CN103245655A - Experimental apparatus for acquiring large-area uniform discharge plasmas - Google Patents
Experimental apparatus for acquiring large-area uniform discharge plasmas Download PDFInfo
- Publication number
- CN103245655A CN103245655A CN2013101888400A CN201310188840A CN103245655A CN 103245655 A CN103245655 A CN 103245655A CN 2013101888400 A CN2013101888400 A CN 2013101888400A CN 201310188840 A CN201310188840 A CN 201310188840A CN 103245655 A CN103245655 A CN 103245655A
- Authority
- CN
- China
- Prior art keywords
- electrode
- reactor
- discharge
- plasma
- power supply
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 210000002381 plasma Anatomy 0.000 title 1
- 239000007789 gas Substances 0.000 claims abstract description 76
- 238000005259 measurement Methods 0.000 claims abstract description 30
- 230000003595 spectral effect Effects 0.000 claims abstract description 15
- 238000000034 method Methods 0.000 claims abstract description 5
- 230000008569 process Effects 0.000 claims abstract description 4
- 238000010183 spectrum analysis Methods 0.000 claims abstract description 4
- 239000000523 sample Substances 0.000 claims description 31
- 239000010453 quartz Substances 0.000 claims description 13
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 13
- 239000013307 optical fiber Substances 0.000 claims description 11
- 229910001220 stainless steel Inorganic materials 0.000 claims description 10
- 239000010935 stainless steel Substances 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 5
- 230000003287 optical effect Effects 0.000 claims description 4
- 238000006073 displacement reaction Methods 0.000 claims description 3
- 239000011810 insulating material Substances 0.000 claims description 3
- 238000007599 discharging Methods 0.000 claims 3
- 238000012423 maintenance Methods 0.000 claims 2
- 239000004809 Teflon Substances 0.000 claims 1
- 229920006362 Teflon® Polymers 0.000 claims 1
- 230000002706 hydrostatic effect Effects 0.000 claims 1
- 238000009413 insulation Methods 0.000 claims 1
- 230000003071 parasitic effect Effects 0.000 claims 1
- 230000001105 regulatory effect Effects 0.000 claims 1
- 238000007789 sealing Methods 0.000 claims 1
- 230000004888 barrier function Effects 0.000 abstract description 7
- 230000009471 action Effects 0.000 abstract description 3
- 238000005265 energy consumption Methods 0.000 abstract description 3
- 238000005516 engineering process Methods 0.000 abstract description 3
- 208000028659 discharge Diseases 0.000 description 69
- 238000002474 experimental method Methods 0.000 description 6
- 239000000835 fiber Substances 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000003651 drinking water Substances 0.000 description 2
- 235000020188 drinking water Nutrition 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000000295 emission spectrum Methods 0.000 description 2
- 230000005281 excited state Effects 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- -1 polytetrafluoroethylene Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 230000001954 sterilising effect Effects 0.000 description 2
- 238000004659 sterilization and disinfection Methods 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 101100447665 Mus musculus Gas2 gene Proteins 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000000427 thin-film deposition Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Landscapes
- Plasma Technology (AREA)
Abstract
一种获取大面积均匀放电等离子体的实验装置,属于等离子体技术领域,由双极性纳秒脉冲电源、反应器、多针-板式电极、配气系统、光谱测量系统和放电测量系统组成;双极性纳秒窄脉冲电源驱动安装于反应器中的多针-板式电极间的空气及其他混合气体介质阻挡放电,混合气体通过配气系统向反应器中输入。光谱测量系统实时收集等离子放电的光子信息,并输入到计算机进行光谱分析。放电测量系统实时收集高压纳秒脉冲电源的放电电压和电流,并由数字示波器显示。本发明采用双极性纳秒窄脉冲电源,在无磁场作用下产生了大面积的放电等离子体;产生的等离子体是均匀的、弥散的;产生的等离子体中电子密度高、能量利用率高、耗能低、 放电过程易于控制。
An experimental device for obtaining large-area uniform discharge plasma belongs to the field of plasma technology, and is composed of a bipolar nanosecond pulse power supply, a reactor, a multi-pin-plate electrode, a gas distribution system, a spectral measurement system and a discharge measurement system; The bipolar nanosecond narrow pulse power supply drives the dielectric barrier discharge of air and other mixed gases between the multi-needle-plate electrodes installed in the reactor, and the mixed gases are input into the reactor through the gas distribution system. The spectral measurement system collects the photon information of the plasma discharge in real time and inputs it to the computer for spectral analysis. The discharge measurement system collects the discharge voltage and current of the high-voltage nanosecond pulse power supply in real time, and displays them on a digital oscilloscope. The invention adopts a bipolar nanosecond narrow pulse power supply to generate large-area discharge plasma without the action of a magnetic field; the generated plasma is uniform and dispersed; the generated plasma has high electron density and high energy utilization rate , Low energy consumption, easy to control the discharge process.
Description
技术领域 technical field
本发明属于等离子体技术领域,特别是涉及一种在多针-板式电极结构下利用双极性纳秒脉冲电源来驱动,在空气及混合气体中获得大面积低温均匀的介质阻挡放电等离子体技术。The invention belongs to the field of plasma technology, and in particular relates to a dielectric barrier discharge plasma technology which is driven by a bipolar nanosecond pulse power supply under a multi-needle-plate electrode structure and obtains large-area low-temperature and uniform dielectric barrier discharge in air and mixed gases .
技术背景 technical background
传统上,介质阻挡放电等离子体由交流电源驱动,在交流电源驱动下,介质阻挡放电等离子体在大气压空气中实现均匀、弥散放电的条件非常苛刻,容易转化为火花、弧光等放电模式,而且气体温度较高,能量利用率低,对材料表面损害严重,运行成本高等,这些放电的缺点使其在工业应用上受到极大的限制,严重地影响了其在工业上的应用。Traditionally, dielectric barrier discharge plasma is driven by AC power. Under the drive of AC power, the conditions for uniform and diffuse discharge of dielectric barrier discharge plasma in atmospheric pressure air are very harsh, and it is easy to convert into discharge modes such as sparks and arcs, and the gas High temperature, low energy utilization rate, serious damage to the material surface, high operating cost, etc., these shortcomings of discharge greatly restrict its industrial application, seriously affecting its industrial application.
而在纳秒脉冲放电中,由于纳秒脉冲具有陡峭脉冲电压上升沿和较短脉冲持续时间等特点,使电子在快速上升的电场中得到最大程度的加速,因此纳秒脉冲放电中电子的动力学特性与传统的交流放电存在较大的差别。在相同条件下纳秒脉冲放电可以获得更高的电子温度和能量利用效率。同时,较短的单次脉冲持续时间可以使放电在向局部热力学平衡态转变过程中将放电及时熄灭,利于控制放电的稳定性与非热力学平衡性,更易于在大气压空气中实现稳定的均匀放电,因此,纳秒脉冲放电等离子体具有高能电子密度大、平均电子能量高、产生化学活性粒子和VUV产生效率高等优点。同时采用多针-板式电极结构可以产生大面积的放电等离子体,通过结合纳秒脉冲放电和多针-板式电极结构的优点,可以在大气压下产生大面积均匀的低温放电等离子体,其在食品加工,材料表面处理、薄膜沉积、微生物诱变、饮用水灭菌、有毒有害气体脱除等方面有着重要的应用前景,备受国内外实验室重视。在多针-板式电极结构下利用双极性纳秒脉冲电源来驱动介质阻挡放电可以在空气及其他混合气体中获得大面积均匀放电的低温放电等离子体,在材料表面处理、薄膜沉积、微生物诱变、饮用水灭菌等领域都具有重要的商业价值和广阔的工业应用前景。In the nanosecond pulse discharge, because the nanosecond pulse has the characteristics of a steep pulse voltage rising edge and a short pulse duration, the electrons are accelerated to the greatest extent in the rapidly rising electric field, so the power of the electrons in the nanosecond pulse discharge There is a big difference between the physical characteristics and the traditional AC discharge. Under the same conditions, nanosecond pulse discharge can obtain higher electron temperature and energy utilization efficiency. At the same time, the shorter single pulse duration can make the discharge extinguish in time during the transition to the local thermodynamic equilibrium state, which is beneficial to control the stability and non-thermodynamic equilibrium of the discharge, and it is easier to achieve stable and uniform discharge in atmospheric pressure air. , Therefore, the nanosecond pulse discharge plasma has the advantages of high density of high-energy electrons, high average electron energy, generation of chemically active particles and high efficiency of VUV generation. At the same time, the multi-needle-plate electrode structure can generate large-area discharge plasma. By combining the advantages of nanosecond pulse discharge and multi-needle-plate electrode structure, a large area of uniform low-temperature discharge plasma can be generated under atmospheric pressure. It is used in food Processing, material surface treatment, thin film deposition, microbial mutagenesis, drinking water sterilization, removal of toxic and harmful gases, etc. have important application prospects, and are highly valued by laboratories at home and abroad. Under the multi-needle-plate electrode structure, using bipolar nanosecond pulse power supply to drive dielectric barrier discharge can obtain a large area of uniform discharge low-temperature discharge plasma in air and other mixed gases, which can be used in material surface treatment, film deposition, microbial induction Transformation, drinking water sterilization and other fields have important commercial value and broad industrial application prospects.
专利CN1927408A解决了在引入平行磁场的基础上,利用单极纳秒脉冲电源产生的介质阻挡放电等离子体去除有害气体,净化效率大幅度的提高。但存在的问题是(1)产生的等离子体是丝状放电;(2) 没有具体介绍等离子体特性的诊断方法;(3) 没有介绍在无外加磁场作用下产生的放电等离子体。专利CN1559651A和CN2500026Y解决了用脉冲电晕放电产生的等离子体净化有害气体,但存在的问题是电晕放电只发生在尖锐电极附近,仅在一个很薄的电晕层内产生强的电场,产生的平均电子能量在3 eV 左右, 由于它的平均电子能量低,放电等离子体体积小,放电强度较弱、电子密度较低,在放电空间产生的活性粒子和自由基的数目少,有效处理空间小,因此,这些严重的影响了等离子体对有害气体的净化效率,也使等离子体的实际应用范围受到了很大的限制。Patent CN1927408A solves the problem of removing harmful gases by using dielectric barrier discharge plasma generated by unipolar nanosecond pulse power supply on the basis of introducing parallel magnetic fields, and greatly improving the purification efficiency. However, there are problems that (1) the generated plasma is a filamentous discharge; (2) there is no specific introduction to the diagnostic method of the plasma characteristics; (3) the discharge plasma generated without the action of an external magnetic field is not introduced. Patents CN1559651A and CN2500026Y solve the problem of purifying harmful gases with plasma generated by pulsed corona discharge, but the existing problem is that corona discharge only occurs near the sharp electrodes, and a strong electric field is generated only in a very thin corona layer, resulting in The average electron energy is about 3 eV. Due to its low average electron energy, small discharge plasma volume, weak discharge intensity and low electron density, the number of active particles and free radicals generated in the discharge space is small, and the effective treatment space Therefore, these seriously affect the purification efficiency of plasma to harmful gases, and also greatly limit the practical application range of plasma.
发明内容 Contents of the invention
为了解决放电等离子体面积小,放电不均匀,能量利用率低以及缺乏对放电等离子体特性的实时诊断问题,本发明提供了一种获取大面积均匀放电等离子体的实验装置,由双极性纳秒脉冲电源、反应器、多针-板式电极、配气系统、光谱测量系统和放电测量系统组成。In order to solve the problems of small discharge plasma area, uneven discharge, low energy utilization rate and lack of real-time diagnosis of discharge plasma characteristics, the present invention provides an experimental device for obtaining large-area uniform discharge plasma. It consists of a second pulse power supply, a reactor, a multi-needle-plate electrode, a gas distribution system, a spectral measurement system and a discharge measurement system.
双极性纳秒脉冲电源可以在正负方向上交替产生相同的窄脉冲电压波形;脉冲上升时间约为20 ns,脉宽约为60 ns,脉冲峰值电压0-60kV, 脉冲重复频率0-400Hz范围内连续可调。The bipolar nanosecond pulse power supply can alternately generate the same narrow pulse voltage waveform in the positive and negative directions; the pulse rise time is about 20 ns, the pulse width is about 60 ns, the pulse peak voltage is 0-60kV, and the pulse repetition frequency is 0-400Hz Continuously adjustable within the range.
多针-板式电极由上电极、多针电极、板电极、下电极和介质片组成;上电极、多针电极、板电极和下电极皆由不锈钢材料制成;板电极为水平固定状态,并与下电极相连;下电极通过导线牢固接地;介质片覆盖在板电极的上表面;多针电极固定在上电极的下方,且针尖朝下;多针电极与介质片相对,形成放电间隙;多针电极的针尖距离介质片的间隙在0-30 mm范围内可调;上电极的另一端与双极性纳秒脉冲电源的输出端连接。The multi-needle-plate electrode is composed of upper electrode, multi-needle electrode, plate electrode, lower electrode and dielectric sheet; the upper electrode, multi-needle electrode, plate electrode and lower electrode are all made of stainless steel; the plate electrode is horizontally fixed, and It is connected with the lower electrode; the lower electrode is firmly grounded through the wire; the dielectric sheet covers the upper surface of the plate electrode; the multi-needle electrode is fixed under the upper electrode, and the needle tip is facing downward; the multi-needle electrode is opposite to the dielectric sheet to form a discharge gap; The gap between the tip of the needle electrode and the dielectric sheet is adjustable in the range of 0-30 mm; the other end of the upper electrode is connected to the output end of the bipolar nanosecond pulse power supply.
反应器是一个上顶面为绝缘材料,四周和底面为不锈钢制成的密封的圆柱形容器,多针-板式电极置于反应器的中央,上电极穿过反应器的绝缘顶面与双极性纳秒脉冲电源的输出端连接;下电极穿过反应器的下底面,并牢固接地;反应器侧面与放电间隙等高程处开有可供观察放电的圆形平光石英窗口,整个反应器气密性很好,且除石英窗口外,所有内壁均匀涂黑以防止杂散光对光谱测量的影响;反应器侧壁安装有带有气阀的进气管路和出气管路。The reactor is a sealed cylindrical container with an insulating material on the upper surface and stainless steel on the four sides and the bottom surface. The multi-needle-plate electrode is placed in the center of the reactor, and the upper electrode passes through the insulating top surface of the reactor and the bipolar The output end of the nanosecond pulse power supply is connected; the lower electrode passes through the lower bottom of the reactor and is firmly grounded; there is a circular flat quartz window for observing the discharge at the same elevation as the side of the reactor and the discharge gap. The tightness is very good, and except for the quartz window, all the inner walls are uniformly blackened to prevent the influence of stray light on the spectral measurement; the side wall of the reactor is equipped with an inlet pipe and an outlet pipe with an air valve.
配气系统将所用气体通过进气管路输入反应器中的放电间隙;多余的气体通过配气系统的出气管路排出。The gas distribution system sends the used gas into the discharge gap in the reactor through the inlet pipeline; the excess gas is discharged through the gas outlet pipeline of the gas distribution system.
光谱测量系统,通过安装在反应器的石英窗口实时收集多针-板式电极间等离子体放电的光子信息,并将光信息转化成数字信息输入到计算机进行光谱分析。The spectral measurement system collects the photon information of the plasma discharge between the multi-needle-plate electrodes in real time through the quartz window installed in the reactor, and converts the optical information into digital information and inputs it to the computer for spectral analysis.
放电测量系统,实时收集双极性纳秒脉冲电源的放电电压和电流,并由数字示波器显示。The discharge measurement system collects the discharge voltage and current of the bipolar nanosecond pulse power supply in real time and displays them on a digital oscilloscope.
双极性纳秒脉冲电源、光谱测量系统和放电测量系统皆需用电磁屏蔽罩屏蔽,所有的电磁屏蔽罩外壳牢固接地。The bipolar nanosecond pulse power supply, spectrum measurement system and discharge measurement system all need to be shielded with electromagnetic shielding covers, and all electromagnetic shielding covers are firmly grounded.
配气系统由质量流量控制计、进气管路、出气管路、气阀和多个气瓶组成;将多个带有气阀的气瓶连通到质量流量控制计中,带有气阀的进气管路一端与质量流量控制计连通,另一端穿入反应器内到达多针-板电极的多针电极和介质片之间的边缘处形成喷气口;带有气阀的出气管路安置在与进气管路相对侧的反应器的上方。The gas distribution system consists of a mass flow control meter, an air inlet pipeline, an air outlet pipeline, an air valve and a plurality of gas cylinders; multiple gas cylinders with air valves are connected to the mass flow controller, and the inlet with air valves One end of the gas pipeline communicates with the mass flow control meter, and the other end penetrates into the reactor to reach the multi-needle electrode of the multi-needle-plate electrode and the edge between the dielectric sheet to form a gas injection port; the gas outlet pipeline with the gas valve is arranged at the same Above the reactor on the opposite side of the inlet line.
放电测量系统由数字示波器、电压探头线路和电流探头线路组成;将电压探头线路一端连接在上电极上,另一端连接在数字示波器上;将电流探头线路一端接在下电极与接地之间的导线上,另一端接在数字示波器上。The discharge measurement system consists of a digital oscilloscope, a voltage probe line and a current probe line; connect one end of the voltage probe line to the upper electrode and the other end to the digital oscilloscope; connect one end of the current probe line to the wire between the lower electrode and ground , and the other end is connected to the digital oscilloscope.
光谱测量系统由透镜、光纤探头、光纤、高分辨率光栅单色仪、电荷耦合器件和计算机组成;透镜固定在反应器的石英窗口外侧的支架上,光纤探头固定在透镜另一侧的三维位移平台上,使其正对放电间隙,同时调节透镜中心点以及光纤探头的位置,使多针电极中间针的针尖、透镜中心点以及光纤探头三者在同一水平直线上;光纤探头收集到由透镜会聚后的光信号,并经光纤传输至高分辨率光栅单色仪进行分光,分光后的单色光信号经电荷耦合器件转变为数字信号,最后由计算机采集处理。The spectral measurement system consists of lenses, fiber optic probes, optical fibers, high-resolution grating monochromators, charge-coupled devices, and computers; the lens is fixed on the bracket outside the quartz window of the reactor, and the fiber optic probe is fixed on the other side of the lens for three-dimensional displacement On the platform, make it face the discharge gap, and adjust the center point of the lens and the position of the fiber optic probe at the same time, so that the needle tip of the middle needle of the multi-needle electrode, the center point of the lens, and the fiber optic probe are on the same horizontal line; The converged optical signal is transmitted to a high-resolution grating monochromator through an optical fiber for light splitting. The split monochromatic light signal is converted into a digital signal by a charge-coupled device, and finally collected and processed by a computer.
多针-板式电极中多针电极的针电极数目可根据实际的需求来增加或减少而组成任意形状的电极的图案,同时还可调节针与针之间的距离。In the multi-needle-plate electrode, the number of needle electrodes in the multi-needle electrode can be increased or decreased according to actual needs to form an electrode pattern of any shape, and the distance between the needles can also be adjusted.
介质片可以是石英、 陶瓷、 或聚四氟乙烯的任意一种。The dielectric sheet can be any one of quartz, ceramics, or polytetrafluoroethylene.
多针电极不仅可以调节所有针电极与下电极保持相同的距离同时还可以不同针电极与下电极保持不同的距离。The multi-needle electrodes can not only adjust the same distance between all the needle electrodes and the lower electrode, but also keep different distances between different needle electrodes and the lower electrode.
反应器的观察窗口可以有1至4个。There can be 1 to 4 observation windows of the reactor.
本发明的有益效果是:(1)采用双极性纳秒脉冲电源,在无外加磁场作用下产生了大面积的放电等离子体;(2)产生的等离子体是均匀的、弥散的;(3) 产生的等离子体中电子密度高、能量利用率高、耗能低、 放电过程易于控制。(4)可以通过高分辨率光栅单色仪和数字示波器对均匀等离子体特性进行诊断,以便更好地应用在实际工业中。The beneficial effects of the present invention are: (1) using bipolar nanosecond pulse power supply, a large area of discharge plasma is generated without the action of an external magnetic field; (2) the generated plasma is uniform and dispersed; (3) ) The electron density in the plasma generated is high, the energy utilization rate is high, the energy consumption is low, and the discharge process is easy to control. (4) The characteristics of uniform plasma can be diagnosed by high-resolution grating monochromator and digital oscilloscope, so as to be better applied in actual industry.
附图说明 Description of drawings
图1为本发明示意图。Fig. 1 is a schematic diagram of the present invention.
图2为多针电极针的分布图,由13个针组成两个七星六角结构的图案。Figure 2 is a distribution diagram of multi-needle electrode needles, which consist of 13 needles forming two patterns of seven-star and hexagonal structures.
图中:1. 双极性纳秒脉冲电源;2. 上电极;3.电压探头线路;4.数字示波器;5. 质量流量控制计;6. 进气管路;7. 气阀;8.气瓶; 9. 反应器;10. 多针电极; 11. 出气管路;12. 板电极;13. 介质片;14. 透镜;15. 光纤探头;16. 下电极;17. 电流探头线路;18. 光纤;19. 计算机;20. 高分辨率光栅单色仪;21.电荷耦合器件;22. 电磁屏蔽罩。In the figure: 1. Bipolar nanosecond pulse power supply; 2. Upper electrode; 3. Voltage probe circuit; 4. Digital oscilloscope; 5. Mass flow controller; 6. Intake pipeline; 7. Air valve; 8. Gas bottle; 9. reactor; 10. multi-needle electrode; 11. outlet line; 12. plate electrode; 13. dielectric sheet; 14. lens; 15. optical fiber probe; 16. lower electrode; 17. current probe line; . Optical fiber; 19. Computer; 20. High-resolution grating monochromator; 21. Charge-coupled device; 22. Electromagnetic shielding cover.
具体实施方案 specific implementation plan
下面结合附图和具体实施方案对本发明进一步说明。The present invention will be further described below in conjunction with the accompanying drawings and specific embodiments.
一种获取大面积均匀放电等离子体的实验装置,由双极性纳秒脉冲电源1、反应器9、多针-板式电极、配气系统、光谱测量系统和放电测量系统组成。An experimental device for obtaining large-area uniform discharge plasma is composed of a bipolar nanosecond
双极性纳秒脉冲电源1可以在正负方向上交替产生相同的窄脉冲电压波形;脉冲上升时间约为20 ns,脉宽约为60 ns,脉冲峰值电压0-60kV, 脉冲重复频率0-400Hz范围内连续可调。Bipolar nanosecond
多针-板式电极由上电极2、多针电极10、板电极12、下电极16和介质片13组成;上电极2、多针电极10、板电极12和下电极16皆由不锈钢材料制成;板电极12为水平固定状态,并与下电极16相连;下电极16通过导线牢固接地;介质片13覆盖在板电极12的上表面;多针电极10固定在上电极的下方,且针尖朝下;多针电极10与介质片13相对,形成放电间隙;多针电极10的针尖距离介质片13的间隙在0-30 mm范围内可调;上电极2的另一端与双极性纳秒脉冲电源1的输出端连接。多针电极10的针尖端被磨圆,针尖直径约为0.8 mm,针与针之间的距离为10 mm;板电极12是直径为80 mm的不锈钢圆盘,不锈钢圆盘表面覆盖介质片13其厚度为1 mm,直径为100 mm。The multi-needle-plate electrode is composed of
反应器9是一个上顶面为绝缘材料,四周和底面为不锈钢制成的密封的圆柱形容器,多针-板式电极置于反应器9的中央,上电极2穿过反应器9的绝缘顶面与双极性纳秒脉冲电源1的输出端连接;下电极16穿过反应器9的下底面,并牢固接地;反应器9侧面与放电间隙等高程处开有可供观察放电的圆形平光石英窗口,整个反应器9气密性很好,且除石英窗口外,所有内壁均匀涂黑以防止杂散光对光谱测量的影响;反应器9侧壁安装有进气管路6和出气管路11。The
配气系统将所用气体通过进气管路6输入反应器9中的放电间隙;多余的气体通过配气系统的出气管路11排出。The gas distribution system feeds the used gas into the discharge gap in the
光谱测量系统,通过安装在反应器的石英窗口实时收集多针-板式电极间等离子体放电的光子信息,并将光信息转化成数字信息输入到计算机19进行光谱分析。The spectral measurement system collects the photon information of the plasma discharge between the multi-needle-plate electrodes in real time through the quartz window installed in the reactor, and converts the optical information into digital information and inputs it to the
放电测量系统,实时收集双极性纳秒脉冲电源1的放电电压和电流,并由数字示波器4显示。The discharge measurement system collects the discharge voltage and current of the bipolar nanosecond
双极性纳秒脉冲电源1、光谱测量系统和放电测量系统皆需用电磁屏蔽罩22屏蔽,所有的电磁屏蔽罩22外壳牢固接地。The bipolar nanosecond
配气系统由质量流量控制计5、进气管路6、出气管路11、气阀7和多个气瓶8组成;将多个带有气阀7的气瓶8连通到质量流量控制计5中,带有气阀7的进气管路6一端与质量流量控制计5连通,另一端穿入反应器9内到达多针-板电极的多针电极10和介质片13之间的边缘处形成喷气口;带有气阀7的出气管路11安置在与进气管路相对侧的反应器9的上方。气瓶8中的气体可以是N2 气、He气、O2气和Ar气;配气系统是利用质量流量控制计5测量气体流量,将所用气体通过混合作为工作气体进入反应器,然后通过一个喷气口均匀地进入放电间隙,整个实验中气体流量保持在200 ml/min不变,气阀7控制气体的通入,实验中使用的N2 气、He气、O气2和Ar气的浓度均为99.999%的高纯气体。出气管路11处的气阀处于打开状态。如果工作气体为空气,可直接在空气中进行实验,不需要上面配气操作。The gas distribution system is composed of a
放电测量系统由数字示波器4、电压探头线路3和电流探头线路17组成;将电压探头线路3一端连接在上电极2上,另一端连接在数字示波器4上;将电流探头线路17一端接在下电极16与接地之间的导线上,另一端接在数字示波器4上。本发明采用的是美国Tektronix公司生产的数字示波器型号为TDS3052B;电压探头线路P6015A,1000×3.0pF,100MΩ,1:1000、以及电流探头线路TCP312。The discharge measurement system consists of a
光谱测量系统由透镜(14)、光纤探头 (15)、光纤18、高分辨率光栅单色仪20、电荷耦合器件21和计算机19组成;透镜14固定在反应器9的石英窗口外侧的支架上,光纤探头15固定在透镜14另一侧的三维位移平台上,使其正对放电间隙,同时调节透镜14中心点以及光纤探头15的位置,使多针电极10中间针的针尖、透镜14中心点以及光纤探头15三者在同一水平直线上;光纤探头15收集到由透镜14会聚后的光信号,并经光纤18传输至高分辨率光栅单色仪20进行分光,分光后的单色光信号经电荷耦合器件21转变为数字信号,最后由计算机19采集处理。透镜14的直径为50 mm, 焦距为100 mm。高分辨率光栅单色仪型号为:Andor SR-750i。光栅2400条/mm,其闪耀波长为300 nm。在等离子体中存在着大量的激发态粒子,激发态粒子在退激发的过程中会发射光子,光子的能量与该粒子的种类以及所涉及的能级有关,通过探测这些光子的光谱,可以判断等离子体中存在的物质种类及其所处的状态。Spectral measurement system is made up of lens (14), optical fiber probe (15),
多针-板式电极中多针电极10的针电极数目可根据实际的需求来增加或减少而组成任意形状的电极的图案,同时还可调节针与针之间的距离。The number of needle electrodes of the
介质片13可以是石英、 陶瓷、 或聚四氟乙烯的任意一种。The
多针电极10不仅可以调节所有针电极与下电极保持相同的距离同时还可以不同针电极与下电极保持不同的距离。The
安装与反应器9侧壁的观察窗口可以有1至4个。There can be 1 to 4 observation windows installed on the side wall of the
双极性纳秒脉冲电源1、光谱测量系统和放电测量系统皆需用电磁屏蔽罩22屏蔽,所有的电磁屏蔽罩22外壳牢固接地。The bipolar nanosecond
本发明所提供的一种获取大面积均匀放电等离子体的实验装置的使用方法如下:A method of using an experimental device for obtaining large-area uniform discharge plasma provided by the present invention is as follows:
步骤1:在通入实验气体前,先检查气路的气密性,然后先将反应器9利用机械泵进行抽真空处理。再利用质量流量控制计5来测量来自不同气瓶8中的不同气体的流量,配比实验所需要的不同浓度的混合气体,通过进气管路6将混合气体输入反应器9再经过喷气口均匀的将混合气体通入放电间隙。整个实验中混合气体流量保持在200 ml/min不变,如果工作气体为空气,可直接在空气中进行实验,不需要上面配气操作步骤。Step 1: Before feeding the test gas, first check the airtightness of the gas path, and then vacuumize the
步骤2:检查电路无误后,打开数字示波器4、高分辨率光栅单色仪20和计算机19,将数字示波器4的电压和电流调到最大量程;通过安装在计算机19上的Solis软件将高分辨率光栅单色仪20调到第三个光栅,即光栅2400条/mm,闪耀波长为300 nm,根据需要也可以选择500条/mm和1200条/mm的光栅。曝光时间为1 s, 测量范围为200-900 nm.调试完毕后,检查仪器是否工作正常,并用遮光材料将不用观测的其它反应器9的窗口遮住。Step 2: After checking that the circuit is correct, turn on the
步骤3:待仪器检查正常后,开启双极性纳秒脉冲电源1,先设定脉冲重复频率为150Hz, 然后将脉冲峰值电压调至30 kV,具体可以根据实际需要调节电源参数,等离子体放电开始,在多针电极10和介质片13之间会产生大面积的均匀等离子体。然后通过数字示波器4和计算机19分别记录放电等离子体的电流电压波形图和等离子体的发射光谱。记录完毕后,分别将脉冲峰值电压和脉冲重复频率调为0,关闭双极性纳秒脉冲电源1,放电结束。Step 3: After the instrument is checked to be normal, turn on the bipolar nanosecond
步骤4:通过计算机19分析放电等离子体的电流电压波形图和发射光谱,可以获得等离子体功率、功率密度、能耗、电子密度、转动温度、振动温度、电子温度以及该放电产生的活性粒子成分和浓度等重要参数。通过这些参数可以直观的反映所产生的等离子体的一些重要特性。还可以通过佳能550D数码相机拍摄放电照片,从照片能够直观的判断放电等离子体的面积和放电的均匀性。Step 4: Analyzing the current and voltage waveform diagram and emission spectrum of the discharge plasma by
Claims (9)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201310188840.0A CN103245655B (en) | 2013-05-20 | 2013-05-20 | A kind of experimental provision obtaining Large-Area-Uniform discharge plasma |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201310188840.0A CN103245655B (en) | 2013-05-20 | 2013-05-20 | A kind of experimental provision obtaining Large-Area-Uniform discharge plasma |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN103245655A true CN103245655A (en) | 2013-08-14 |
| CN103245655B CN103245655B (en) | 2015-11-18 |
Family
ID=48925315
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201310188840.0A Expired - Fee Related CN103245655B (en) | 2013-05-20 | 2013-05-20 | A kind of experimental provision obtaining Large-Area-Uniform discharge plasma |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN103245655B (en) |
Cited By (50)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103458601A (en) * | 2013-09-12 | 2013-12-18 | 大连民族学院 | Plasma generation device |
| CN103906336A (en) * | 2014-04-14 | 2014-07-02 | 中国科学院工程热物理研究所 | Gas discharge plasma generating device with adjustable pressure and temperature |
| CN104202897A (en) * | 2014-09-02 | 2014-12-10 | 中国工程物理研究院流体物理研究所 | DBD (Dielectric Barrier Discharge) low temperature plasma generating device and polymer film surface treatment method |
| CN104853513A (en) * | 2015-05-19 | 2015-08-19 | 大连理工大学 | Device for realizing large-area uniform dielectric barrier discharge and method |
| CN105484011A (en) * | 2015-11-19 | 2016-04-13 | 大连理工大学 | Apparatus and method for improving hydrophilicity of aramid fiber by using homogeneous atmospheric-pressure discharge |
| CN105699359A (en) * | 2016-01-18 | 2016-06-22 | 大连理工大学 | Experimental device and method for obtaining annular uniform plasmas in barometric pressure air |
| CN105938103A (en) * | 2015-03-04 | 2016-09-14 | 馗鼎奈米科技股份有限公司 | Optical monitoring method for plasma discharge glow |
| CN106185806A (en) * | 2016-07-01 | 2016-12-07 | 中国科学院电工研究所 | A kind of device and method utilizing plasma-converted methane |
| CN106470521A (en) * | 2015-08-14 | 2017-03-01 | 吴勇峰 | Magnet controlled taper pin array disperse discharge system in atmospheric air |
| CN106488639A (en) * | 2016-12-28 | 2017-03-08 | 大连理工大学 | Large scale pulse cold-plasma jet generating device |
| CN106474919A (en) * | 2016-10-25 | 2017-03-08 | 大连理工大学 | Large area removes the modular unit of NOx along face DBD synergistic catalyst |
| CN106597520A (en) * | 2016-12-13 | 2017-04-26 | 中国科学院电工研究所 | Three-channel runaway electron energy spectrum measuring device under nanosecond pulse discharge |
| CN106872417A (en) * | 2017-03-06 | 2017-06-20 | 大连理工大学 | Using SDBD and the experimental provision and method of emission spectrum detection OH concentration |
| CN106998617A (en) * | 2017-05-27 | 2017-08-01 | 河北大学 | The device and method of large scale Atomospheric pressure glow discharge is produced based on microplasma spray gun |
| CN107135597A (en) * | 2017-06-26 | 2017-09-05 | 大连理工大学 | A device and method for generating large-gap, large-area uniform discharge plasma in atmospheric pressure air |
| CN107191933A (en) * | 2017-06-13 | 2017-09-22 | 武汉理工大学 | A kind of Plasma Assisted Combustion formula multi-hole medium combustion system |
| CN107412812A (en) * | 2017-08-31 | 2017-12-01 | 大连大学 | A kind of new plasma discharge apparatus that can handle multiple biological samples simultaneously |
| CN107750086A (en) * | 2017-09-28 | 2018-03-02 | 华南理工大学 | A kind of implementation method of gear-like aura spot figure electric discharge |
| CN107864544A (en) * | 2017-11-10 | 2018-03-30 | 西安交通大学 | A kind of magnetic suspension electrode dielectric stops disperse arc discharge plasma generating device |
| CN108120906A (en) * | 2017-12-20 | 2018-06-05 | 西安交通大学 | From trigger-type liquid electric discharge temporal-spatial evolution observation system under a kind of pulse voltage |
| CN108289365A (en) * | 2018-01-23 | 2018-07-17 | 南京航空航天大学 | A kind of atmosphere pressure discharging multi-modes device |
| CN108802009A (en) * | 2018-08-24 | 2018-11-13 | 哈尔滨工业大学(威海) | A method of detecting heavy metal using plasma atomic emission spectrometer |
| CN108872080A (en) * | 2018-08-24 | 2018-11-23 | 哈尔滨工业大学(威海) | A kind of preceding light path system of plasma atomic emission spectrometer |
| CN109545643A (en) * | 2018-11-19 | 2019-03-29 | 国网四川省电力公司电力科学研究院 | A kind of large volume honeycomb corona plasma 3D uniformity regulating device |
| CN110402010A (en) * | 2019-07-15 | 2019-11-01 | 中国科学院合肥物质科学研究院 | A Cascaded Arc Cathode Structure with Large Area and High Uniformity Active Cooling |
| CN110582155A (en) * | 2018-06-08 | 2019-12-17 | 北京北方华创微电子装备有限公司 | plasma glow starting detection device and method and process chamber |
| CN110918028A (en) * | 2019-12-06 | 2020-03-27 | 大连海事大学 | A device and method for preparing metal catalyst by using plasma |
| CN111102914A (en) * | 2019-12-30 | 2020-05-05 | 上海安平静电科技有限公司 | Method for determining electrode spacing of ion generating device |
| CN111145623A (en) * | 2019-12-31 | 2020-05-12 | 河海大学常州校区 | Device and method for experimental research on positive and negative corona and substance action of different parameters |
| CN111239104A (en) * | 2020-02-17 | 2020-06-05 | 吉林大学 | A method and system for LIBS spectral signal enhancement based on resonance excitation |
| CN111642051A (en) * | 2020-06-19 | 2020-09-08 | 西安理工大学 | An array plasma device for material surface treatment |
| CN111954360A (en) * | 2020-09-18 | 2020-11-17 | 云南电网有限责任公司电力科学研究院 | Large-area cold plasma generating device and method based on mixed gas |
| CN112067498A (en) * | 2020-07-25 | 2020-12-11 | 东北电力大学 | Discharge in water H2O2Particle space-time density distribution measuring device and measuring method thereof |
| CN112098395A (en) * | 2020-08-06 | 2020-12-18 | 北京航空航天大学 | Dielectric barrier discharge plasma emission spectrometer based on online detection |
| CN112804806A (en) * | 2020-11-23 | 2021-05-14 | 北京劳动保障职业学院 | Magnetic confinement three-dimensional plasma jet array method and system |
| US20210199590A1 (en) * | 2019-12-30 | 2021-07-01 | Purdue Research Foundation | Systems and methods for measuring a temperature of a gas |
| CN113533583A (en) * | 2021-08-13 | 2021-10-22 | 西安交通大学 | Plasma-assisted gas-liquid fuel oxidation, pyrolysis and reforming experiment platform |
| CN113966064A (en) * | 2021-09-18 | 2022-01-21 | 河北大学 | A device and method for generating sheet-like plasma plumes |
| CN114029271A (en) * | 2021-11-04 | 2022-02-11 | 江南大学 | A processing system and processing method for plugging a microreactor |
| CN114184578A (en) * | 2021-12-03 | 2022-03-15 | 西安交通大学 | Dielectric barrier discharge experiment platform capable of realizing transient and steady state measurement |
| CN114558431A (en) * | 2022-02-28 | 2022-05-31 | 上海激光电源设备有限责任公司 | Nanosecond electric pulse desulfurization/nitration reactor and preparation method thereof |
| CN114928931A (en) * | 2022-06-08 | 2022-08-19 | 广州大学 | Atmospheric pressure low temperature plasma liquid treatment device with needle electrode with adjustable needle number |
| CN114966330A (en) * | 2022-03-18 | 2022-08-30 | 武汉大学 | Cloud chamber observation platform and observation method for gas discharge electron collapse shape observation |
| CN115161166A (en) * | 2022-07-27 | 2022-10-11 | 安徽大学 | An experimental device for inactivating microorganisms by low temperature plasma |
| CN115232743A (en) * | 2022-08-18 | 2022-10-25 | 和田昆仑利来生物科技有限公司 | System and method for plasma mutagenesis of microorganisms |
| CN115267449A (en) * | 2022-07-11 | 2022-11-01 | 哈尔滨理工大学 | Micro-gap air discharge spectrum diagnosis system under atmospheric pressure |
| CN115554952A (en) * | 2022-09-22 | 2023-01-03 | 南京工业大学 | Jet plasma nitrogen fixation device and method based on nanosecond pulse spark discharge |
| CN115753875A (en) * | 2022-09-07 | 2023-03-07 | 西安工程大学 | A Characterization Method of Dielectric Barrier Discharge Uniformity in Argon Atmosphere |
| CN117596762A (en) * | 2024-01-18 | 2024-02-23 | 离享未来(德州)等离子科技有限公司 | Bipolar nanosecond pulse power supply for discharge plasma |
| CN119277628A (en) * | 2024-09-09 | 2025-01-07 | 上海交通大学 | A large space high density discharge plasma device and its application |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1998052389A1 (en) * | 1997-05-12 | 1998-11-19 | Cymer, Inc. | Plasma focus high energy photon source |
| CN1694324A (en) * | 2005-03-02 | 2005-11-09 | 华北电力大学(北京) | Method for uniform glow discharge in atmosphere air |
| CN1777347A (en) * | 2005-11-24 | 2006-05-24 | 南京航空航天大学 | Corona-coupled dielectric barrier discharge device for generating low-temperature plasma |
| CN1927408A (en) * | 2006-09-26 | 2007-03-14 | 西安交通大学 | Indoor air purification method by using medium for blocking off low-temperature plasma generated by discharge |
| CN101863455A (en) * | 2010-05-07 | 2010-10-20 | 大连理工大学 | A Plate Plasma Reactor for Hydrogen Production by Ammonia Decomposition |
-
2013
- 2013-05-20 CN CN201310188840.0A patent/CN103245655B/en not_active Expired - Fee Related
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1998052389A1 (en) * | 1997-05-12 | 1998-11-19 | Cymer, Inc. | Plasma focus high energy photon source |
| CN1694324A (en) * | 2005-03-02 | 2005-11-09 | 华北电力大学(北京) | Method for uniform glow discharge in atmosphere air |
| CN1777347A (en) * | 2005-11-24 | 2006-05-24 | 南京航空航天大学 | Corona-coupled dielectric barrier discharge device for generating low-temperature plasma |
| CN1927408A (en) * | 2006-09-26 | 2007-03-14 | 西安交通大学 | Indoor air purification method by using medium for blocking off low-temperature plasma generated by discharge |
| CN101863455A (en) * | 2010-05-07 | 2010-10-20 | 大连理工大学 | A Plate Plasma Reactor for Hydrogen Production by Ammonia Decomposition |
Non-Patent Citations (4)
| Title |
|---|
| 张帅等: "Atmospheric-Pressure Diffuse Dielectric-Barrier-Discharge Plasma Generated by Bipolar Nanosecond Pulse in Nitrogen and Air", 《IEEE TRANSACTIONS ON PLASMA SCIENCE》, vol. 40, no. 9, 30 September 2012 (2012-09-30), pages 2191 - 2197, XP011460021, DOI: 10.1109/TPS.2012.2206613 * |
| 张百灵等: "静止空气条件纳秒脉冲放电实验研究", 《核聚变与等离子体物理》, vol. 32, no. 4, 31 December 2012 (2012-12-31), pages 312 - 316 * |
| 肖重发等: "氮气大气压介质阻挡放电发射光谱诊断", 《大连理工大学学报》, vol. 44, no. 5, 30 September 2004 (2004-09-30), pages 625 - 629 * |
| 鲁娜等: "针-板式介质阻挡放电降解土壤中对硝基苯酚研究", 《环境科学与技术》, vol. 35, no. 10, 31 October 2012 (2012-10-31), pages 50 - 52 * |
Cited By (66)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103458601A (en) * | 2013-09-12 | 2013-12-18 | 大连民族学院 | Plasma generation device |
| CN103906336A (en) * | 2014-04-14 | 2014-07-02 | 中国科学院工程热物理研究所 | Gas discharge plasma generating device with adjustable pressure and temperature |
| CN104202897B (en) * | 2014-09-02 | 2017-01-11 | 中国工程物理研究院流体物理研究所 | DBD (Dielectric Barrier Discharge) low temperature plasma generating device and polymer film surface treatment method |
| CN104202897A (en) * | 2014-09-02 | 2014-12-10 | 中国工程物理研究院流体物理研究所 | DBD (Dielectric Barrier Discharge) low temperature plasma generating device and polymer film surface treatment method |
| CN105938103A (en) * | 2015-03-04 | 2016-09-14 | 馗鼎奈米科技股份有限公司 | Optical monitoring method for plasma discharge glow |
| CN104853513A (en) * | 2015-05-19 | 2015-08-19 | 大连理工大学 | Device for realizing large-area uniform dielectric barrier discharge and method |
| CN106470521A (en) * | 2015-08-14 | 2017-03-01 | 吴勇峰 | Magnet controlled taper pin array disperse discharge system in atmospheric air |
| CN105484011A (en) * | 2015-11-19 | 2016-04-13 | 大连理工大学 | Apparatus and method for improving hydrophilicity of aramid fiber by using homogeneous atmospheric-pressure discharge |
| CN105699359A (en) * | 2016-01-18 | 2016-06-22 | 大连理工大学 | Experimental device and method for obtaining annular uniform plasmas in barometric pressure air |
| CN106185806A (en) * | 2016-07-01 | 2016-12-07 | 中国科学院电工研究所 | A kind of device and method utilizing plasma-converted methane |
| CN106185806B (en) * | 2016-07-01 | 2018-07-31 | 中国科学院电工研究所 | A kind of device and method using plasma-converted methane |
| CN106474919A (en) * | 2016-10-25 | 2017-03-08 | 大连理工大学 | Large area removes the modular unit of NOx along face DBD synergistic catalyst |
| CN106474919B (en) * | 2016-10-25 | 2019-01-18 | 大连理工大学 | Modular unit of the large area along face DBD synergistic catalyst removing NOx |
| CN106597520A (en) * | 2016-12-13 | 2017-04-26 | 中国科学院电工研究所 | Three-channel runaway electron energy spectrum measuring device under nanosecond pulse discharge |
| CN106488639A (en) * | 2016-12-28 | 2017-03-08 | 大连理工大学 | Large scale pulse cold-plasma jet generating device |
| CN106872417A (en) * | 2017-03-06 | 2017-06-20 | 大连理工大学 | Using SDBD and the experimental provision and method of emission spectrum detection OH concentration |
| CN106872417B (en) * | 2017-03-06 | 2019-10-11 | 大连理工大学 | Experimental device and method for detecting OH concentration using SDBD and emission spectrum |
| CN106998617A (en) * | 2017-05-27 | 2017-08-01 | 河北大学 | The device and method of large scale Atomospheric pressure glow discharge is produced based on microplasma spray gun |
| CN107191933A (en) * | 2017-06-13 | 2017-09-22 | 武汉理工大学 | A kind of Plasma Assisted Combustion formula multi-hole medium combustion system |
| CN107135597B (en) * | 2017-06-26 | 2023-05-12 | 大连理工大学 | Device for generating large-gap and large-area uniform discharge plasma in atmospheric air and use method |
| CN107135597A (en) * | 2017-06-26 | 2017-09-05 | 大连理工大学 | A device and method for generating large-gap, large-area uniform discharge plasma in atmospheric pressure air |
| CN107412812A (en) * | 2017-08-31 | 2017-12-01 | 大连大学 | A kind of new plasma discharge apparatus that can handle multiple biological samples simultaneously |
| CN107750086A (en) * | 2017-09-28 | 2018-03-02 | 华南理工大学 | A kind of implementation method of gear-like aura spot figure electric discharge |
| CN107864544A (en) * | 2017-11-10 | 2018-03-30 | 西安交通大学 | A kind of magnetic suspension electrode dielectric stops disperse arc discharge plasma generating device |
| CN107864544B (en) * | 2017-11-10 | 2019-08-23 | 西安交通大学 | A magnetic suspension electrode dielectric barrier diffuse discharge plasma generator |
| CN108120906A (en) * | 2017-12-20 | 2018-06-05 | 西安交通大学 | From trigger-type liquid electric discharge temporal-spatial evolution observation system under a kind of pulse voltage |
| CN108120906B (en) * | 2017-12-20 | 2020-03-17 | 西安交通大学 | Self-triggering type liquid discharge space-time evolution observation system under pulse voltage |
| CN108289365A (en) * | 2018-01-23 | 2018-07-17 | 南京航空航天大学 | A kind of atmosphere pressure discharging multi-modes device |
| CN110582155A (en) * | 2018-06-08 | 2019-12-17 | 北京北方华创微电子装备有限公司 | plasma glow starting detection device and method and process chamber |
| CN108872080B (en) * | 2018-08-24 | 2022-03-04 | 哈尔滨工业大学(威海) | A kind of front optical system of plasma atomic emission spectrometer |
| CN108802009B (en) * | 2018-08-24 | 2022-03-04 | 哈尔滨工业大学(威海) | Method for detecting heavy metal by using plasma atomic emission spectrometer |
| CN108872080A (en) * | 2018-08-24 | 2018-11-23 | 哈尔滨工业大学(威海) | A kind of preceding light path system of plasma atomic emission spectrometer |
| CN108802009A (en) * | 2018-08-24 | 2018-11-13 | 哈尔滨工业大学(威海) | A method of detecting heavy metal using plasma atomic emission spectrometer |
| CN109545643B (en) * | 2018-11-19 | 2021-05-14 | 国网四川省电力公司电力科学研究院 | 3D uniformity adjusting device for large-volume honeycomb corona plasma |
| CN109545643A (en) * | 2018-11-19 | 2019-03-29 | 国网四川省电力公司电力科学研究院 | A kind of large volume honeycomb corona plasma 3D uniformity regulating device |
| CN110402010A (en) * | 2019-07-15 | 2019-11-01 | 中国科学院合肥物质科学研究院 | A Cascaded Arc Cathode Structure with Large Area and High Uniformity Active Cooling |
| CN110918028A (en) * | 2019-12-06 | 2020-03-27 | 大连海事大学 | A device and method for preparing metal catalyst by using plasma |
| CN111102914A (en) * | 2019-12-30 | 2020-05-05 | 上海安平静电科技有限公司 | Method for determining electrode spacing of ion generating device |
| US11946871B2 (en) * | 2019-12-30 | 2024-04-02 | Purdue Research Foundation | Systems and methods for measuring a temperature of a gas |
| US20210199590A1 (en) * | 2019-12-30 | 2021-07-01 | Purdue Research Foundation | Systems and methods for measuring a temperature of a gas |
| CN111145623A (en) * | 2019-12-31 | 2020-05-12 | 河海大学常州校区 | Device and method for experimental research on positive and negative corona and substance action of different parameters |
| CN111145623B (en) * | 2019-12-31 | 2021-12-10 | 河海大学常州校区 | Device and method for experimental research on positive and negative corona and substance action of different parameters |
| CN111239104A (en) * | 2020-02-17 | 2020-06-05 | 吉林大学 | A method and system for LIBS spectral signal enhancement based on resonance excitation |
| CN111642051A (en) * | 2020-06-19 | 2020-09-08 | 西安理工大学 | An array plasma device for material surface treatment |
| CN112067498B (en) * | 2020-07-25 | 2024-02-13 | 东北电力大学 | In-water discharge H 2 O 2 Particle space-time density distribution measuring device and measuring method thereof |
| CN112067498A (en) * | 2020-07-25 | 2020-12-11 | 东北电力大学 | Discharge in water H2O2Particle space-time density distribution measuring device and measuring method thereof |
| CN112098395A (en) * | 2020-08-06 | 2020-12-18 | 北京航空航天大学 | Dielectric barrier discharge plasma emission spectrometer based on online detection |
| CN111954360A (en) * | 2020-09-18 | 2020-11-17 | 云南电网有限责任公司电力科学研究院 | Large-area cold plasma generating device and method based on mixed gas |
| CN112804806A (en) * | 2020-11-23 | 2021-05-14 | 北京劳动保障职业学院 | Magnetic confinement three-dimensional plasma jet array method and system |
| CN113533583A (en) * | 2021-08-13 | 2021-10-22 | 西安交通大学 | Plasma-assisted gas-liquid fuel oxidation, pyrolysis and reforming experiment platform |
