CN103040586A - External skeleton robot for exercising lower limbs and exercise control method thereof - Google Patents
External skeleton robot for exercising lower limbs and exercise control method thereof Download PDFInfo
- Publication number
- CN103040586A CN103040586A CN2012105558161A CN201210555816A CN103040586A CN 103040586 A CN103040586 A CN 103040586A CN 2012105558161 A CN2012105558161 A CN 2012105558161A CN 201210555816 A CN201210555816 A CN 201210555816A CN 103040586 A CN103040586 A CN 103040586A
- Authority
- CN
- China
- Prior art keywords
- walking
- operator
- robot
- joint
- exoskeleton
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Manipulator (AREA)
- Rehabilitation Tools (AREA)
Abstract
本发明涉及了一种用于下肢运动训练的外骨骼机器人及其运动控制方法。本机器人包括支撑平衡架、外骨骼机械腿、跑步机和控制系统四部分组成。运动控制方法提供两种模式,分别为被动步行运动和主动步行运动模式:被动步行运动模式下,控制机器人带动操作者完成特定的运动或以正确的生理学步态轨迹运动;主动步行运动模式下,机器人抑制操作者有限的异常运动,直接修正或通过自适应控制器产生操作者期望的步态训练轨迹,间接实现机器人提供步行运动辅助力、阻抗力的目的。本发明能够提高人体肢体运动能力,辅助人进行行走运动,降低人在负重或长时间行走情况下的运动强度。
The invention relates to an exoskeleton robot used for lower limb exercise training and a motion control method thereof. The robot consists of four parts: a supporting balance frame, an exoskeleton mechanical leg, a treadmill and a control system. The motion control method provides two modes, namely passive walking movement and active walking movement mode: in the passive walking movement mode, the control robot drives the operator to complete a specific movement or move with the correct physiological gait trajectory; in the active walking movement mode, The robot suppresses the limited abnormal movement of the operator, directly corrects or generates the gait training trajectory expected by the operator through an adaptive controller, and indirectly realizes the purpose of the robot providing auxiliary force and resistance for walking motion. The invention can improve the movement ability of human limbs, assist people to carry out walking movement, and reduce the movement intensity of people under the condition of bearing weight or walking for a long time.
Description
技术领域 technical field
本发明涉及一种用于下肢运动训练的外骨骼机器人及其运动控制方法。主要用于人体下肢运动信息检测及下肢运动助力的外骨骼机器人装置。 The invention relates to an exoskeleton robot used for lower limb exercise training and a motion control method thereof. An exoskeleton robot device mainly used for human lower limb motion information detection and lower limb motion assistance.
背景技术 Background technique
随着科学技术的进步、生活水平的提高和生活节奏的日益加快,人们在享受着各种高科技工具所带来的便利的同时,忽视了体育锻炼的必要性,越来越多的年轻人的身体体质在不断地下降。另一方面,我国和世界上许多国家一样,正在步入老龄化社会,行动不便的老年人占据的比重也越来越大。因此,非常有必要去研究开发一种提高人体肢体运动机能的助力装置,帮助人们进行下肢运动训练,增强身体体质,。 With the advancement of science and technology, the improvement of living standards and the increasing pace of life, people are enjoying the convenience brought by various high-tech tools while ignoring the necessity of physical exercise. More and more young people His physical fitness continued to decline. On the other hand, our country, like many countries in the world, is entering an aging society, and the proportion of elderly people with limited mobility is also increasing. Therefore, it is very necessary to research and develop a booster device that improves the motor function of human limbs, helps people to perform lower limb exercise training, and enhances physical fitness.
下肢外骨骼机器人是类似人体外骨骼一样的装置,它能被操作者穿在身上,带动人体髋关节、膝关节和踝关节进行和人体行走保持一致的运动,这种行走助力机构不但有简单的机械助力功能,而且能帮助使用者维持行走平衡。 The lower extremity exoskeleton robot is a device similar to the human exoskeleton. It can be worn by the operator to drive the human hip joints, knee joints and ankle joints to move in line with human walking. This walking assist mechanism not only has a simple Mechanical assist function, and can help users maintain walking balance.
目前国内外许多研究人员在开展下肢外骨骼机器人的研究工作,但这些外骨骼机械腿训练动作种类比较少,动作范围具有局限性,运动幅度较小,多数忽略了操作者下肢的主动运动意图,缺乏运动信息的实时反馈,在操作的稳定性、安全性和真实感上有待改进。 At present, many researchers at home and abroad are carrying out research work on lower limb exoskeleton robots, but these exoskeleton mechanical legs have relatively few types of training movements, limited range of motion, and small range of motion. Most of them ignore the active movement intention of the operator's lower limbs. Lack of real-time feedback of motion information, the stability, safety and realism of operation need to be improved. the
发明内容 Contents of the invention
本发明的目的在于针对已有技术存在的不足,提供一种用于下肢运动训练的外骨骼机器人及其运动控制方法,提高人体肢体运动能力,并引入操作者主动运动意图,增强了操作者的主动参与性,更加完整、更加真实地实现了下肢助力步行运动。 The purpose of the present invention is to address the deficiencies in the prior art, provide an exoskeleton robot for lower limb exercise training and its motion control method, improve the movement ability of human body limbs, and introduce the operator's active movement intention, which enhances the operator's ability to exercise. Active participation, more complete and more realistic realization of the lower limbs assist walking movement.
为达到上述目的,本发明的研究和构思如下:用于提高人体肢体运动能力的下肢外骨骼机器人包括支撑平衡架、外骨骼机械腿、跑步机和控制系统四部分组成。支撑平衡架下端与跑步机固接,外骨骼机械腿固定于支撑平衡架中部,其足底与跑步机跑带接触,使用者穿戴上外骨骼机械腿,通过控制系统的控制,在跑步机上进行运动训练。 In order to achieve the above-mentioned purpose, the research and design of the present invention are as follows: the lower extremity exoskeleton robot for improving the movement ability of human limbs includes four parts: a support balance frame, an exoskeleton mechanical leg, a treadmill and a control system. The lower end of the support balance frame is fixed to the treadmill, and the exoskeleton mechanical legs are fixed in the middle of the support balance frame. Sports Training.
外骨骼机械腿由2条外骨骼式机械腿构成,每条机械腿有3个转动自由度,髋关节、膝关节、踝关节各有1个自由度,均为转动连接,可以模拟人在步行时矢状面内的三关节的转动,实现三自由度的运动。在每个关节处安装有驱动机械腿的线性驱动器和测量关节旋转角度角度传感器,在线性驱动器的后方安装一维拉压力传感器,用于检测驱动器提供的驱动力。 The exoskeleton mechanical leg is composed of 2 exoskeleton mechanical legs, each mechanical leg has 3 rotational degrees of freedom, and the hip joint, knee joint, and ankle joint each have 1 degree of freedom, all of which are connected by rotation, which can simulate human walking The rotation of the three joints in the sagittal plane realizes the movement of three degrees of freedom. A linear driver for driving the mechanical leg and an angle sensor for measuring the joint rotation angle are installed at each joint, and a Vila pressure sensor is installed behind the linear driver to detect the driving force provided by the driver.
针对操作者的不同意愿,这种用于提高人体肢体运动能力的下肢外骨骼机器人的控制方法实施被动步行运动和主动步行运动两种工作模式: According to the different wishes of the operator, the control method of this lower extremity exoskeleton robot for improving the movement ability of human limbs implements two working modes: passive walking movement and active walking movement:
被动步行运动模式下,控制机器人抑制操作者所有的异常运动,带动操作者完成特定的运动或以正确的生理学步态轨迹运动,操作者不需要自己用力,完全被动跟随机器人做步行运动; In the passive walking movement mode, the robot is controlled to suppress all abnormal movements of the operator, and drives the operator to complete a specific movement or move with a correct physiological gait trajectory. The operator does not need to use force by himself, and completely passively follows the robot to do walking movements;
主动步行运动模式下,机器人抑制操作者有限的异常运动,通过实时检测运动过程中操作者作用于机器人所产生的关节驱动力,进而采用逆动力学模型提取人机交互作用力矩来判断操作者下肢的主动运动意图,并利用阻抗控制器将交互力矩转化为步态轨迹的修正量,直接修正或通过自适应控制器产生操作者期望的步态轨迹,间接实现机器人提供步行辅助力、阻抗力的目的,增强操作者主动性。 In the active walking mode, the robot restrains the limited abnormal movement of the operator, and detects the joint driving force generated by the operator acting on the robot during the movement in real time, and then uses the inverse dynamics model to extract the human-computer interaction torque to judge the operator's lower limbs. The active movement intention of the operator, and use the impedance controller to convert the interactive torque into the correction amount of the gait trajectory, directly correct or generate the gait trajectory expected by the operator through the adaptive controller, and indirectly realize the walking assist force and resistance provided by the robot. The purpose is to enhance the operator's initiative.
本发明的构思是:采用下肢外骨骼机器人提高人体下肢运动能力。根据人体对于辅助行走的需要,分成机械腿提供所有辅助力的被动步行运动模式和提供部分辅助力的主动步行运动模式。被动模式下,机械腿提供人体步行所需要的全部力量和负重能力,带动操作者在跑步机上以标准的生理学步态轨迹行走或完成特定的运动,此时采用基于PD反馈的位置伺服控制方法,有效实现步态轨迹的跟踪控制。在主动步行运动模式下,考虑到了操作者的主动性,通过力传感器检测并提取出人机交互作用力矩,建立人机交互作用力矩和偏离预定关节轨迹偏差的阻抗控制模型,实现主动训练模式下的阻抗控制。而阻抗控制始终基于一个固定的参考轨迹,只能在这一轨迹基础上产生偏差,很难适应不同个体步态轨迹的调整;因为对于部分人群,比如部分或完全丧失行走能力老年人,可能由于下肢肌痉挛、肌肉紧张等引起的肌肉力量的不协调性,将使得人机交互作用力矩的变化过大或过小,经阻抗控制模型计算的轨迹偏差亦偏大或偏小,修正后的步态轨迹将不完全符合生理学规律,势必影响行走的舒适性,甚至可能引起对身体的危害。因此提出步态轨迹自适应控制算法,从总体效果上考虑操作者主动参与的意图。 The idea of the present invention is to use the lower limb exoskeleton robot to improve the movement ability of the lower limbs of the human body. According to the needs of the human body for assisted walking, it is divided into a passive walking movement mode in which the mechanical legs provide all the auxiliary force and an active walking movement mode in which the mechanical leg provides part of the auxiliary force. In passive mode, the mechanical legs provide all the strength and load-bearing capacity required for human walking, and drive the operator to walk on the treadmill with a standard physiological gait trajectory or complete specific movements. At this time, the position servo control method based on PD feedback is adopted. Effectively realize the tracking control of gait trajectory. In the active walking mode, taking into account the operator's initiative, the human-computer interaction torque is detected and extracted through the force sensor, and the impedance control model of the human-computer interaction torque and the deviation from the predetermined joint trajectory is established to realize the active training mode. impedance control. Impedance control is always based on a fixed reference trajectory, which can only produce deviations based on this trajectory, and it is difficult to adapt to the adjustment of different individual gait trajectories; because for some people, such as the elderly who partially or completely lose the ability to walk, it may be due to The incoordination of muscle strength caused by lower limb muscle spasm and muscle tension will make the change of human-computer interaction torque too large or too small, and the trajectory deviation calculated by the impedance control model will also be too large or too small. The dynamic trajectory will not completely conform to the physiological laws, which will inevitably affect the comfort of walking, and may even cause harm to the body. Therefore, a gait trajectory adaptive control algorithm is proposed, considering the operator's active participation intention from the overall effect.
用于下肢运动训练的外骨骼机器人运动控制方法,其特征在于针对人体不同的需要,将步行运动分为被动和主动模式,且在主动步行模式下可根据操作者的类型,选择阻抗控制或自适应控制方法,具体实施过程如下: The exoskeleton robot motion control method for lower limb exercise training is characterized in that the walking motion is divided into passive and active modes according to different needs of the human body, and in the active walking mode, impedance control or automatic mode can be selected according to the type of operator. Adaptive control method, the specific implementation process is as follows:
1、被动步行运动模式下,操作者在外骨骼式机械腿的完全带动下,在跑步机上以标准的生理学步态轨迹行走或完成特定的运动,并实时检测步行过程中各关节的角度、角速度作为反馈信号,采用基于PD反馈的位置伺服控制方法,驱动机械腿带动操作者实现步行运动。 1. In the passive walking movement mode, the operator walks on the treadmill with a standard physiological gait trajectory or completes specific movements under the full drive of the exoskeleton mechanical legs, and detects the angles and angular velocities of each joint during walking in real time as The feedback signal adopts the position servo control method based on PD feedback to drive the mechanical legs to drive the operator to realize walking motion.
