CN103341985B - Vacuum-assisted resin diffusion molding method for fiber-reinforced PBT composite material - Google Patents
Vacuum-assisted resin diffusion molding method for fiber-reinforced PBT composite material Download PDFInfo
- Publication number
- CN103341985B CN103341985B CN201310187953.9A CN201310187953A CN103341985B CN 103341985 B CN103341985 B CN 103341985B CN 201310187953 A CN201310187953 A CN 201310187953A CN 103341985 B CN103341985 B CN 103341985B
- Authority
- CN
- China
- Prior art keywords
- resin
- fiber
- cbt
- catalyst
- vacuum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229920005989 resin Polymers 0.000 title claims abstract description 84
- 239000011347 resin Substances 0.000 title claims abstract description 84
- 239000002131 composite material Substances 0.000 title claims abstract description 42
- 238000000034 method Methods 0.000 title claims abstract description 29
- 238000009792 diffusion process Methods 0.000 title claims abstract description 11
- 238000000465 moulding Methods 0.000 title abstract description 21
- 239000000835 fiber Substances 0.000 claims abstract description 49
- 239000004744 fabric Substances 0.000 claims abstract description 39
- 239000003054 catalyst Substances 0.000 claims abstract description 28
- 238000002347 injection Methods 0.000 claims abstract description 24
- 239000007924 injection Substances 0.000 claims abstract description 24
- 238000010438 heat treatment Methods 0.000 claims abstract description 16
- 239000000463 material Substances 0.000 claims abstract description 11
- 238000000137 annealing Methods 0.000 claims abstract description 9
- 238000007151 ring opening polymerisation reaction Methods 0.000 claims abstract description 8
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims abstract description 6
- 239000004810 polytetrafluoroethylene Substances 0.000 claims abstract description 6
- -1 polytetrafluoroethylene Polymers 0.000 claims abstract description 5
- 230000002787 reinforcement Effects 0.000 claims description 13
- 239000000243 solution Substances 0.000 claims description 10
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 8
- 238000002844 melting Methods 0.000 claims description 8
- 230000008018 melting Effects 0.000 claims description 8
- 229920002748 Basalt fiber Polymers 0.000 claims description 7
- 238000002425 crystallisation Methods 0.000 claims description 5
- 230000008025 crystallization Effects 0.000 claims description 5
- 238000003756 stirring Methods 0.000 claims description 4
- 238000004090 dissolution Methods 0.000 claims 2
- 238000005086 pumping Methods 0.000 claims 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims 1
- 229910052799 carbon Inorganic materials 0.000 claims 1
- 150000001875 compounds Chemical class 0.000 claims 1
- BYSFLEQBDOJVAR-UHFFFAOYSA-L dibutyltin(2+);dihydroxide Chemical group [OH-].[OH-].CCCC[Sn+2]CCCC BYSFLEQBDOJVAR-UHFFFAOYSA-L 0.000 claims 1
- 239000011521 glass Substances 0.000 claims 1
- 238000003760 magnetic stirring Methods 0.000 claims 1
- 229910001887 tin oxide Inorganic materials 0.000 claims 1
- 230000007306 turnover Effects 0.000 claims 1
- 238000010792 warming Methods 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 10
- 238000007789 sealing Methods 0.000 abstract description 4
- 239000003365 glass fiber Substances 0.000 description 11
- 229920001169 thermoplastic Polymers 0.000 description 11
- 239000004416 thermosoftening plastic Substances 0.000 description 11
- 238000005265 energy consumption Methods 0.000 description 5
- 125000004122 cyclic group Chemical group 0.000 description 4
- ZBSOGTZYMVJKTF-UHFFFAOYSA-K 4-trichlorostannylbutane-1,1-diol Chemical compound OC(O)CCC[Sn](Cl)(Cl)Cl ZBSOGTZYMVJKTF-UHFFFAOYSA-K 0.000 description 3
- 229920001187 thermosetting polymer Polymers 0.000 description 3
- WSQZNZLOZXSBHA-UHFFFAOYSA-N 3,8-dioxabicyclo[8.2.2]tetradeca-1(12),10,13-triene-2,9-dione Chemical compound O=C1OCCCCOC(=O)C2=CC=C1C=C2 WSQZNZLOZXSBHA-UHFFFAOYSA-N 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000032798 delamination Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000000805 composite resin Substances 0.000 description 1