| CN113966064A (en) * | 2021-09-18 | 2022-01-21 | 河北大学 | A device and method for generating sheet-like plasma plumes |
| CN114029271A (en) * | 2021-11-04 | 2022-02-11 | 江南大学 | A processing system and processing method for plugging a microreactor |
| CN114184578A (en) * | 2021-12-03 | 2022-03-15 | 西安交通大学 | Dielectric barrier discharge experiment platform capable of realizing transient and steady state measurement |
| CN114184578B (en) * | 2021-12-03 | 2023-06-23 | 西安交通大学 | A dielectric barrier discharge experimental platform that can realize transient and steady-state measurement |
| CN114558431A (en) * | 2022-02-28 | 2022-05-31 | 上海激光电源设备有限责任公司 | Nanosecond electric pulse desulfurization/nitration reactor and preparation method thereof |
| CN114966330A (en) * | 2022-03-18 | 2022-08-30 | 武汉大学 | Cloud chamber observation platform and observation method for gas discharge electron collapse shape observation |
| CN114966330B (en) * | 2022-03-18 | 2024-05-10 | 武汉大学 | Cloud chamber observation platform and observation method for gas discharge electronic collapse form observation |
| CN114928931A (en) * | 2022-06-08 | 2022-08-19 | 广州大学 | Atmospheric pressure low temperature plasma liquid treatment device with needle electrode with adjustable needle number |
| CN115267449A (en) * | 2022-07-11 | 2022-11-01 | 哈尔滨理工大学 | Micro-gap air discharge spectrum diagnosis system under atmospheric pressure |
| CN115161166A (en) * | 2022-07-27 | 2022-10-11 | 安徽大学 | An experimental device for inactivating microorganisms by low temperature plasma |
| CN115232743A (en) * | 2022-08-18 | 2022-10-25 | 和田昆仑利来生物科技有限公司 | System and method for plasma mutagenesis of microorganisms |
| CN115753875A (en) * | 2022-09-07 | 2023-03-07 | 西安工程大学 | A Characterization Method of Dielectric Barrier Discharge Uniformity in Argon Atmosphere |
| CN115554952A (en) * | 2022-09-22 | 2023-01-03 | 南京工业大学 | Jet plasma nitrogen fixation device and method based on nanosecond pulse spark discharge |
| CN117596762A (en) * | 2024-01-18 | 2024-02-23 | 离享未来(德州)等离子科技有限公司 | Bipolar nanosecond pulse power supply for discharge plasma |
| CN117596762B (en) * | 2024-01-18 | 2024-04-05 | 离享未来(德州)等离子科技有限公司 | Bipolar nanosecond pulse power supply for discharge plasma |
| CN119277628A (en) * | 2024-09-09 | 2025-01-07 | 上海交通大学 | A large space high density discharge plasma device and its application |
Also Published As
| Publication number | Publication date |
|---|---|
| CN103245655B (en) | 2015-11-18 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN103245655B (en) | A kind of experimental provision obtaining Large-Area-Uniform discharge plasma | |
| CN106769707B (en) | Potential well voltage-adjustable particle size spectrum measurement device and measurement method thereof | |
| CN102435919B (en) | A test device for testing the characteristics of SF6 gas discharge decomposition products | |
| CN105698850A (en) | Experimental system and experimental method for studying dielectric barrier discharge treatment of SF6 gas | |
| CN203825147U (en) | Multifunctional gas discharge and plasma arc detection device | |
| CN203838292U (en) | A high-temperature gas breakdown characteristic detection device under VFTO | |
| CN105699359A (en) | Experimental device and method for obtaining annular uniform plasmas in barometric pressure air | |
| CN107636448A (en) | High-purity water trace sodium on-line monitor and its on-line monitoring method and device | |
| CN101581698B (en) | Aerosol field ionization electric charge source device | |
| CN105911032A (en) | Device and method for detecting SO2 in SF6 electrical equipment based on ultraviolet fluorescence | |
| CN103941167A (en) | Multifunctional gas discharging and plasma electric arc detecting device and method | |
| CN103941166B (en) | High-temperature gas breakdown characteristics detecting device and method under a kind of VFTO | |
| CN102621577B (en) | Real-time monitoring method of each component beam intensity and injection dosage of mixed ion beam | |
| CN113805013B (en) | Flashover test device and method under temperature gradient conditions in gas-insulated power equipment | |
| CN104853513B (en) | Device for realizing large-area uniform dielectric barrier discharge and method | |
| CN105484011B (en) | Improve the hydrophilic device and method of aramid fiber using homogenous atmospheric-pressure discharge | |
| Komuro | Recent advances in surface charge dynamics in dielectric barrier discharge: future strategies for control and technological optimisation | |
| CN116567905A (en) | A surface modification device for circulating water temperature control large-area water network electrode DBD material | |
| Zhang et al. | A three-dimensional velocity-map imaging setup designed for crossed ion-molecule scattering studies | |
| Lepreti et al. | Scaling properties and intermittency of two-dimensional turbulence in pure electron plasmas | |
| CN111983008B (en) | Small photoionization detector and detection method thereof | |
| CN113721066B (en) | Conduction current measuring device and method | |
| CN106474919B (en) | Modular unit of the large area along face DBD synergistic catalyst removing NOx | |
| CN110487773A (en) | Experimental device and method for SF6 decomposition mechanism based on femtosecond laser-guided high-voltage discharge | |
| CN206330865U (en) | A kind of adjustable particle size spectrometry device of potential well voltage |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20151118 Termination date: 20190520 |
|
| CF01 | Termination of patent right due to non-payment of annual fee |
