008-09-10 | 天津市威纳光电子有限公司 | Audio and video signal automatic multi-optional device |
| CN102247137A (en) * | 2010-05-19 | 2011-11-23 | 中国科学院电子学研究所 | Microelectrode array-based multichannel neural information detection system |
-
2012
- 2012-05-23 CN CN201210162336.9A patent/CN103417205B/en active Active
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1999034202A1 (en) * | 1997-12-25 | 1999-07-08 | Matsushita Electric Industrial Co., Ltd. | Cell potential measuring electrode and measuring apparatus using the same |
| CN1585355A (en) * | 2004-06-01 | 2005-02-23 | 中兴通讯股份有限公司 | Composite switching array and branching apparatus testing method therewith |
| CN101048194A (en) * | 2004-09-08 | 2007-10-03 | 脊髓调制公司 | Neurostimulation methods and systems |
| KR20060112722A (en) * | 2005-04-27 | 2006-11-02 | 주식회사 팬택 | Antenna Matching Circuit for Multi-Band Terminals |
| CN201114497Y (en) * | 2007-09-28 | 2008-09-10 | 天津市威纳光电子有限公司 | Audio and video signal automatic multi-optional device |
| CN102247137A (en) * | 2010-05-19 | 2011-11-23 | 中国科学院电子学研究所 | Microelectrode array-based multichannel neural information detection system |
Also Published As
| Publication number | Publication date |
|---|---|
| CN103417205A (en) | 2013-12-04 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN103417205B (en) | Neural information detecting system | |
| CN101889863B (en) | High-performance direct current amplification device for acquiring biological electric signals | |
| CN102908137B (en) | Single-channel ECG (Electrocardiogram) collection chip | |
| CN102090885B (en) | Multichannel human body skin potential acquiring system | |
| US20150038870A1 (en) | Multi-Channel Scalable EEG Acquisition System on a Chip with Integrated Patient Specific Seizure Classification and Recording Processor | |
| CN101433461A (en) | Detection circuit for high-performance brain electrical signal of brain-machine interface | |
| CN102247137A (en) | Microelectrode array-based multichannel neural information detection system | |
| CN211674226U (en) | Multichannel bioelectricity signal acquisition system | |
| CN102334981A (en) | Multiplex human pulse wave signal acquisition system | |
| CN107329163A (en) | A kind of multichannel pulse size analyzer | |
| CN101436100A (en) | Brain-electrical signal detection system and detection method for brain and machine interface | |
| CN104991276B (en) | A kind of programme-controlled gain amplification system for earth natural pulses electromagnetic field signal | |
| CN209590067U (en) | Signal acquiring system | |
| CN103961094B (en) | Based on the multi-functional electroencephalogramdata data collector of hardware implementing Laplce technology | |
| CN103190903A (en) | EEG signal amplifier and method for amplifying EEG signal | |
| CN101879062B (en) | Surface electromyography measuring instrument, surface electromyography measuring module and measuring method | |
| CN206975227U (en) | A kind of multichannel pulse size analyzer | |
| CN207601240U (en) | For the power conversion chip performance test circuit of intelligence instrument | |
| CN113533854B (en) | Impedance on-line measurement and dynamic matching device of ultrasonic transducer | |
| Borghi et al. | A compact multichannel system for acquisition and processing of neural signals | |
| CN202859113U (en) | Multichannel electroencephalo-graph (EEG) acquisition device capable of being expanded in parallel connection mode | |
| CN107219392B (en) | Real-time current signal data processing system | |
| Yun et al. | Low-power high-resolution 32-channel neural recording system | |
| CN109921751A (en) | An Input Impedance Improvement Method Applied to Biomedical Front-End Instrumentation Amplifier | |
| CN113974654B (en) | Miniaturized low-noise wireless invasive nerve signal recording equipment |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant |