CN103245655A - Experimental apparatus for acquiring large-area uniform discharge plasmas - Google Patents

Experimental apparatus for acquiring large-area uniform discharge plasmas Download PDF

Info

Publication number
CN103245655A
CN103245655A CN2013101888400A CN201310188840A CN103245655A CN 103245655 A CN103245655 A CN 103245655A CN 2013101888400 A CN2013101888400 A CN 2013101888400A CN 201310188840 A CN201310188840 A CN 201310188840A CN 103245655 A CN103245655 A CN 103245655A
Authority
CN
China
Prior art keywords
electrode
reactor
discharge
plasma
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013101888400A
Other languages
Chinese (zh)
Other versions
CN103245655B (en
Inventor
王文春
刘志杰
杨洋
杨德正
张帅
唐凯
王森
蒋鹏超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201310188840.0A priority Critical patent/CN103245655B/en
Publication of CN103245655A publication Critical patent/CN103245655A/en
Application granted granted Critical
Publication of CN103245655B publication Critical patent/CN103245655B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Plasma Technology (AREA)

Abstract

一种获取大面积均匀放电等离子体的实验装置,属于等离子体技术领域,由双极性纳秒脉冲电源、反应器、多针-板式电极、配气系统、光谱测量系统和放电测量系统组成;双极性纳秒窄脉冲电源驱动安装于反应器中的多针-板式电极间的空气及其他混合气体介质阻挡放电,混合气体通过配气系统向反应器中输入。光谱测量系统实时收集等离子放电的光子信息,并输入到计算机进行光谱分析。放电测量系统实时收集高压纳秒脉冲电源的放电电压和电流,并由数字示波器显示。本发明采用双极性纳秒窄脉冲电源,在无磁场作用下产生了大面积的放电等离子体;产生的等离子体是均匀的、弥散的;产生的等离子体中电子密度高、能量利用率高、耗能低、 放电过程易于控制。

Figure 201310188840

An experimental device for obtaining large-area uniform discharge plasma belongs to the field of plasma technology, and is composed of a bipolar nanosecond pulse power supply, a reactor, a multi-pin-plate electrode, a gas distribution system, a spectral measurement system and a discharge measurement system; The bipolar nanosecond narrow pulse power supply drives the dielectric barrier discharge of air and other mixed gases between the multi-needle-plate electrodes installed in the reactor, and the mixed gases are input into the reactor through the gas distribution system. The spectral measurement system collects the photon information of the plasma discharge in real time and inputs it to the computer for spectral analysis. The discharge measurement system collects the discharge voltage and current of the high-voltage nanosecond pulse power supply in real time, and displays them on a digital oscilloscope. The invention adopts a bipolar nanosecond narrow pulse power supply to generate large-area discharge plasma without the action of a magnetic field; the generated plasma is uniform and dispersed; the generated plasma has high electron density and high energy utilization rate , Low energy consumption, easy to control the discharge process.

Figure 201310188840

Description

一种获取大面积均匀放电等离子体的实验装置An Experimental Device for Obtaining Large-area Uniform Discharge Plasma

技术领域 technical field

本发明属于等离子体技术领域,特别是涉及一种在多针-板式电极结构下利用双极性纳秒脉冲电源来驱动,在空气及混合气体中获得大面积低温均匀的介质阻挡放电等离子体技术。The invention belongs to the field of plasma technology, and in particular relates to a dielectric barrier discharge plasma technology which is driven by a bipolar nanosecond pulse power supply under a multi-needle-plate electrode structure and obtains large-area low-temperature and uniform dielectric barrier discharge in air and mixed gases .

技术背景 technical background

传统上,介质阻挡放电等离子体由交流电源驱动,在交流电源驱动下,介质阻挡放电等离子体在大气压空气中实现均匀、弥散放电的条件非常苛刻,容易转化为火花、弧光等放电模式,而且气体温度较高,能量利用率低,对材料表面损害严重,运行成本高等,这些放电的缺点使其在工业应用上受到极大的限制,严重地影响了其在工业上的应用。Traditionally, dielectric barrier discharge plasma is driven by AC power. Under the drive of AC power, the conditions for uniform and diffuse discharge of dielectric barrier discharge plasma in atmospheric pressure air are very harsh, and it is easy to convert into discharge modes such as sparks and arcs, and the gas High temperature, low energy utilization rate, serious damage to the material surface, high operating cost, etc., these shortcomings of discharge greatly restrict its industrial application, seriously affecting its industrial application.

而在纳秒脉冲放电中,由于纳秒脉冲具有陡峭脉冲电压上升沿和较短脉冲持续时间等特点,使电子在快速上升的电场中得到最大程度的加速,因此纳秒脉冲放电中电子的动力学特性与传统的交流放电存在较大的差别。在相同条件下纳秒脉冲放电可以获得更高的电子温度和能量利用效率。同时,较短的单次脉冲持续时间可以使放电在向局部热力学平衡态转变过程中将放电及时熄灭,利于控制放电的稳定性与非热力学平衡性,更易于在大气压空气中实现稳定的均匀放电,因此,纳秒脉冲放电等离子体具有高能电子密度大、平均电子能量高、产生化学活性粒子和VUV产生效率高等优点。同时采用多针-板式电极结构可以产生大面积的放电等离子体,通过结合纳秒脉冲放电和多针-板式电极结构的优点,可以在大气压下产生大面积均匀的低温放电等离子体,其在食品加工,材料表面处理、薄膜沉积、微生物诱变、饮用水灭菌、有毒有害气体脱除等方面有着重要的应用前景,备受国内外实验室重视。在多针-板式电极结构下利用双极性纳秒脉冲电源来驱动介质阻挡放电可以在空气及其他混合气体中获得大面积均匀放电的低温放电等离子体,在材料表面处理、薄膜沉积、微生物诱变、饮用水灭菌等领域都具有重要的商业价值和广阔的工业应用前景。In the nanosecond pulse discharge, because the nanosecond pulse has the characteristics of a steep pulse voltage rising edge and a short pulse duration, the electrons are accelerated to the greatest extent in the rapidly rising electric field, so the power of the electrons in the nanosecond pulse discharge There is a big difference between the physical characteristics and the traditional AC discharge. Under the same conditions, nanosecond pulse discharge can obtain higher electron temperature and energy utilization efficiency. At the same time, the shorter single pulse duration can make the discharge extinguish in time during the transition to the local thermodynamic equilibrium state, which is beneficial to control the stability and non-thermodynamic equilibrium of the discharge, and it is easier to achieve stable and uniform discharge in atmospheric pressure air. , Therefore, the nanosecond pulse discharge plasma has the advantages of high density of high-energy electrons, high average electron energy, generation of chemically active particles and high efficiency of VUV generation. At the same time, the multi-needle-plate electrode structure can generate large-area discharge plasma. By combining the advantages of nanosecond pulse discharge and multi-needle-plate electrode structure, a large area of uniform low-temperature discharge plasma can be generated under atmospheric pressure. It is used in food Processing, material surface treatment, thin film deposition, microbial mutagenesis, drinking water sterilization, removal of toxic and harmful gases, etc. have important application prospects, and are highly valued by laboratories at home and abroad. Under the multi-needle-plate electrode structure, using bipolar nanosecond pulse power supply to drive dielectric barrier discharge can obtain a large area of uniform discharge low-temperature discharge plasma in air and other mixed gases, which can be used in material surface treatment, film deposition, microbial induction Transformation, drinking water sterilization and other fields have important commercial value and broad industrial application prospects.

专利CN1927408A解决了在引入平行磁场的基础上,利用单极纳秒脉冲电源产生的介质阻挡放电等离子体去除有害气体,净化效率大幅度的提高。但存在的问题是(1)产生的等离子体是丝状放电;(2) 没有具体介绍等离子体特性的诊断方法;(3) 没有介绍在无外加磁场作用下产生的放电等离子体。专利CN1559651A和CN2500026Y解决了用脉冲电晕放电产生的等离子体净化有害气体,但存在的问题是电晕放电只发生在尖锐电极附近,仅在一个很薄的电晕层内产生强的电场,产生的平均电子能量在3 eV 左右, 由于它的平均电子能量低,放电等离子体体积小,放电强度较弱、电子密度较低,在放电空间产生的活性粒子和自由基的数目少,有效处理空间小,因此,这些严重的影响了等离子体对有害气体的净化效率,也使等离子体的实际应用范围受到了很大的限制。Patent CN1927408A solves the problem of removing harmful gases by using dielectric barrier discharge plasma generated by unipolar nanosecond pulse power supply on the basis of introducing parallel magnetic fields, and greatly improving the purification efficiency. However, there are problems that (1) the generated plasma is a filamentous discharge; (2) there is no specific introduction to the diagnostic method of the plasma characteristics; (3) the discharge plasma generated without the action of an external magnetic field is not introduced. Patents CN1559651A and CN2500026Y solve the problem of purifying harmful gases with plasma generated by pulsed corona discharge, but the existing problem is that corona discharge only occurs near the sharp electrodes, and a strong electric field is generated only in a very thin corona layer, resulting in The average electron energy is about 3 eV. Due to its low average electron energy, small discharge plasma volume, weak discharge intensity and low electron density, the number of active particles and free radicals generated in the discharge space is small, and the effective treatment space Therefore, these seriously affect the purification efficiency of plasma to harmful gases, and also greatly limit the practical application range of plasma.