- 239000011199 continuous fiber reinforced thermoplastic Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229920006351 engineering plastic Polymers 0.000 description 1
- 229920001002 functional polymer Polymers 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229920002601 oligoester Polymers 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 125000003367 polycyclic group Chemical group 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- 239000012974 tin catalyst Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000009941 weaving Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Reinforced Plastic Materials (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
Abstract
本发明提供的是一种纤维增强PBT复合材料的真空辅助树脂扩散成型方法。将催化剂附在纤维布上;将纤维增强材料置于贴好高温脱模布、埋有高温密封条的模具内;使模具升温至180~220℃,聚四氟乙烯加热管给树脂注入管路加热至180~220℃,CBT树脂用油浴加热至180~220℃;将树脂注入管管口没入融化后的CBT树脂中,CBT树脂在真空作用下吸入模具中;将模具在180~220℃保温30min~1h,使CBT树脂对纤维增强材料进行充分浸润,同时CBT树脂开环聚合结晶为高分子量的PBT,进行退火处理后,脱模得到纤维增强PBT复合材料。本发明是一种高性能、低成本的工艺,并且可以用于薄壁制品的制造和大尺寸复合材料构件的生产。
The invention provides a vacuum-assisted resin diffusion molding method for a fiber-reinforced PBT composite material. Attach the catalyst to the fiber cloth; place the fiber reinforced material in the mold pasted with high-temperature release cloth and embedded with high-temperature sealing strip; raise the temperature of the mold to 180-220°C, and the polytetrafluoroethylene heating tube feeds the resin into the pipeline Heat to 180-220°C, heat the CBT resin to 180-220°C with an oil bath; submerge the nozzle of the resin injection pipe into the melted CBT resin, and the CBT resin will be sucked into the mold under vacuum; put the mold at 180-220°C Keep warm for 30 minutes to 1 hour, so that the CBT resin can fully infiltrate the fiber reinforced material. At the same time, the CBT resin ring-opening polymerization crystallizes into high molecular weight PBT. After annealing treatment, the fiber reinforced PBT composite material is obtained by demoulding. The invention is a high-performance, low-cost process, and can be used for the manufacture of thin-walled articles and the production of large-scale composite material components.
Description
技术领域technical field
本发明涉及的是一种纤维增强树脂复合材料的成型方法,适用于生产高纤维含量的大型热塑性复合材料构件。The invention relates to a molding method of fiber-reinforced resin composite material, which is suitable for producing large-scale thermoplastic composite material components with high fiber content.
背景技术Background technique
近年来,连续纤维增强热塑性树脂基复合材料的研究受到了航空航天工业,汽车制造业的高度重视。与热固性树脂基体复合材料相比,热塑性复合材料具有很多重要的优点,例如具有较好的韧性和抗冲击性能,成型周期短,制造成本低,废料可以回收利用等。但是热塑性复合材料由于分子结构的特点,室温下,热塑性塑料呈固态;加热熔融状态下,树脂熔体黏度大(>1000Pa.s),熔体流动困难,使树脂难以完全浸润纤维。由于热塑性树脂黏度较高,其熔融黏度远远的高于热固性树脂的黏度,因此热塑性复合材料制备主要采用缠绕成型、辊压成型、拉挤成型、热压成型、真空模压成型等成型工艺。这些成型工艺成型温度和成型压力较高,能耗较大,对模具设备的要求较苛刻,因此生产成本较高,尤其是在大型构件的规模化制造中受到限制。In recent years, the research of continuous fiber reinforced thermoplastic resin matrix composites has been highly valued by aerospace industry and automobile manufacturing industry. Compared with thermosetting resin matrix composites, thermoplastic composites have many important advantages, such as better toughness and impact resistance, short molding cycle, low manufacturing cost, and waste can be recycled. However, due to the characteristics of the molecular structure of thermoplastic composite materials, thermoplastics are solid at room temperature; under heating and melting, the resin melt has a high viscosity (>1000Pa.s), and the melt flow is difficult, making it difficult for the resin to completely infiltrate the fiber. Due to the high viscosity of thermoplastic resins, their melt viscosity is much higher than that of thermosetting resins. Therefore, the preparation of thermoplastic composite materials mainly adopts winding molding, roll forming, pultrusion molding, thermocompression molding, vacuum molding and other molding processes. These molding processes have high molding temperature and molding pressure, high energy consumption, and strict requirements on mold equipment, so the production cost is relatively high, especially limited in the large-scale manufacturing of large components.
环状对苯二甲酸丁二醇酯(CBT)功能聚合物具有大环寡聚酯结构,是不同低分子量环状齐聚物的混合物,其熔体黏度极低,约在190℃,就变为象水一样的液体(相同条件下,PBT的粘度大约是它的5000倍)。在锡类或钛类催化剂的作用下,CBT可以发生开环聚合反应,得到热塑性工程塑料聚环状对苯二甲酸丁二醇酯(PBT)。CBT加工过程中无气体释放,绿色环保,并可使成品获得很好的表面。PBT性能的优越性使纤维增强PBT复合材料具有较高的强度、抗冲击性和可回收利用性,在热塑性复合材料领域具有极大的应用潜力。Cyclic butylene terephthalate (CBT) functional polymer has a macrocyclic oligoester structure and is a mixture of different low molecular weight cyclic oligomers. Its melt viscosity is extremely low, and it becomes It is a liquid like water (under the same conditions, the viscosity of PBT is about 5000 times that of it). Under the action of tin or titanium catalysts, CBT can undergo ring-opening polymerization to obtain thermoplastic engineering plastics polycyclic butylene terephthalate (PBT). There is no gas release during CBT processing, which is green and environmentally friendly, and can make the finished product have a good surface. The superiority of PBT properties makes fiber-reinforced PBT composites have high strength, impact resistance and recyclability, and has great application potential in the field of thermoplastic composites.
发明内容Contents of the invention
本发明的目的在于提供一种工艺简单、成本低廉、安全环保、能耗低、效率高的纤维增强PBT复合材料的真空辅助树脂扩散成型方法。The purpose of the present invention is to provide a vacuum-assisted resin diffusion molding method for fiber-reinforced PBT composite materials with simple process, low cost, safety and environmental protection, low energy consumption and high efficiency.
本发明的目的是这样实现的:The purpose of the present invention is achieved like this:
1)将催化剂附在纤维布上;1) Attach the catalyst to the fiber cloth;
2)以一定厚度的附有催化剂的纤维布为纤维增强材料,将纤维增强材料置于贴好高温脱模布、埋有高温密封条的模具内;所述模具上连接带有阀门的树脂注入管路和抽真空管路;2) Use a certain thickness of fiber cloth with a catalyst as the fiber reinforcement material, place the fiber reinforcement material in a mold pasted with a high-temperature release cloth and embedded with a high-temperature sealing strip; the mold is connected to a resin injection valve with a valve pipeline and vacuum pipeline;
3)用电阻丝加热,使模具升温至180~220℃,用聚四氟乙烯加热管给树脂注入管路加热至180~220℃,CBT树脂用油浴加热至180~220℃;3) Heating with resistance wire to raise the temperature of the mold to 180-220°C, using a polytetrafluoroethylene heating tube to heat the resin injection pipeline to 180-220°C, and heating the CBT resin to 180-220°C with an oil bath;
4)将树脂注入管管口没入融化后的CBT树脂中,打开注入管路阀门,CBT树脂在真空作用下吸入模具中,待抽真空管路中有树脂流出时,关闭注入管路阀门;4) Submerge the nozzle of the resin injection pipe into the melted CBT resin, open the valve of the injection pipeline, and the CBT resin will be sucked into the mold under the action of vacuum, and close the valve of the injection pipeline when the resin flows out of the vacuum pipeline;
5)将模具在180~220℃保温30min~1h,使CBT树脂对纤维增强材料进行充分浸润,同时CBT树脂开环聚合结晶为高分子量的PBT,进行退火处理后,脱模得到纤维增强PBT复合材料。5) Keep the mold at 180-220°C for 30min-1h, so that the CBT resin can fully infiltrate the fiber reinforced material. At the same time, the CBT resin ring-opening polymerization crystallizes into high molecular weight PBT. After annealing treatment, demoulding to obtain fiber-reinforced PBT composite Material.
本发明还可以包括:The present invention may also include:
1、所述将催化剂附在纤维布上的具体操作为:将催化剂倒入异丙醇溶液中,利用磁力搅拌器在80℃下搅拌10min,使催化剂完全溶解,把溶液均匀的催化剂溶液刷在纤维布上或者是将纤维布浸泡在溶液均匀的催化剂溶液中再取出,在130℃温度下烘干30min,中途把纤维布翻面。1. The specific operation of attaching the catalyst to the fiber cloth is as follows: pour the catalyst into the isopropanol solution, stir at 80°C for 10 minutes with a magnetic stirrer to completely dissolve the catalyst, and brush the uniform catalyst solution on the Put it on the fiber cloth or soak the fiber cloth in the catalyst solution with a uniform solution, then take it out, dry it at 130°C for 30 minutes, and turn the fiber cloth over halfway.
2、所述的纤维布是玻璃纤维布、玄武岩纤维布或碳纤维布中的一种或者其中至少两种的复合。2. The fiber cloth is one of glass fiber cloth, basalt fiber cloth or carbon fiber cloth or a composite of at least two of them.
3、所述的催化剂为锡类催化剂,为二羟基丁基氯化锡。3. The catalyst is a tin catalyst, which is dihydroxybutyl tin chloride.
4、所述的CBT树脂的结构式为:4. The structural formula of the CBT resin is:
所述CBT树脂在使用前先在105℃温度下烘干10h以上。The CBT resin is dried at a temperature of 105° C. for more than 10 hours before use.
5、所述退火处理的具体操作为:加热至230~250℃,恒温30min后停止加热,自然冷却至室温。5. The specific operation of the annealing treatment is: heating to 230-250° C., stopping heating after 30 minutes at a constant temperature, and naturally cooling to room temperature.
利用本发明成型方法得到的纤维增强PBT复合材料,经检验测试,其中,纤维体积含量可达到70%以上。The fiber-reinforced PBT composite material obtained by the molding method of the present invention has been tested, wherein the fiber volume content can reach more than 70%.
通过采用上述技术方案,本发明具有如下优点:1)与现有技术相比,本发明把只适用于热固性复合材料的真空辅助树脂扩散成型工艺应用于热塑性复合材料的生产,避免了较高的成型温度和成型压力,有效的降低了成本,减小了能耗。2)将催化剂事先附在纤维布上,而不是直接加入CBT树脂中,把催化剂和CBT树脂在空间上进行了隔离,CBT树脂在纤维布上发生原位聚合。这就大大的降低了树脂的注入黏度,增强了树脂对纤维的浸润。3)该成型方法工艺简单,容易操作,成本低廉,安全环保,生产效率高。由于树脂黏度很低,此方法可用于纤维增强热塑性复合材料薄壁制品和大尺寸纤维增强热塑性复合材料构件的成型,有利于推广应用。4)该成型工艺生产出的纤维增强PBT复合材料制件纤维体积含量高,制件力学性能好。By adopting the above technical scheme, the present invention has the following advantages: 1) Compared with the prior art, the present invention applies the vacuum-assisted resin diffusion molding process only applicable to thermosetting composite materials to the production of thermoplastic composite materials, avoiding higher The molding temperature and molding pressure effectively reduce the cost and energy consumption. 2) The catalyst is attached to the fiber cloth in advance, instead of directly adding to the CBT resin, the catalyst and the CBT resin are separated in space, and the CBT resin is polymerized in situ on the fiber cloth. This greatly reduces the injection viscosity of the resin and enhances the infiltration of the resin to the fiber. 3) The forming method has simple process, easy operation, low cost, safety and environmental protection, and high production efficiency. Due to the low viscosity of the resin, this method can be used for the molding of thin-walled fiber-reinforced thermoplastic composites and large-scale fiber-reinforced thermoplastic composite components, which is conducive to popularization and application. 4) The fiber-reinforced PBT composite parts produced by this molding process have high fiber volume content and good mechanical properties of the parts.
针对CBT具有低黏度的特征,本发明提出了一种纤维增强PBT复合材料的新型制备工艺,即在真空负压条件下,利用树脂的流动和渗透实现对密闭模腔内的纤维织物增强材料的浸渍,然后聚合结晶成型。与传统的热塑性复合材料成型工艺相比,这是一种高性能、低成本的工艺,并且可以用于薄壁制品的制造和大尺寸复合材料构件的生产。Aiming at the characteristic of low viscosity of CBT, the present invention proposes a new preparation process of fiber reinforced PBT composite material, that is, under the condition of vacuum negative pressure, the flow and penetration of resin are used to achieve the fiber fabric reinforcement material in the closed mold cavity. Impregnated, then polymerized and crystallized. Compared with traditional thermoplastic composite molding processes, this is a high-performance, low-cost process, and can be used for the manufacture of thin-walled articles and the production of large-scale composite components.
附图说明Description of drawings
附图为本发明的流程图。Accompanying drawing is the flowchart of the present invention.
具体实施方式Detailed ways
下面结合附图举例对本发明做更详细的描述。The present invention will be described in more detail below with examples in conjunction with the accompanying drawings.
附图中给出了本发明的纤维增强PBT复合材料的真空辅助树脂扩散成型方法的工艺流程,其中:1是CBT树脂、2是油浴加热器、3是加热四氟乙烯管、4是球阀、5是模具、6是电阻丝、7是树脂收集器、8是真空泵。The technological process of the vacuum-assisted resin diffusion molding method of the fiber-reinforced PBT composite material of the present invention is provided in the accompanying drawings, wherein: 1 is CBT resin, 2 is an oil bath heater, 3 is a heating tetrafluoroethylene pipe, and 4 is a ball valve , 5 is a mould, 6 is a resistance wire, 7 is a resin collector, and 8 is a vacuum pump.
具体实施方案一:Specific implementation plan one:
所用的催化剂为广州远塑化工有限公司生产的型号为PC-4101的二羟基丁基氯化锡;所用的纤维增强材料为宜兴复兴玻璃纤维有限公司生产的面密度为300g/m2的玻璃纤维单向布;所用CBT树脂为美国Cyclics公司生产的型号为CBT100的树脂,使用前在105℃烘箱中烘干10h。The catalyst used is dihydroxybutyl tin chloride PC-4101 produced by Guangzhou Yuansu Chemical Co., Ltd.; the fiber reinforcement used is glass fiber with an area density of 300g/ m2 produced by Yixing Fuxing Glass Fiber Co., Ltd. Unidirectional cloth; the CBT resin used is a model of CBT100 produced by Cyclics in the United States, and it is dried in an oven at 105°C for 10 hours before use.
步骤1),把催化剂附在玻璃纤维单向布上,具体操作为:将质量为注入CBT树脂质量0.6%的催化剂倒入适量异丙醇溶液中,利用磁力搅拌器在80℃下搅拌10min,使催化剂完全溶解,把溶液均匀的刷在玻纤布上,放入130℃烘箱中,烘30min,中途把玻纤布翻面。Step 1), attach the catalyst to the glass fiber unidirectional cloth. The specific operation is: pour the catalyst with a mass of 0.6% of the mass injected into the CBT resin into an appropriate amount of isopropanol solution, and use a magnetic stirrer to stir at 80°C for 10 minutes. Dissolve the catalyst completely, brush the solution evenly on the glass fiber cloth, put it in an oven at 130°C, bake for 30 minutes, and turn the glass fiber cloth over halfway.
步骤2),选用模腔厚度为2mm的平板模具,在模腔内贴高温脱模布,埋入高温密封条,依次铺覆12层玻璃纤维单向布,铺层角度均为0度,合模,拧紧紧固模具螺栓。在模具上连接带有阀门的树脂注入管路和抽真空管路。模具的树脂注入口和抽真空口分别设在模具两端,树脂注入口处开有树脂导流凹槽。Step 2), select a flat mold with a cavity thickness of 2 mm, paste high-temperature release cloth in the cavity, embed high-temperature sealing strips, and lay 12 layers of glass fiber unidirectional cloth in sequence, with the laying angle of 0 degrees. Mold, tighten the fastening mold bolts. Connect the resin injection pipeline and the vacuum pipeline with valves on the mold. The resin injection port and the vacuum port of the mold are respectively arranged at two ends of the mould, and the resin injection port is provided with a resin diversion groove.
步骤3),用电阻丝加热,使模具升温至190℃,用聚四氟乙烯加热管给树脂注入管路加热至190℃,CBT树脂用油浴加热至190℃。将树脂注入管管口没入融化后的CBT树脂中,打开注入管路阀门,CBT树脂在真空作用下吸入模具中,待抽真空管路中有树脂流出时,关闭注入管路阀门。将模具在190℃保温30min,使CBT树脂对玻璃纤维增强材料进行浸润,同时CBT树脂开环聚合结晶为高分子量的PBT。Step 3) Heat the mold with resistance wire to 190°C, use a polytetrafluoroethylene heating tube to heat the resin injection pipeline to 190°C, and heat the CBT resin to 190°C with an oil bath. Submerge the nozzle of the resin injection pipe into the melted CBT resin, open the valve of the injection pipeline, and the CBT resin will be sucked into the mold under the action of vacuum, and close the valve of the injection pipeline when the resin flows out of the vacuum pipeline. Keep the mold at 190°C for 30 minutes to infiltrate the glass fiber reinforced material with the CBT resin, and at the same time, the ring-opening polymerization of the CBT resin crystallizes into high molecular weight PBT.