发明内容 Contents of the invention

为了解决放电等离子体面积小,放电不均匀,能量利用率低以及缺乏对放电等离子体特性的实时诊断问题,本发明提供了一种获取大面积均匀放电等离子体的实验装置,由双极性纳秒脉冲电源、反应器、多针-板式电极、配气系统、光谱测量系统和放电测量系统组成。In order to solve the problems of small discharge plasma area, uneven discharge, low energy utilization rate and lack of real-time diagnosis of discharge plasma characteristics, the present invention provides an experimental device for obtaining large-area uniform discharge plasma. It consists of a second pulse power supply, a reactor, a multi-needle-plate electrode, a gas distribution system, a spectral measurement system and a discharge measurement system.

双极性纳秒脉冲电源可以在正负方向上交替产生相同的窄脉冲电压波形;脉冲上升时间约为20 ns,脉宽约为60 ns,脉冲峰值电压0-60kV, 脉冲重复频率0-400Hz范围内连续可调。The bipolar nanosecond pulse power supply can alternately generate the same narrow pulse voltage waveform in the positive and negative directions; the pulse rise time is about 20 ns, the pulse width is about 60 ns, the pulse peak voltage is 0-60kV, and the pulse repetition frequency is 0-400Hz Continuously adjustable within the range.

多针-板式电极由上电极、多针电极、板电极、下电极和介质片组成;上电极、多针电极、板电极和下电极皆由不锈钢材料制成;板电极为水平固定状态,并与下电极相连;下电极通过导线牢固接地;介质片覆盖在板电极的上表面;多针电极固定在上电极的下方,且针尖朝下;多针电极与介质片相对,形成放电间隙;多针电极的针尖距离介质片的间隙在0-30 mm范围内可调;上电极的另一端与双极性纳秒脉冲电源的输出端连接。The multi-needle-plate electrode is composed of upper electrode, multi-needle electrode, plate electrode, lower electrode and dielectric sheet; the upper electrode, multi-needle electrode, plate electrode and lower electrode are all made of stainless steel; the plate electrode is horizontally fixed, and It is connected with the lower electrode; the lower electrode is firmly grounded through the wire; the dielectric sheet covers the upper surface of the plate electrode; the multi-needle electrode is fixed under the upper electrode, and the needle tip is facing downward; the multi-needle electrode is opposite to the dielectric sheet to form a discharge gap; The gap between the tip of the needle electrode and the dielectric sheet is adjustable in the range of 0-30 mm; the other end of the upper electrode is connected to the output end of the bipolar nanosecond pulse power supply.

反应器是一个上顶面为绝缘材料,四周和底面为不锈钢制成的密封的圆柱形容器,多针-板式电极置于反应器的中央,上电极穿过反应器的绝缘顶面与双极性纳秒脉冲电源的输出端连接;下电极穿过反应器的下底面,并牢固接地;反应器侧面与放电间隙等高程处开有可供观察放电的圆形平光石英窗口,整个反应器气密性很好,且除石英窗口外,所有内壁均匀涂黑以防止杂散光对光谱测量的影响;反应器侧壁安装有带有气阀的进气管路和出气管路。The reactor is a sealed cylindrical container with an insulating material on the upper surface and stainless steel on the four sides and the bottom surface. The multi-needle-plate electrode is placed in the center of the reactor, and the upper electrode passes through the insulating top surface of the reactor and the bipolar The output end of the nanosecond pulse power supply is connected; the lower electrode passes through the lower bottom of the reactor and is firmly grounded; there is a circular flat quartz window for observing the discharge at the same elevation as the side of the reactor and the discharge gap. The tightness is very good, and except for the quartz window, all the inner walls are uniformly blackened to prevent the influence of stray light on the spectral measurement; the side wall of the reactor is equipped with an inlet pipe and an outlet pipe with an air valve.

配气系统将所用气体通过进气管路输入反应器中的放电间隙;多余的气体通过配气系统的出气管路排出。The gas distribution system sends the used gas into the discharge gap in the reactor through the inlet pipeline; the excess gas is discharged through the gas outlet pipeline of the gas distribution system.

光谱测量系统,通过安装在反应器的石英窗口实时收集多针-板式电极间等离子体放电的光子信息,并将光信息转化成数字信息输入到计算机进行光谱分析。The spectral measurement system collects the photon information of the plasma discharge between the multi-needle-plate electrodes in real time through the quartz window installed in the reactor, and converts the optical information into digital information and inputs it to the computer for spectral analysis.

放电测量系统,实时收集双极性纳秒脉冲电源的放电电压和电流,并由数字示波器显示。The discharge measurement system collects the discharge voltage and current of the bipolar nanosecond pulse power supply in real time and displays them on a digital oscilloscope.

双极性纳秒脉冲电源、光谱测量系统和放电测量系统皆需用电磁屏蔽罩屏蔽,所有的电磁屏蔽罩外壳牢固接地。The bipolar nanosecond pulse power supply, spectrum measurement system and discharge measurement system all need to be shielded with electromagnetic shielding covers, and all electromagnetic shielding covers are firmly grounded.

配气系统由质量流量控制计、进气管路、出气管路、气阀和多个气瓶组成;将多个带有气阀的气瓶连通到质量流量控制计中,带有气阀的进气管路一端与质量流量控制计连通,另一端穿入反应器内到达多针-板电极的多针电极和介质片之间的边缘处形成喷气口;带有气阀的出气管路安置在与进气管路相对侧的反应器的上方。The gas distribution system consists of a mass flow control meter, an air inlet pipeline, an air outlet pipeline, an air valve and a plurality of gas cylinders; multiple gas cylinders with air valves are connected to the mass flow controller, and the inlet with air valves One end of the gas pipeline communicates with the mass flow control meter, and the other end penetrates into the reactor to reach the multi-needle electrode of the multi-needle-plate electrode and the edge between the dielectric sheet to form a gas injection port; the gas outlet pipeline with the gas valve is arranged at the same Above the reactor on the opposite side of the inlet line.

放电测量系统由数字示波器、电压探头线路和电流探头线路组成;将电压探头线路一端连接在上电极上,另一端连接在数字示波器上;将电流探头线路一端接在下电极与接地之间的导线上,另一端接在数字示波器上。The discharge measurement system consists of a digital oscilloscope, a voltage probe line and a current probe line; connect one end of the voltage probe line to the upper electrode and the other end to the digital oscilloscope; connect one end of the current probe line to the wire between the lower electrode and ground , and the other end is connected to the digital oscilloscope.

光谱测量系统由透镜、光纤探头、光纤、高分辨率光栅单色仪、电荷耦合器件和计算机组成;透镜固定在反应器的石英窗口外侧的支架上,光纤探头固定在透镜另一侧的三维位移平台上,使其正对放电间隙,同时调节透镜中心点以及光纤探头的位置,使多针电极中间针的针尖、透镜中心点以及光纤探头三者在同一水平直线上;光纤探头收集到由透镜会聚后的光信号,并经光纤传输至高分辨率光栅单色仪进行分光,分光后的单色光信号经电荷耦合器件转变为数字信号,最后由计算机采集处理。The spectral measurement system consists of lenses, fiber optic probes, optical fibers, high-resolution grating monochromators, charge-coupled devices, and computers; the lens is fixed on the bracket outside the quartz window of the reactor, and the fiber optic probe is fixed on the other side of the lens for three-dimensional displacement On the platform, make it face the discharge gap, and adjust the center point of the lens and the position of the fiber optic probe at the same time, so that the needle tip of the middle needle of the multi-needle electrode, the center point of the lens, and the fiber optic probe are on the same horizontal line; The converged optical signal is transmitted to a high-resolution grating monochromator through an optical fiber for light splitting. The split monochromatic light signal is converted into a digital signal by a charge-coupled device, and finally collected and processed by a computer.

多针-板式电极中多针电极的针电极数目可根据实际的需求来增加或减少而组成任意形状的电极的图案,同时还可调节针与针之间的距离。In the multi-needle-plate electrode, the number of needle electrodes in the multi-needle electrode can be increased or decreased according to actual needs to form an electrode pattern of any shape, and the distance between the needles can also be adjusted.

介质片可以是石英、 陶瓷、 或聚四氟乙烯的任意一种。The dielectric sheet can be any one of quartz, ceramics, or polytetrafluoroethylene.

多针电极不仅可以调节所有针电极与下电极保持相同的距离同时还可以不同针电极与下电极保持不同的距离。The multi-needle electrodes can not only adjust the same distance between all the needle electrodes and the lower electrode, but also keep different distances between different needle electrodes and the lower electrode.

反应器的观察窗口可以有1至4个。There can be 1 to 4 observation windows of the reactor.

本发明的有益效果是:(1)采用双极性纳秒脉冲电源,在无外加磁场作用下产生了大面积的放电等离子体;(2)产生的等离子体是均匀的、弥散的;(3) 产生的等离子体中电子密度高、能量利用率高、耗能低、 放电过程易于控制。(4)可以通过高分辨率光栅单色仪和数字示波器对均匀等离子体特性进行诊断,以便更好地应用在实际工业中。The beneficial effects of the present invention are: (1) using bipolar nanosecond pulse power supply, a large area of discharge plasma is generated without the action of an external magnetic field; (2) the generated plasma is uniform and dispersed; (3) ) The electron density in the plasma generated is high, the energy utilization rate is high, the energy consumption is low, and the discharge process is easy to control. (4) The characteristics of uniform plasma can be diagnosed by high-resolution grating monochromator and digital oscilloscope, so as to be better applied in actual industry.

附图说明 Description of drawings

图1为本发明示意图。Fig. 1 is a schematic diagram of the present invention.

图2为多针电极针的分布图,由13个针组成两个七星六角结构的图案。Figure 2 is a distribution diagram of multi-needle electrode needles, which consist of 13 needles forming two patterns of seven-star and hexagonal structures.

图中:1. 双极性纳秒脉冲电源;2. 上电极;3.电压探头线路;4.数字示波器;5. 质量流量控制计;6. 进气管路;7. 气阀;8.气瓶; 9. 反应器;10. 多针电极; 11. 出气管路;12. 板电极;13. 介质片;14. 透镜;15. 光纤探头;16. 下电极;17. 电流探头线路;18. 光纤;19. 计算机;20. 高分辨率光栅单色仪;21.电荷耦合器件;22. 电磁屏蔽罩。In the figure: 1. Bipolar nanosecond pulse power supply; 2. Upper electrode; 3. Voltage probe circuit; 4. Digital oscilloscope; 5. Mass flow controller; 6. Intake pipeline; 7. Air valve; 8. Gas bottle; 9. reactor; 10. multi-needle electrode; 11. outlet line; 12. plate electrode; 13. dielectric sheet; 14. lens; 15. optical fiber probe; 16. lower electrode; 17. current probe line; . Optical fiber; 19. Computer; 20. High-resolution grating monochromator; 21. Charge-coupled device; 22. Electromagnetic shielding cover.

具体实施方案 specific implementation plan

下面结合附图和具体实施方案对本发明进一步说明。The present invention will be further described below in conjunction with the accompanying drawings and specific embodiments.

一种获取大面积均匀放电等离子体的实验装置,由双极性纳秒脉冲电源1、反应器9、多针-板式电极、配气系统、光谱测量系统和放电测量系统组成。An experimental device for obtaining large-area uniform discharge plasma is composed of a bipolar nanosecond pulse power supply 1, a reactor 9, a multi-needle-plate electrode, a gas distribution system, a spectral measurement system and a discharge measurement system.

双极性纳秒脉冲电源1可以在正负方向上交替产生相同的窄脉冲电压波形;脉冲上升时间约为20 ns,脉宽约为60 ns,脉冲峰值电压0-60kV, 脉冲重复频率0-400Hz范围内连续可调。Bipolar nanosecond pulse power supply 1 can alternately generate the same narrow pulse voltage waveform in positive and negative directions; the pulse rise time is about 20 ns, the pulse width is about 60 ns, the pulse peak voltage is 0-60kV, and the pulse repetition frequency is 0- Continuously adjustable in the range of 400Hz.

多针-板式电极由上电极2、多针电极10、板电极12、下电极16和介质片13组成;上电极2、多针电极10、板电极12和下电极16皆由不锈钢材料制成;板电极12为水平固定状态,并与下电极16相连;下电极16通过导线牢固接地;介质片13覆盖在板电极12的上表面;多针电极10固定在上电极的下方,且针尖朝下;多针电极10与介质片13相对,形成放电间隙;多针电极10的针尖距离介质片13的间隙在0-30 mm范围内可调;上电极2的另一端与双极性纳秒脉冲电源1的输出端连接。多针电极10的针尖端被磨圆,针尖直径约为0.8 mm,针与针之间的距离为10 mm;板电极12是直径为80 mm的不锈钢圆盘,不锈钢圆盘表面覆盖介质片13其厚度为1 mm,直径为100 mm。The multi-needle-plate electrode is composed of upper electrode 2, multi-needle electrode 10, plate electrode 12, lower electrode 16 and dielectric sheet 13; upper electrode 2, multi-needle electrode 10, plate electrode 12 and lower electrode 16 are all made of stainless steel The plate electrode 12 is in a horizontal fixed state and is connected to the lower electrode 16; the lower electrode 16 is firmly grounded through a wire; the dielectric sheet 13 is covered on the upper surface of the plate electrode 12; Down; the multi-needle electrode 10 is opposite to the dielectric sheet 13 to form a discharge gap; the gap between the tip of the multi-needle electrode 10 and the dielectric sheet 13 is adjustable in the range of 0-30 mm; the other end of the upper electrode 2 is connected to the bipolar nanosecond The output terminal of the pulse power supply 1 is connected. The needle tip of the multi-needle electrode 10 is rounded, the diameter of the needle tip is about 0.8 mm, and the distance between the needles is 10 mm; the plate electrode 12 is a stainless steel disc with a diameter of 80 mm, and the surface of the stainless steel disc is covered with a dielectric sheet 13 It has a thickness of 1 mm and a diameter of 100 mm.

反应器9是一个上顶面为绝缘材料,四周和底面为不锈钢制成的密封的圆柱形容器,多针-板式电极置于反应器9的中央,上电极2穿过反应器9的绝缘顶面与双极性纳秒脉冲电源1的输出端连接;下电极16穿过反应器9的下底面,并牢固接地;反应器9侧面与放电间隙等高程处开有可供观察放电的圆形平光石英窗口,整个反应器9气密性很好,且除石英窗口外,所有内壁均匀涂黑以防止杂散光对光谱测量的影响;反应器9侧壁安装有进气管路6和出气管路11。The reactor 9 is an insulating material on the upper surface, and a sealed cylindrical container made of stainless steel on the four sides and the bottom surface. The multi-pin-plate electrode is placed in the center of the reactor 9, and the upper electrode 2 passes through the insulating top of the reactor 9. The surface is connected to the output end of the bipolar nanosecond pulse power supply 1; the lower electrode 16 passes through the lower bottom surface of the reactor 9 and is firmly grounded; the side of the reactor 9 and the discharge gap are at the same elevation for observation. Flat quartz window, the entire reactor 9 has good airtightness, and except for the quartz window, all inner walls are evenly painted black to prevent stray light from affecting the spectral measurement; the side wall of the reactor 9 is equipped with an inlet pipeline 6 and an outlet pipeline 11.

配气系统将所用气体通过进气管路6输入反应器9中的放电间隙;多余的气体通过配气系统的出气管路11排出。The gas distribution system feeds the used gas into the discharge gap in the reactor 9 through the inlet pipeline 6; the excess gas is discharged through the gas outlet pipeline 11 of the gas distribution system.

光谱测量系统,通过安装在反应器的石英窗口实时收集多针-板式电极间等离子体放电的光子信息,并将光信息转化成数字信息输入到计算机19进行光谱分析。The spectral measurement system collects the photon information of the plasma discharge between the multi-needle-plate electrodes in real time through the quartz window installed in the reactor, and converts the optical information into digital information and inputs it to the computer 19 for spectral analysis.

放电测量系统,实时收集双极性纳秒脉冲电源1的放电电压和电流,并由数字示波器4显示。The discharge measurement system collects the discharge voltage and current of the bipolar nanosecond pulse power supply 1 in real time and displays them on the digital oscilloscope 4 .

双极性纳秒脉冲电源1、光谱测量系统和放电测量系统皆需用电磁屏蔽罩22屏蔽,所有的电磁屏蔽罩22外壳牢固接地。The bipolar nanosecond pulse power supply 1, the spectrum measurement system and the discharge measurement system all need to be shielded with electromagnetic shielding covers 22, and the shells of all electromagnetic shielding covers 22 are firmly grounded.

配气系统由质量流量控制计5、进气管路6、出气管路11、气阀7和多个气瓶8组成;将多个带有气阀7的气瓶8连通到质量流量控制计5中,带有气阀7的进气管路6一端与质量流量控制计5连通,另一端穿入反应器9内到达多针-板电极的多针电极10和介质片13之间的边缘处形成喷气口;带有气阀7的出气管路11安置在与进气管路相对侧的反应器9的上方。气瓶8中的气体可以是N气、He气、O2气和Ar气;配气系统是利用质量流量控制计5测量气体流量,将所用气体通过混合作为工作气体进入反应器,然后通过一个喷气口均匀地进入放电间隙,整个实验中气体流量保持在200 ml/min不变,气阀7控制气体的通入,实验中使用的N气、He气、O气2和Ar气的浓度均为99.999%的高纯气体。出气管路11处的气阀处于打开状态。如果工作气体为空气,可直接在空气中进行实验,不需要上面配气操作。The gas distribution system is composed of a mass flow controller 5, an air inlet pipeline 6, an outlet pipeline 11, an air valve 7 and a plurality of gas cylinders 8; multiple gas cylinders 8 with an air valve 7 are connected to the mass flow controller 5 Among them, one end of the air inlet pipeline 6 with the gas valve 7 communicates with the mass flow control meter 5, and the other end penetrates into the reactor 9 to reach the edge between the multi-needle electrode 10 and the dielectric sheet 13 of the multi-needle-plate electrode. Gas injection port; the outlet pipeline 11 with the gas valve 7 is placed above the reactor 9 on the side opposite to the inlet pipeline. The gas in the gas cylinder 8 can be N 2 gas, He gas, O 2 gas and Ar gas; the gas distribution system utilizes the mass flow controller 5 to measure the gas flow, and the used gas enters the reactor by mixing as a working gas, and then passes through A gas jet evenly enters the discharge gap, and the gas flow rate remains constant at 200 ml/min throughout the experiment, and the gas valve 7 controls the introduction of gas. The N2 gas, He gas, O gas2 and Ar gas used in the experiment The concentration is 99.999% high-purity gas. The air valve at the air outlet pipeline 11 is in an open state. If the working gas is air, the experiment can be carried out directly in the air without the above gas distribution operation.

放电测量系统由数字示波器4、电压探头线路3和电流探头线路17组成;将电压探头线路3一端连接在上电极2上,另一端连接在数字示波器4上;将电流探头线路17一端接在下电极16与接地之间的导线上,另一端接在数字示波器4上。本发明采用的是美国Tektronix公司生产的数字示波器型号为TDS3052B;电压探头线路P6015A,1000×3.0pF,100MΩ,1:1000、以及电流探头线路TCP312。The discharge measurement system consists of a digital oscilloscope 4, a voltage probe line 3 and a current probe line 17; one end of the voltage probe line 3 is connected to the upper electrode 2, and the other end is connected to the digital oscilloscope 4; one end of the current probe line 17 is connected to the lower electrode 16 and the ground wire, and the other end is connected to the digital oscilloscope 4. What the present invention adopts is that the digital oscilloscope model produced by U.S. Tektronix Company is TDS3052B; Voltage probe circuit P6015A, 1000×3.0pF, 100MΩ, 1:1000, and current probe circuit TCP312.

光谱测量系统由透镜(14)、光纤探头 (15)、光纤18、高分辨率光栅单色仪20、电荷耦合器件21和计算机19组成;透镜14固定在反应器9的石英窗口外侧的支架上,光纤探头15固定在透镜14另一侧的三维位移平台上,使其正对放电间隙,同时调节透镜14中心点以及光纤探头15的位置,使多针电极10中间针的针尖、透镜14中心点以及光纤探头15三者在同一水平直线上;光纤探头15收集到由透镜14会聚后的光信号,并经光纤18传输至高分辨率光栅单色仪20进行分光,分光后的单色光信号经电荷耦合器件21转变为数字信号,最后由计算机19采集处理。透镜14的直径为50 mm, 焦距为100 mm。高分辨率光栅单色仪型号为:Andor SR-750i。光栅2400条/mm,其闪耀波长为300 nm。在等离子体中存在着大量的激发态粒子,激发态粒子在退激发的过程中会发射光子,光子的能量与该粒子的种类以及所涉及的能级有关,通过探测这些光子的光谱,可以判断等离子体中存在的物质种类及其所处的状态。Spectral measurement system is made up of lens (14), optical fiber probe (15), optical fiber 18, high-resolution grating monochromator 20, charge-coupled device 21 and computer 19; Lens 14 is fixed on the support outside the quartz window of reactor 9 , the fiber optic probe 15 is fixed on the three-dimensional displacement platform on the other side of the lens 14, making it face the discharge gap, and at the same time adjust the center point of the lens 14 and the position of the fiber optic probe 15, so that the needle tip of the middle needle of the multi-needle electrode 10 and the center of the lens 14 point and the optical fiber probe 15 are on the same horizontal straight line; the optical fiber probe 15 collects the light signal converged by the lens 14, and transmits it to the high-resolution grating monochromator 20 through the optical fiber 18 for light splitting, and the monochromatic light signal after the light splitting It is converted into a digital signal by the charge-coupled device 21, and finally collected and processed by the computer 19. The diameter of the lens 14 is 50 mm, and the focal length is 100 mm. The high-resolution grating monochromator model is: Andor SR-750i. The grating has 2400 lines/mm, and its blazed wavelength is 300 nm. There are a large number of excited-state particles in the plasma, and the excited-state particles will emit photons during the de-excitation process. The energy of the photons is related to the type of the particle and the energy level involved. By detecting the spectrum of these photons, it can be judged The species of matter present in a plasma and the state it is in.

多针-板式电极中多针电极10的针电极数目可根据实际的需求来增加或减少而组成任意形状的电极的图案,同时还可调节针与针之间的距离。The number of needle electrodes of the multi-needle electrode 10 in the multi-needle-plate electrode can be increased or decreased according to actual needs to form an electrode pattern of any shape, and the distance between the needles can also be adjusted.

介质片13可以是石英、 陶瓷、 或聚四氟乙烯的任意一种。The dielectric sheet 13 can be any one of quartz, ceramics, or polytetrafluoroethylene.

多针电极10不仅可以调节所有针电极与下电极保持相同的距离同时还可以不同针电极与下电极保持不同的距离。The multi-needle electrode 10 can not only adjust all the needle electrodes to maintain the same distance from the lower electrode, but also can maintain different distances between different needle electrodes and the lower electrode.

安装与反应器9侧壁的观察窗口可以有1至4个。There can be 1 to 4 observation windows installed on the side wall of the reactor 9.

双极性纳秒脉冲电源1、光谱测量系统和放电测量系统皆需用电磁屏蔽罩22屏蔽,所有的电磁屏蔽罩22外壳牢固接地。The bipolar nanosecond pulse power supply 1, the spectrum measurement system and the discharge measurement system all need to be shielded with electromagnetic shielding covers 22, and the shells of all electromagnetic shielding covers 22 are firmly grounded.

本发明所提供的一种获取大面积均匀放电等离子体的实验装置的使用方法如下:A method of using an experimental device for obtaining large-area uniform discharge plasma provided by the present invention is as follows:

步骤1:在通入实验气体前,先检查气路的气密性,然后先将反应器9利用机械泵进行抽真空处理。再利用质量流量控制计5来测量来自不同气瓶8中的不同气体的流量,配比实验所需要的不同浓度的混合气体,通过进气管路6将混合气体输入反应器9再经过喷气口均匀的将混合气体通入放电间隙。整个实验中混合气体流量保持在200 ml/min不变,如果工作气体为空气,可直接在空气中进行实验,不需要上面配气操作步骤。Step 1: Before feeding the test gas, first check the airtightness of the gas path, and then vacuumize the reactor 9 with a mechanical pump. Then use the mass flow controller 5 to measure the flow of different gases from different gas cylinders 8, mix the mixed gases of different concentrations required by the proportioning experiment, and input the mixed gas into the reactor 9 through the air inlet line 6 and then pass through the gas injection port evenly Pass the mixed gas into the discharge gap. The flow rate of the mixed gas remains constant at 200 ml/min throughout the experiment. If the working gas is air, the experiment can be carried out directly in the air without the above steps of gas distribution.

步骤2:检查电路无误后,打开数字示波器4、高分辨率光栅单色仪20和计算机19,将数字示波器4的电压和电流调到最大量程;通过安装在计算机19上的Solis软件将高分辨率光栅单色仪20调到第三个光栅,即光栅2400条/mm,闪耀波长为300 nm,根据需要也可以选择500条/mm和1200条/mm的光栅。曝光时间为1 s, 测量范围为200-900 nm.调试完毕后,检查仪器是否工作正常,并用遮光材料将不用观测的其它反应器9的窗口遮住。Step 2: After checking that the circuit is correct, turn on the digital oscilloscope 4, the high-resolution grating monochromator 20 and the computer 19, adjust the voltage and current of the digital oscilloscope 4 to the maximum range; The rate grating monochromator 20 is adjusted to the third grating, that is, the grating is 2400 lines/mm, and the blaze wavelength is 300 nm, and the gratings of 500 lines/mm and 1200 lines/mm can also be selected according to needs. The exposure time is 1 s, and the measurement range is 200-900 nm. After debugging, check whether the instrument works normally, and use light-shielding materials to cover the windows of other reactors 9 that do not need to be observed.

步骤3:待仪器检查正常后,开启双极性纳秒脉冲电源1,先设定脉冲重复频率为150Hz, 然后将脉冲峰值电压调至30 kV,具体可以根据实际需要调节电源参数,等离子体放电开始,在多针电极10和介质片13之间会产生大面积的均匀等离子体。然后通过数字示波器4和计算机19分别记录放电等离子体的电流电压波形图和等离子体的发射光谱。记录完毕后,分别将脉冲峰值电压和脉冲重复频率调为0,关闭双极性纳秒脉冲电源1,放电结束。Step 3: After the instrument is checked to be normal, turn on the bipolar nanosecond pulse power supply 1, first set the pulse repetition frequency to 150Hz, and then adjust the pulse peak voltage to 30 kV. Specifically, the power supply parameters can be adjusted according to actual needs. Plasma discharge Initially, a large area of uniform plasma is generated between the multi-needle electrode 10 and the dielectric sheet 13 . Then, the current and voltage waveform diagram of the discharge plasma and the emission spectrum of the plasma are respectively recorded by the digital oscilloscope 4 and the computer 19 . After the recording is completed, adjust the pulse peak voltage and pulse repetition frequency to 0, turn off the bipolar nanosecond pulse power supply 1, and the discharge ends.

步骤4:通过计算机19分析放电等离子体的电流电压波形图和发射光谱,可以获得等离子体功率、功率密度、能耗、电子密度、转动温度、振动温度、电子温度以及该放电产生的活性粒子成分和浓度等重要参数。通过这些参数可以直观的反映所产生的等离子体的一些重要特性。还可以通过佳能550D数码相机拍摄放电照片,从照片能够直观的判断放电等离子体的面积和放电的均匀性。Step 4: Analyzing the current and voltage waveform diagram and emission spectrum of the discharge plasma by computer 19, the plasma power, power density, energy consumption, electron density, rotation temperature, vibration temperature, electron temperature and active particle components produced by the discharge can be obtained and concentration and other important parameters. These parameters can intuitively reflect some important characteristics of the generated plasma. You can also take photos of the discharge with a Canon 550D digital camera, and you can intuitively judge the area of the discharge plasma and the uniformity of the discharge from the photos.

Claims (9)

1. an experimental provision that obtains the even discharge plasma of large tracts of land is made up of bipolarity nanosecond pulse power supply (1), reactor (9), spininess-board-like electrode, gas distributing system, spectral measurement system and discharge measuring system; Bipolarity nanosecond pulse power supply (1) can be submitted for producing identical burst pulse voltage waveform in positive negative direction; Be about 20 ns pulse rise time, pulsewidth is about 60 ns, and peak impulse voltage 0-60 kV is adjustable continuously in the pulse repetition rate 0-400Hz scope; It is characterized in that:
Spininess-board-like electrode is made up of top electrode (2), multistylus electrode (10), plate electrode (12), bottom electrode (16) and dieelctric sheet (13); Top electrode (2), multistylus electrode (10), plate electrode (12) and bottom electrode (16) are all made by stainless steel material; Plate electrode (12) is the horizontal fixed state, and links to each other with bottom electrode (16); Bottom electrode (16) is by the lead dead earthing; Dieelctric sheet (13) covers the upper surface of plate electrode (12); Multistylus electrode (10) is fixed on the below of top electrode, and needle point down; Multistylus electrode (10) is relative with dieelctric sheet (13), forms discharging gap; The needle point of multistylus electrode (10) is adjustable in 0-30 mm scope apart from the gap of dieelctric sheet (13); The other end of top electrode (2) is connected with the output terminal of bipolarity nanosecond pulse power supply (1);
Reactor (9) is that a last end face is insulating material, be the hydrostatic column of the stainless steel sealing of making all around with the bottom surface, spininess-board-like electrode places the central authorities of reactor (9), and the insulation end face that top electrode (2) passes reactor (9) is connected with the output terminal of bipolarity nanosecond pulse power supply (1); Bottom electrode (16) passes the bottom surface of reactor (9), and dead earthing; The four direction of reactor (9) side has can be for the circular zero diopter quartz window of observing, and whole reactor (9) impermeability is fine, and except quartz window, the even blacking of all inwalls is to prevent that parasitic light is to the influence of spectral measurement; The sidewall of reactor (9) is equipped with air inlet pipeline (6) and the outlet pipe (11) that has air valve;
Gas distributing system is with the gases used discharging gap that passes through in air inlet pipeline (6) input reactor (9); Unnecessary gas is discharged by the outlet pipe (11) of gas distributing system;
Spectral measurement system, the photon information of plasma discharge between real-time collecting spininess-board-like electrode, and optical information is changed into numerical information be input to computing machine and carry out spectral analysis;
The discharge measuring system, sparking voltage and the electric current of real-time collecting bipolarity nanosecond pulse power supply (1), and shown by digital oscilloscope (4);
Bipolarity nanosecond pulse power supply (1), spectral measurement system and discharge measuring system all need use electro-magnetic shielding cover (22) shielding, all electro-magnetic shielding covers (22) shell dead earthing.
2. a kind of experimental provision that obtains the even discharge plasma of large tracts of land according to claim 1, it is characterized in that gas distributing system is made up of mass rate control meter (5), air inlet pipeline (6), outlet pipe (11), air valve (7) and a plurality of gas cylinder (8); A plurality of gas cylinders (8) that have air valve (7) are communicated in the mass rate control meter (5), air inlet pipeline (6) one ends that have air valve (7) are communicated with mass rate control meter (5), and the other end penetrates the multistylus electrode (10) and the edge between the dieelctric sheet (13) that arrive spininess-plate electrode in the reactor (9) and forms puff prot; The outlet pipe (11) that has air valve (7) is placed in the top with the reactor (9) of air inlet pipeline opposite side.
3. a kind of experimental provision that obtains the even discharge plasma of large tracts of land according to claim 1 is characterized in that, the discharge measuring system is made up of digital oscilloscope (4), voltage probe circuit circuit (3) and current probe circuit circuit (17); Voltage probe circuit (3) one ends are connected on the top electrode (2), and the other end is connected on the digital oscilloscope (4); Current probe circuit (17) one is terminated on the lead between bottom electrode (16) and the ground connection, and the other end is connected on the digital oscilloscope (4).
4. a kind of experimental provision that obtains the even discharge plasma of large tracts of land according to claim 1, it is characterized in that spectral measurement system is made up of lens (14), fibre-optical probe (15), optical fiber (18), high-resolution gration monochromator (20), charge-coupled image sensor (21) and computing machine (19); Lens (14) are fixed on the support in the quartz window outside of reactor (9), fibre-optical probe (15) is fixed on the three-D displacement platform of lens (14) opposite side, make it over against discharging gap, regulate the position of lens (14) central point and fibre-optical probe (15) simultaneously, make needle point, lens (14) central point and fibre-optical probe (15) three of multistylus electrode (10) middle needle on same horizontal linear; Fibre-optical probe (15) is collected by the light signal after lens (14) convergence, and transfer to high-resolution gration monochromator (20) through optical fiber (18) and carry out light splitting, monochromatic light signal after the light splitting changes digital signal into through charge-coupled image sensor (21), at last by computing machine (19) acquisition process.
5. a kind of experimental provision that obtains the even discharge plasma of large tracts of land according to claim 1, it is characterized in that, the pin electrode number of multistylus electrode (10) can increase or reduce the pattern of the electrode of forming arbitrary shape according to the demand of reality in spininess-board-like electrode, but the distance between metering needle and the pin also simultaneously.
6. a kind of experimental provision that obtains the even discharge plasma of large tracts of land according to claim 1 is characterized in that the needle tip of multistylus electrode (10) by rounding, and the needle point diameter is about 0.8 mm, and the distance between pin and the pin is 10 mm; Plate electrode (12) is that diameter is the stainless steel disk of 80 mm, and its thickness of stainless steel disc surfaces overwrite media sheet (13) is 1 mm, and diameter is 100 mm.
7. a kind of experimental provision that obtains the even discharge plasma of large tracts of land according to claim 1 or 5 is characterized in that, dieelctric sheet (13) can be any one of quartzy, pottery or teflon.
8. a kind of experimental provision that obtains the even discharge plasma of large tracts of land according to claim 1, it is characterized in that multistylus electrode (10) not only can be regulated all pin electrodes distance identical with the bottom electrode maintenance simultaneously can also the differing needles electrode distance different with the bottom electrode maintenance.
9. a kind of experimental provision that obtains the even discharge plasma of large tracts of land according to claim 3 is characterized in that, the diameter of lens (14) is 50 mm, and focal length is 100 mm.
CN201310188840.0A 2013-05-20 2013-05-20 A kind of experimental provision obtaining Large-Area-Uniform discharge plasma Expired - Fee Related CN103245655B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310188840.0A CN103245655B (en) 2013-05-20 2013-05-20 A kind of experimental provision obtaining Large-Area-Uniform discharge plasma

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310188840.0A CN103245655B (en) 2013-05-20 2013-05-20 A kind of experimental provision obtaining Large-Area-Uniform discharge plasma

Publications (2)

Publication Number Publication Date
CN103245655A true CN103245655A (en) 2013-08-14
CN103245655B CN103245655B (en) 2015-11-18

Family

ID=48925315

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310188840.0A Expired - Fee Related CN103245655B (en) 2013-05-20 2013-05-20 A kind of experimental provision obtaining Large-Area-Uniform discharge plasma

Country Status (1)

Country Link
CN (1) CN103245655B (en)

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103458601A (en) * 2013-09-12 2013-12-18 大连民族学院 Plasma generation device
CN103906336A (en) * 2014-04-14 2014-07-02 中国科学院工程热物理研究所 Gas discharge plasma generating device with adjustable pressure and temperature
CN104202897A (en) * 2014-09-02 2014-12-10 中国工程物理研究院流体物理研究所 DBD (Dielectric Barrier Discharge) low temperature plasma generating device and polymer film surface treatment method
CN104853513A (en) * 2015-05-19 2015-08-19 大连理工大学 Device for realizing large-area uniform dielectric barrier discharge and method
CN105484011A (en) * 2015-11-19 2016-04-13 大连理工大学 Apparatus and method for improving hydrophilicity of aramid fiber by using homogeneous atmospheric-pressure discharge
CN105699359A (en) * 2016-01-18 2016-06-22 大连理工大学 Experimental device and method for obtaining annular uniform plasmas in barometric pressure air
CN105938103A (en) * 2015-03-04 2016-09-14 馗鼎奈米科技股份有限公司 Optical monitoring method for plasma discharge glow
CN106185806A (en) * 2016-07-01 2016-12-07 中国科学院电工研究所 A kind of device and method utilizing plasma-converted methane
CN106470521A (en) * 2015-08-14 2017-03-01 吴勇峰 Magnet controlled taper pin array disperse discharge system in atmospheric air
CN106488639A (en) * 2016-12-28 2017-03-08 大连理工大学 Large scale pulse cold-plasma jet generating device
CN106474919A (en) * 2016-10-25 2017-03-08 大连理工大学 Large area removes the modular unit of NOx along face DBD synergistic catalyst
CN106597520A (en) * 2016-12-13 2017-04-26 中国科学院电工研究所 Three-channel runaway electron energy spectrum measuring device under nanosecond pulse discharge
CN106872417A (en) * 2017-03-06 2017-06-20 大连理工大学 Using SDBD and the experimental provision and method of emission spectrum detection OH concentration
CN106998617A (en) * 2017-05-27 2017-08-01 河北大学 The device and method of large scale Atomospheric pressure glow discharge is produced based on microplasma spray gun
CN107135597A (en) * 2017-06-26 2017-09-05 大连理工大学 A device and method for generating large-gap, large-area uniform discharge plasma in atmospheric pressure air
CN107191933A (en) * 2017-06-13 2017-09-22 武汉理工大学 A kind of Plasma Assisted Combustion formula multi-hole medium combustion system
CN107412812A (en) * 2017-08-31 2017-12-01 大连大学 A kind of new plasma discharge apparatus that can handle multiple biological samples simultaneously
CN107750086A (en) * 2017-09-28 2018-03-02 华南理工大学 A kind of implementation method of gear-like aura spot figure electric discharge
CN107864544A (en) * 2017-11-10 2018-03-30 西安交通大学 A kind of magnetic suspension electrode dielectric stops disperse arc discharge plasma generating device
CN108120906A (en) * 2017-12-20 2018-06-05 西安交通大学 From trigger-type liquid electric discharge temporal-spatial evolution observation system under a kind of pulse voltage
CN108289365A (en) * 2018-01-23 2018-07-17 南京航空航天大学 A kind of atmosphere pressure discharging multi-modes device
CN108802009A (en) * 2018-08-24 2018-11-13 哈尔滨工业大学(威海) A method of detecting heavy metal using plasma atomic emission spectrometer
CN108872080A (en) * 2018-08-24 2018-11-23 哈尔滨工业大学(威海) A kind of preceding light path system of plasma atomic emission spectrometer
CN109545643A (en) * 2018-11-19 2019-03-29 国网四川省电力公司电力科学研究院 A kind of large volume honeycomb corona plasma 3D uniformity regulating device
CN110402010A (en) * 2019-07-15 2019-11-01 中国科学院合肥物质科学研究院 A Cascaded Arc Cathode Structure with Large Area and High Uniformity Active Cooling
CN110582155A (en) * 2018-06-08 2019-12-17 北京北方华创微电子装备有限公司 plasma glow starting detection device and method and process chamber
CN110918028A (en) * 2019-12-06 2020-03-27 大连海事大学 A device and method for preparing metal catalyst by using plasma
CN111102914A (en) * 2019-12-30 2020-05-05 上海安平静电科技有限公司 Method for determining electrode spacing of ion generating device
CN111145623A (en) * 2019-12-31 2020-05-12 河海大学常州校区 Device and method for experimental research on positive and negative corona and substance action of different parameters
CN111239104A (en) * 2020-02-17 2020-06-05 吉林大学 A method and system for LIBS spectral signal enhancement based on resonance excitation
CN111642051A (en) * 2020-06-19 2020-09-08 西安理工大学 An array plasma device for material surface treatment
CN111954360A (en) * 2020-09-18 2020-11-17 云南电网有限责任公司电力科学研究院 Large-area cold plasma generating device and method based on mixed gas
CN112067498A (en) * 2020-07-25 2020-12-11 东北电力大学 Discharge in water H2O2Particle space-time density distribution measuring device and measuring method thereof
CN112098395A (en) * 2020-08-06 2020-12-18 北京航空航天大学 Dielectric barrier discharge plasma emission spectrometer based on online detection
CN112804806A (en) * 2020-11-23 2021-05-14 北京劳动保障职业学院 Magnetic confinement three-dimensional plasma jet array method and system
US20210199590A1 (en) * 2019-12-30 2021-07-01 Purdue Research Foundation Systems and methods for measuring a temperature of a gas
CN113533583A (en) * 2021-08-13 2021-10-22 西安交通大学 Plasma-assisted gas-liquid fuel oxidation, pyrolysis and reforming experiment platform
CN113966064A (en) * 2021-09-18 2022-01-21 河北大学 A device and method for generating sheet-like plasma plumes
CN114029271A (en) * 2021-11-04 2022-02-11 江南大学 A processing system and processing method for plugging a microreactor
CN114184578A (en) * 2021-12-03 2022-03-15 西安交通大学 Dielectric barrier discharge experiment platform capable of realizing transient and steady state measurement
CN114558431A (en) * 2022-02-28 2022-05-31 上海激光电源设备有限责任公司 Nanosecond electric pulse desulfurization/nitration reactor and preparation method thereof
CN114928931A (en) * 2022-06-08 2022-08-19 广州大学 Atmospheric pressure low temperature plasma liquid treatment device with needle electrode with adjustable needle number
CN114966330A (en) * 2022-03-18 2022-08-30 武汉大学 Cloud chamber observation platform and observation method for gas discharge electron collapse shape observation
CN115161166A (en) * 2022-07-27 2022-10-11 安徽大学 An experimental device for inactivating microorganisms by low temperature plasma
CN115232743A (en) * 2022-08-18 2022-10-25 和田昆仑利来生物科技有限公司 System and method for plasma mutagenesis of microorganisms
CN115267449A (en) * 2022-07-11 2022-11-01 哈尔滨理工大学 Micro-gap air discharge spectrum diagnosis system under atmospheric pressure
CN115554952A (en) * 2022-09-22 2023-01-03 南京工业大学 Jet plasma nitrogen fixation device and method based on nanosecond pulse spark discharge
CN115753875A (en) * 2022-09-07 2023-03-07 西安工程大学 A Characterization Method of Dielectric Barrier Discharge Uniformity in Argon Atmosphere
CN117596762A (en) * 2024-01-18 2024-02-23 离享未来(德州)等离子科技有限公司 Bipolar nanosecond pulse power supply for discharge plasma
CN119277628A (en) * 2024-09-09 2025-01-07 上海交通大学 A large space high density discharge plasma device and its application

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998052389A1 (en) * 1997-05-12 1998-11-19 Cymer, Inc. Plasma focus high energy photon source
CN1694324A (en) * 2005-03-02 2005-11-09 华北电力大学(北京) Method for uniform glow discharge in atmosphere air
CN1777347A (en) * 2005-11-24 2006-05-24 南京航空航天大学 Corona-coupled dielectric barrier discharge device for generating low-temperature plasma
CN1927408A (en) * 2006-09-26 2007-03-14 西安交通大学 Indoor air purification method by using medium for blocking off low-temperature plasma generated by discharge
CN101863455A (en) * 2010-05-07 2010-10-20 大连理工大学 A Plate Plasma Reactor for Hydrogen Production by Ammonia Decomposition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998052389A1 (en) * 1997-05-12 1998-11-19 Cymer, Inc. Plasma focus high energy photon source
CN1694324A (en) * 2005-03-02 2005-11-09 华北电力大学(北京) Method for uniform glow discharge in atmosphere air
CN1777347A (en) * 2005-11-24 2006-05-24 南京航空航天大学 Corona-coupled dielectric barrier discharge device for generating low-temperature plasma
CN1927408A (en) * 2006-09-26 2007-03-14 西安交通大学 Indoor air purification method by using medium for blocking off low-temperature plasma generated by discharge
CN101863455A (en) * 2010-05-07 2010-10-20 大连理工大学 A Plate Plasma Reactor for Hydrogen Production by Ammonia Decomposition

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
张帅等: "Atmospheric-Pressure Diffuse Dielectric-Barrier-Discharge Plasma Generated by Bipolar Nanosecond Pulse in Nitrogen and Air", 《IEEE TRANSACTIONS ON PLASMA SCIENCE》, vol. 40, no. 9, 30 September 2012 (2012-09-30), pages 2191 - 2197, XP011460021, DOI: 10.1109/TPS.2012.2206613 *
张百灵等: "静止空气条件纳秒脉冲放电实验研究", 《核聚变与等离子体物理》, vol. 32, no. 4, 31 December 2012 (2012-12-31), pages 312 - 316 *
肖重发等: "氮气大气压介质阻挡放电发射光谱诊断", 《大连理工大学学报》, vol. 44, no. 5, 30 September 2004 (2004-09-30), pages 625 - 629 *
鲁娜等: "针-板式介质阻挡放电降解土壤中对硝基苯酚研究", 《环境科学与技术》, vol. 35, no. 10, 31 October 2012 (2012-10-31), pages 50 - 52 *

Cited By (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103458601A (en) * 2013-09-12 2013-12-18 大连民族学院 Plasma generation device
CN103906336A (en) * 2014-04-14 2014-07-02 中国科学院工程热物理研究所 Gas discharge plasma generating device with adjustable pressure and temperature
CN104202897B (en) * 2014-09-02 2017-01-11 中国工程物理研究院流体物理研究所 DBD (Dielectric Barrier Discharge) low temperature plasma generating device and polymer film surface treatment method
CN104202897A (en) * 2014-09-02 2014-12-10 中国工程物理研究院流体物理研究所 DBD (Dielectric Barrier Discharge) low temperature plasma generating device and polymer film surface treatment method
CN105938103A (en) * 2015-03-04 2016-09-14 馗鼎奈米科技股份有限公司 Optical monitoring method for plasma discharge glow
CN104853513A (en) * 2015-05-19 2015-08-19 大连理工大学 Device for realizing large-area uniform dielectric barrier discharge and method
CN106470521A (en) * 2015-08-14 2017-03-01 吴勇峰 Magnet controlled taper pin array disperse discharge system in atmospheric air
CN105484011A (en) * 2015-11-19 2016-04-13 大连理工大学 Apparatus and method for improving hydrophilicity of aramid fiber by using homogeneous atmospheric-pressure discharge
CN105699359A (en) * 2016-01-18 2016-06-22 大连理工大学 Experimental device and method for obtaining annular uniform plasmas in barometric pressure air
CN106185806A (en) * 2016-07-01 2016-12-07 中国科学院电工研究所 A kind of device and method utilizing plasma-converted methane
CN106185806B (en) * 2016-07-01 2018-07-31 中国科学院电工研究所 A kind of device and method using plasma-converted methane
CN106474919A (en) * 2016-10-25 2017-03-08 大连理工大学 Large area removes the modular unit of NOx along face DBD synergistic catalyst
CN106474919B (en) * 2016-10-25 2019-01-18 大连理工大学 Modular unit of the large area along face DBD synergistic catalyst removing NOx
CN106597520A (en) * 2016-12-13 2017-04-26 中国科学院电工研究所 Three-channel runaway electron energy spectrum measuring device under nanosecond pulse discharge
CN106488639A (en) * 2016-12-28 2017-03-08 大连理工大学 Large scale pulse cold-plasma jet generating device
CN106872417A (en) * 2017-03-06 2017-06-20 大连理工大学 Using SDBD and the experimental provision and method of emission spectrum detection OH concentration
CN106872417B (en) * 2017-03-06 2019-10-11 大连理工大学 Experimental device and method for detecting OH concentration using SDBD and emission spectrum
CN106998617A (en) * 2017-05-27 2017-08-01 河北大学 The device and method of large scale Atomospheric pressure glow discharge is produced based on microplasma spray gun
CN107191933A (en) * 2017-06-13 2017-09-22 武汉理工大学 A kind of Plasma Assisted Combustion formula multi-hole medium combustion system
CN107135597B (en) * 2017-06-26 2023-05-12 大连理工大学 Device for generating large-gap and large-area uniform discharge plasma in atmospheric air and use method
CN107135597A (en) * 2017-06-26 2017-09-05 大连理工大学 A device and method for generating large-gap, large-area uniform discharge plasma in atmospheric pressure air
CN107412812A (en) * 2017-08-31 2017-12-01 大连大学 A kind of new plasma discharge apparatus that can handle multiple biological samples simultaneously
CN107750086A (en) * 2017-09-28 2018-03-02 华南理工大学 A kind of implementation method of gear-like aura spot figure electric discharge
CN107864544A (en) * 2017-11-10 2018-03-30 西安交通大学 A kind of magnetic suspension electrode dielectric stops disperse arc discharge plasma generating device
CN107864544B (en) * 2017-11-10 2019-08-23 西安交通大学 A magnetic suspension electrode dielectric barrier diffuse discharge plasma generator
CN108120906A (en) * 2017-12-20 2018-06-05 西安交通大学 From trigger-type liquid electric discharge temporal-spatial evolution observation system under a kind of pulse voltage
CN108120906B (en) * 2017-12-20 2020-03-17 西安交通大学 Self-triggering type liquid discharge space-time evolution observation system under pulse voltage
CN108289365A (en) * 2018-01-23 2018-07-17 南京航空航天大学 A kind of atmosphere pressure discharging multi-modes device
CN110582155A (en) * 2018-06-08 2019-12-17 北京北方华创微电子装备有限公司 plasma glow starting detection device and method and process chamber
CN108872080B (en) * 2018-08-24 2022-03-04 哈尔滨工业大学(威海) A kind of front optical system of plasma atomic emission spectrometer
CN108802009B (en) * 2018-08-24 2022-03-04 哈尔滨工业大学(威海) Method for detecting heavy metal by using plasma atomic emission spectrometer
CN108872080A (en) * 2018-08-24 2018-11-23 哈尔滨工业大学(威海) A kind of preceding light path system of plasma atomic emission spectrometer
CN108802009A (en) * 2018-08-24 2018-11-13 哈尔滨工业大学(威海) A method of detecting heavy metal using plasma atomic emission spectrometer
CN109545643B (en) * 2018-11-19 2021-05-14 国网四川省电力公司电力科学研究院 3D uniformity adjusting device for large-volume honeycomb corona plasma
CN109545643A (en) * 2018-11-19 2019-03-29 国网四川省电力公司电力科学研究院 A kind of large volume honeycomb corona plasma 3D uniformity regulating device
CN110402010A (en) * 2019-07-15 2019-11-01 中国科学院合肥物质科学研究院 A Cascaded Arc Cathode Structure with Large Area and High Uniformity Active Cooling
CN110918028A (en) * 2019-12-06 2020-03-27 大连海事大学 A device and method for preparing metal catalyst by using plasma
CN111102914A (en) * 2019-12-30 2020-05-05 上海安平静电科技有限公司 Method for determining electrode spacing of ion generating device
US11946871B2 (en) * 2019-12-30 2024-04-02 Purdue Research Foundation Systems and methods for measuring a temperature of a gas
US20210199590A1 (en) * 2019-12-30 2021-07-01 Purdue Research Foundation Systems and methods for measuring a temperature of a gas
CN111145623A (en) * 2019-12-31 2020-05-12 河海大学常州校区 Device and method for experimental research on positive and negative corona and substance action of different parameters
CN111145623B (en) * 2019-12-31 2021-12-10 河海大学常州校区 Device and method for experimental research on positive and negative corona and substance action of different parameters
CN111239104A (en) * 2020-02-17 2020-06-05 吉林大学 A method and system for LIBS spectral signal enhancement based on resonance excitation
CN111642051A (en) * 2020-06-19 2020-09-08 西安理工大学 An array plasma device for material surface treatment
CN112067498B (en) * 2020-07-25 2024-02-13 东北电力大学 In-water discharge H 2 O 2 Particle space-time density distribution measuring device and measuring method thereof
CN112067498A (en) * 2020-07-25 2020-12-11 东北电力大学 Discharge in water H2O2Particle space-time density distribution measuring device and measuring method thereof
CN112098395A (en) * 2020-08-06 2020-12-18 北京航空航天大学 Dielectric barrier discharge plasma emission spectrometer based on online detection
CN111954360A (en) * 2020-09-18 2020-11-17 云南电网有限责任公司电力科学研究院 Large-area cold plasma generating device and method based on mixed gas
CN112804806A (en) * 2020-11-23 2021-05-14 北京劳动保障职业学院 Magnetic confinement three-dimensional plasma jet array method and system
CN113533583A (en) * 2021-08-13 2021-10-22 西安交通大学 Plasma-assisted gas-liquid fuel oxidation, pyrolysis and reforming experiment platform
CN113966064A (en) * 2021-09-18 2022-01-21 河北大学 A device and method for generating sheet-like plasma plumes
CN114029271A (en) * 2021-11-04 2022-02-11 江南大学 A processing system and processing method for plugging a microreactor
CN114184578A (en) * 2021-12-03 2022-03-15 西安交通大学 Dielectric barrier discharge experiment platform capable of realizing transient and steady state measurement
CN114184578B (en) * 2021-12-03 2023-06-23 西安交通大学 A dielectric barrier discharge experimental platform that can realize transient and steady-state measurement
CN114558431A (en) * 2022-02-28 2022-05-31 上海激光电源设备有限责任公司 Nanosecond electric pulse desulfurization/nitration reactor and preparation method thereof
CN114966330A (en) * 2022-03-18 2022-08-30 武汉大学 Cloud chamber observation platform and observation method for gas discharge electron collapse shape observation
CN114966330B (en) * 2022-03-18 2024-05-10 武汉大学 Cloud chamber observation platform and observation method for gas discharge electronic collapse form observation
CN114928931A (en) * 2022-06-08 2022-08-19 广州大学 Atmospheric pressure low temperature plasma liquid treatment device with needle electrode with adjustable needle number
CN115267449A (en) * 2022-07-11 2022-11-01 哈尔滨理工大学 Micro-gap air discharge spectrum diagnosis system under atmospheric pressure
CN115161166A (en) * 2022-07-27 2022-10-11 安徽大学 An experimental device for inactivating microorganisms by low temperature plasma
CN115232743A (en) * 2022-08-18 2022-10-25 和田昆仑利来生物科技有限公司 System and method for plasma mutagenesis of microorganisms
CN115753875A (en) * 2022-09-07 2023-03-07 西安工程大学 A Characterization Method of Dielectric Barrier Discharge Uniformity in Argon Atmosphere
CN115554952A (en) * 2022-09-22 2023-01-03 南京工业大学 Jet plasma nitrogen fixation device and method based on nanosecond pulse spark discharge
CN117596762A (en) * 2024-01-18 2024-02-23 离享未来(德州)等离子科技有限公司 Bipolar nanosecond pulse power supply for discharge plasma
CN117596762B (en) * 2024-01-18 2024-04-05 离享未来(德州)等离子科技有限公司 Bipolar nanosecond pulse power supply for discharge plasma
CN119277628A (en) * 2024-09-09 2025-01-07 上海交通大学 A large space high density discharge plasma device and its application

Also Published As

Publication number Publication date
CN103245655B (en) 2015-11-18

Similar Documents

Publication Publication Date Title
CN103245655B (en) A kind of experimental provision obtaining Large-Area-Uniform discharge plasma
CN106769707B (en) Potential well voltage-adjustable particle size spectrum measurement device and measurement method thereof
CN102435919B (en) A test device for testing the characteristics of SF6 gas discharge decomposition products
CN105698850A (en) Experimental system and experimental method for studying dielectric barrier discharge treatment of SF6 gas
CN203825147U (en) Multifunctional gas discharge and plasma arc detection device
CN203838292U (en) A high-temperature gas breakdown characteristic detection device under VFTO
CN105699359A (en) Experimental device and method for obtaining annular uniform plasmas in barometric pressure air
CN107636448A (en) High-purity water trace sodium on-line monitor and its on-line monitoring method and device
CN101581698B (en) Aerosol field ionization electric charge source device
CN105911032A (en) Device and method for detecting SO2 in SF6 electrical equipment based on ultraviolet fluorescence
CN103941167A (en) Multifunctional gas discharging and plasma electric arc detecting device and method
CN103941166B (en) High-temperature gas breakdown characteristics detecting device and method under a kind of VFTO
CN102621577B (en) Real-time monitoring method of each component beam intensity and injection dosage of mixed ion beam
CN113805013B (en) Flashover test device and method under temperature gradient conditions in gas-insulated power equipment
CN104853513B (en) Device for realizing large-area uniform dielectric barrier discharge and method
CN105484011B (en) Improve the hydrophilic device and method of aramid fiber using homogenous atmospheric-pressure discharge
Komuro Recent advances in surface charge dynamics in dielectric barrier discharge: future strategies for control and technological optimisation
CN116567905A (en) A surface modification device for circulating water temperature control large-area water network electrode DBD material
Zhang et al. A three-dimensional velocity-map imaging setup designed for crossed ion-molecule scattering studies
Lepreti et al. Scaling properties and intermittency of two-dimensional turbulence in pure electron plasmas
CN111983008B (en) Small photoionization detector and detection method thereof
CN113721066B (en) Conduction current measuring device and method
CN106474919B (en) Modular unit of the large area along face DBD synergistic catalyst removing NOx
CN110487773A (en) Experimental device and method for SF6 decomposition mechanism based on femtosecond laser-guided high-voltage discharge
CN206330865U (en) A kind of adjustable particle size spectrometry device of potential well voltage

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20151118

Termination date: 20190520

CF01 Termination of patent right due to non-payment of annual fee