步骤4),对所制备的玻璃纤维增强PBT复合材料加热至240℃(PBT的熔点之上)进行退火处理,恒温30min后停止加热,自然冷却至室温,脱模得到厚度为1.86mm的玻纤增强PBT复合材料层合板。Step 4), heat the prepared glass fiber reinforced PBT composite material to 240°C (above the melting point of PBT) for annealing treatment, stop heating after 30 minutes at a constant temperature, naturally cool to room temperature, and demould to obtain a glass fiber with a thickness of 1.86mm Reinforced PBT composite laminates.
此方案选取低于PBT熔点的温度使CBT进行开环聚合,聚合反应与PBT的结晶过程同时进行,操作简便,降低了能耗。待CBT聚合结晶后,对所制备的玻璃纤维增强PBT复合材料加热至PBT的熔点之上进行退火处理,使PBT的结晶更加完全,强度和模量均有所提高,复合材料的力学性能增强。所制得的玻璃纤维增强PBT复合材料层合板,纤维体积含量为75%,该层合板树脂对纤维的浸润性好,无分层现象,内部无空隙、干斑等质量缺陷,层合板外观质量良好。In this scheme, the temperature lower than the melting point of PBT is selected to carry out ring-opening polymerization of CBT, and the polymerization reaction and the crystallization process of PBT are carried out at the same time, which is easy to operate and reduces energy consumption. After the CBT is polymerized and crystallized, the prepared glass fiber reinforced PBT composite material is heated to above the melting point of PBT for annealing treatment, so that the crystallization of PBT is more complete, the strength and modulus are improved, and the mechanical properties of the composite material are enhanced. The obtained glass fiber reinforced PBT composite laminate has a fiber volume content of 75%. The resin of the laminate has good wettability to the fibers, no delamination, no internal voids, dry spots and other quality defects, and the appearance quality of the laminate is good.
具体实施方案二:Specific implementation plan two:
所用的催化剂为广州远塑化工有限公司生产的型号为PC-4101的二羟基丁基氯化锡;所用的纤维增强材料为四川拓鑫研究院生产的面密度为424g/m2的玄武岩纤维编织布;所用CBT树脂为美国Cyclics公司生产的型号为CBT100的树脂,使用前在105℃烘箱中烘干10h。The catalyst used is dihydroxybutyltin chloride PC-4101 produced by Guangzhou Yuansu Chemical Co., Ltd.; the fiber reinforcement used is basalt fiber weaving with an area density of 424g/ m2 produced by Sichuan Tuoxin Research Institute Cloth; the CBT resin used is the model CBT100 resin produced by Cyclics Company of the United States, and it was dried in an oven at 105°C for 10 hours before use.
步骤1),把催化剂附在玄武岩纤维编织布上,具体操作为:将质量为注入CBT树脂质量0.6%的催化剂倒入适量异丙醇溶液中,利用磁力搅拌器在80℃下搅拌10min,使催化剂完全溶解,把溶液均匀的刷在纤维布上,放入130℃烘箱中,烘30min,中途把纤维编织布翻面。Step 1), attach the catalyst to the basalt fiber woven cloth, the specific operation is: pour the catalyst with a mass of 0.6% of the mass injected into the CBT resin into an appropriate amount of isopropanol solution, and use a magnetic stirrer to stir at 80°C for 10 minutes to make The catalyst is completely dissolved, brush the solution evenly on the fiber cloth, put it in an oven at 130°C, bake for 30 minutes, and turn the fiber woven cloth over halfway.
步骤2),选用模腔厚度为4mm的平板模具,在模腔内贴高温脱模布,埋入高温密封条,依次铺覆20层玄武岩纤维编织布,合模,拧紧紧固模具螺栓。在模具上连接带有阀门的树脂注入管路和抽真空管路。模具的树脂注入口和抽真空口分别设在模具两端,树脂注入口处开有树脂导流凹槽。Step 2) Select a flat mold with a cavity thickness of 4mm, paste a high-temperature release cloth in the cavity, embed a high-temperature sealing strip, cover 20 layers of basalt fiber woven cloth in sequence, close the mold, and tighten the mold bolts. Connect the resin injection pipeline and the vacuum pipeline with valves on the mold. The resin injection port and the vacuum port of the mold are respectively arranged at two ends of the mould, and the resin injection port is provided with a resin diversion groove.
步骤3),用电阻丝加热,使模具升温至190℃,用聚四氟乙烯加热管给树脂注入管路加热至190℃,CBT树脂用油浴加热至190℃。将树脂注入管管口没入融化后的CBT树脂中,打开注入管路阀门,CBT树脂在真空作用下吸入模具中,待抽真空管路中有树脂流出时,关闭注入管路阀门。将模具在190℃保温30min,使CBT树脂对玄武岩纤维增强材料进行浸润,同时CBT树脂开环聚合结晶为高分子量的PBT。Step 3) Heat the mold with resistance wire to 190°C, use a polytetrafluoroethylene heating tube to heat the resin injection pipeline to 190°C, and heat the CBT resin to 190°C with an oil bath. Submerge the nozzle of the resin injection pipe into the melted CBT resin, open the valve of the injection pipeline, and the CBT resin will be sucked into the mold under the action of vacuum, and close the valve of the injection pipeline when the resin flows out of the vacuum pipeline. The mold was kept at 190°C for 30 minutes to infiltrate the CBT resin into the basalt fiber reinforcement, and at the same time, the ring-opening polymerization of the CBT resin crystallized into high molecular weight PBT.
步骤4),对所制备的玄武岩纤维增强PBT复合材料加热至240℃(PBT的熔点之上)进行退火处理,恒温30min后停止加热,自然冷却至室温,脱模得到厚度为3.86mm的编织玄武岩纤维增强PBT复合材料。Step 4), heat the prepared basalt fiber reinforced PBT composite material to 240°C (above the melting point of PBT) for annealing treatment, stop heating after 30 minutes at a constant temperature, cool naturally to room temperature, and demould to obtain a braided basalt with a thickness of 3.86mm Fiber reinforced PBT composites.
此方案选取低于PBT熔点的温度使CBT进行开环聚合,聚合反应与PBT的结晶过程同时进行,操作简便,降低了能耗。待CBT聚合结晶后,对所制备的纤维增强PBT复合材料加热至PBT的熔点之上进行退火处理,使PBT的结晶更加完全,强度和模量均有所提高,复合材料的力学性能增强。所制得的纤维增强PBT复合材料层合板,纤维体积含量为70%,该层合板树脂对纤维的浸润性好,无分层现象,内部无空隙、干斑等质量缺陷,层合板外观质量良好。In this scheme, the temperature lower than the melting point of PBT is selected to carry out ring-opening polymerization of CBT, and the polymerization reaction and the crystallization process of PBT are carried out at the same time, which is easy to operate and reduces energy consumption. After the CBT is polymerized and crystallized, the prepared fiber-reinforced PBT composite material is heated to above the melting point of PBT for annealing treatment, so that the crystallization of PBT is more complete, the strength and modulus are improved, and the mechanical properties of the composite material are enhanced. The obtained fiber-reinforced PBT composite laminate has a fiber volume content of 70%. The resin of the laminate has good wettability to the fibers, no delamination phenomenon, no internal voids, dry spots and other quality defects, and the appearance quality of the laminate is good. .
Claims (6)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201310187953.9A CN103341985B (en) | 2013-05-21 | 2013-05-21 | Vacuum-assisted resin diffusion molding method for fiber-reinforced PBT composite material |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201310187953.9A CN103341985B (en) | 2013-05-21 | 2013-05-21 | Vacuum-assisted resin diffusion molding method for fiber-reinforced PBT composite material |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN103341985A CN103341985A (en) | 2013-10-09 |
| CN103341985B true CN103341985B (en) | 2015-04-08 |
Family
ID=49276832
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201310187953.9A Expired - Fee Related CN103341985B (en) | 2013-05-21 | 2013-05-21 | Vacuum-assisted resin diffusion molding method for fiber-reinforced PBT composite material |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN103341985B (en) |
Families Citing this family (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104262593B (en) * | 2014-03-14 | 2016-08-31 | 深圳航天科技创新研究院 | A kind of cyclic oligomer composite material and in-situ preparation method thereof |
| CN105922608B (en) * | 2016-06-14 | 2019-01-01 | 四川德源石油天然气工程有限公司 | A kind of composite material preparation facilities and preparation method for field pipes enhancing |
| CN106493972B (en) * | 2016-10-26 | 2018-10-19 | 沈阳航空航天大学 | A kind of preparation method of fiber reinforcement PBT composite melting jointing |
| CN106751583A (en) * | 2016-12-27 | 2017-05-31 | 铜陵市铜峰光电科技有限公司 | A kind of LED fire-retardant plastics of high heat conduction of the adjustable iridescent of cellulose CdTe and preparation method thereof |
| CN106985415A (en) * | 2017-05-04 | 2017-07-28 | 华东交通大学 | Fiber reinforcement PBT composite moulding process based on heating and mould pressing |
| CN109294268A (en) * | 2018-09-30 | 2019-02-01 | 吉林省华阳新材料研发有限公司 | A kind of basalt composite material and its preparation method and application |
| CN116100832A (en) * | 2023-02-10 | 2023-05-12 | 株洲时代新材料科技股份有限公司 | Continuous perfusion device and perfusion method for polyurethane material |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1570976A1 (en) * | 2004-03-04 | 2005-09-07 | Alcan Technology & Management Ltd. | Processes for converting cyclic oligomers into thermoplastic PBT products |
| CN101759965B (en) * | 2008-12-26 | 2012-10-17 | 上海杰事杰新材料(集团)股份有限公司 | PBT/montmorillonite nanocomposite material with high crystallization temperature and preparation method thereof |
| CN101987912B (en) * | 2009-08-07 | 2013-01-09 | 骏马化纤股份有限公司 | Modification method and spinning process for polyethylene naphthalate |
| CN102101936B (en) * | 2009-12-21 | 2013-02-27 | 上海杰事杰新材料(集团)股份有限公司 | Polybutylene terephthalate nano composite material and preparation method thereof |
| CN102555234B (en) * | 2012-02-01 | 2014-06-11 | 中材科技风电叶片股份有限公司 | Resin membrane melt impregnation forming method of fiber reinforced PBT composite material |
-
2013
- 2013-05-21 CN CN201310187953.9A patent/CN103341985B/en not_active Expired - Fee Related
Also Published As
| Publication number | Publication date |
|---|---|
| CN103341985A (en) | 2013-10-09 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN103341985B (en) | Vacuum-assisted resin diffusion molding method for fiber-reinforced PBT composite material | |
| CN102166826B (en) | Forming process of fiber reinforced thermoplastic composite material | |
| CN103963315B (en) | A kind of prepreg/resin transfer moulding co-curing process of composite | |
| US9643363B2 (en) | Manufacture of a structural composites component | |
| CN101804714A (en) | Composite material member with surface functional layer and RTM preparation method thereof | |
| CN101423650B (en) | High interlaminar shear strength epoxy resin base composite material and preparation method thereof | |
| CN103482980A (en) | C/SiC composite material and preparation method of same | |
| CN107471676A (en) | A kind of preparation method of polyparaphenylene's Benzo-dioxazole fiber-reinforced resin matrix compound material | |
| CN108454135A (en) | A kind of o-phthalonitrile resin prepreg, composite material and preparation method | |
| CN105269835A (en) | Stamping and injection integrated molding method for thermoplastic resin matrix woven composite material | |
| WO2015106482A1 (en) | Preparation method for high-performance fibre composite article | |
| CN107891616A (en) | A resin-based composite material radome injection molding device and method | |
| CN104419119A (en) | Modified carbon fiber/epoxy resin composite material and preparation method thereof | |
| CN104097329A (en) | Method for performing resin filling infusion pretreatment for foam material in formation of composite material foam sandwich structure | |
| CN107856325A (en) | One kind is used for continuous fiber reinforced thermoplastic matrix composite and preparation method | |
| CN103994031A (en) | Carbon fiber fabric reinforced resin matrix composite girder cap and manufacturing method thereof | |
| CN102558591B (en) | Preparation method of fiber-reinforced PCBT thermoplastic composite material bottom plate for electric vehicle | |
| CN107501609B (en) | A kind of thermoplastic fibre composite material sheet and its preparation method and application product | |
| CN105504750B (en) | A kind of continuous carbon fibre polycarbafil composite and preparation method thereof | |
| CN104325653B (en) | The method for continuous production of a kind of GRP pipe and prepared GRP pipe | |
| CN103396565B (en) | The preparation method of low molecular weight cyclic oligomer composite material | |
| CN104098875B (en) | A kind of continuous lod CBT prepreg tapes and its preparation method and application | |
| CN106493972B (en) | A kind of preparation method of fiber reinforcement PBT composite melting jointing | |
| CN109367070A (en) | A kind of vacuum perfusion process producing composite material support roller | |
| CN109719973A (en) | A kind of preparation method of plant fiber felt/polymer matrix composites |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150408 Termination date: 20210521 |
|
| CF01 | Termination of patent right due to non-payment of annual fee |