2、主动步行运动模式下,其为一个典型的双闭环控制系统模型,内环为基于PD反馈的位置控制环,外环为基于位置的阻抗控制力环;在步行运动过程中,利用关节驱动器后安装的拉压力传感器实时采集在操作者下肢主动作用力下所产生的各关节驱动力,进而结合机器人的逆动力学模型计算提取出各关节人机交互作用力矩,从而获得操作者的下肢运动意图;利用阻抗控制器将各关节人机交互力矩转化为相应的步态轨迹的位置、速度和加速度修正量,产生操作者期望的步态轨迹;或采用前n项傅里叶级数展开式拟合计算各关节正确的生理学步态轨迹,确定其初始表达式,再将各关节步态轨迹参数化,每个关节采用3个轨迹参数分别表示关节角度幅值的缩放因子,实现训练步幅的调节;步态周期的调节因子;关节角度的偏移量,可改变髋关节的弯曲和伸展量、膝关节的弯曲量、踝关节的跖屈和弯曲。然后通过各关节轨迹偏差的欧几里得范数的最佳平方逼近方法建立目标函数,以相应的轨迹参数初值对目标函数在每个步态周期范围内利用梯度法迭代求解关节角度轨迹参数,从总体效果上拟合计算参数化的步态轨迹,进而生成操作者期望的轨迹,并输入到机器人关节内环位置控制器中,控制各关节的伺服驱动器实现期望的轨迹输出,从而驱动机器人根据操作者的主动运动意图不断地调整步行轨迹,间接实现机器人提供行走辅助力、阻抗力的目的,增强操作者主动性。 2. In the active walking movement mode, it is a typical double closed-loop control system model, the inner loop is a position control loop based on PD feedback, and the outer loop is a position-based impedance control force loop; during the walking movement, the joint driver is used The post-installed tension and pressure sensors collect in real time the driving force of each joint generated under the active force of the operator's lower limbs, and then combine the robot's inverse dynamics model to calculate and extract the human-computer interaction torque of each joint, thereby obtaining the operator's lower limb movement Intention: Use the impedance controller to convert the human-computer interaction torque of each joint into the position, velocity and acceleration correction of the corresponding gait trajectory to generate the gait trajectory expected by the operator; or use the first n Fourier series expansion Fit and calculate the correct physiological gait trajectory of each joint, determine its initial expression, and then parameterize the gait trajectory of each joint. Each joint uses 3 trajectory parameters to represent the scaling factor of the joint angle amplitude to realize the training stride Adjustment of the gait cycle; the adjustment factor of the gait cycle; the offset of the joint angle, which can change the flexion and extension of the hip joint, the flexion of the knee joint, and the plantar flexion and flexion of the ankle joint. Then the objective function is established by the best square approximation method of the Euclidean norm of each joint trajectory deviation, and the objective function is used to iteratively solve the joint angle trajectory parameters in each gait cycle range with the corresponding trajectory parameter initial value , from the overall effect to fit and calculate the parameterized gait trajectory, and then generate the trajectory expected by the operator, and input it into the position controller of the inner ring of the robot joint, and control the servo drive of each joint to achieve the desired trajectory output, thereby driving the robot Continuously adjust the walking trajectory according to the operator's active movement intention, indirectly realize the purpose of the robot to provide walking assistance force and resistance, and enhance the operator's initiative.
本发明用于下肢运动训练的外骨骼机器人运动控制方法,采用两种运动模式,被动和主动步行模式,通过特定的运动功能及获取步行运动中操作者的主动运动意图,以此驱动机器人完全带动或辅助操作者下肢实现步行运动。该控制方法在较好的实现被动运动的基础上,引入操作者主动运动意图,增强了操作者的主动参与性,更加完整、更加真实地实现了下肢助力步行运动。 The motion control method of the exoskeleton robot used for the exercise training of the lower limbs of the present invention adopts two motion modes, passive and active walking modes, and obtains the active motion intention of the operator in the walking motion through specific motion functions, so as to drive the robot to completely drive Or assist the operator's lower limbs to realize walking motion. On the basis of better realization of passive movement, the control method introduces the operator's active movement intention, enhances the active participation of the operator, and realizes the lower limb assisted walking movement more completely and realistically.
根据上述发明研究和构思,本发明采用下述技术方案: According to above-mentioned invention research and design, the present invention adopts following technical scheme:
一种用于下肢运动训练的外骨骼机器人,包括支撑平衡架、外骨骼机械腿、跑步机和控制系统。其特征在于:所述支撑平衡架下端与跑步机固接;所述外骨骼机械腿固定于支撑平衡架中部,其足底与跑步机跑带接触;所述控制系统联接跑步机和外骨骼机械腿;使用者穿戴上外骨骼机械腿,通过控制系统的控制,在跑步机上进行运动训练。 An exoskeleton robot for lower limb exercise training, including a support balance frame, an exoskeleton mechanical leg, a treadmill and a control system. It is characterized in that: the lower end of the supporting balance frame is fixedly connected with the treadmill; the exoskeleton mechanical leg is fixed in the middle of the supporting balance frame, and the sole of the foot is in contact with the running belt of the treadmill; the control system is connected with the treadmill and the exoskeleton mechanical Legs: The user wears the exoskeleton mechanical legs and performs exercise training on the treadmill through the control of the control system.
所述的外骨骼机械腿有2条,每条机械腿都包含有髋关节、膝关节和踝关节三个关节,每个关节各有1个自由度,均为转动连接;在每个关节处安装有线性驱动器和角度传感器,在线性驱动器的后方安装一维拉压力传感器。 There are two exoskeleton mechanical legs, and each mechanical leg includes three joints of hip joint, knee joint and ankle joint, and each joint has 1 degree of freedom, all of which are rotationally connected; at each joint A linear driver and an angle sensor are installed, and a Wela pressure sensor is installed behind the linear driver.
所述的控制系统包括工控机、数据采集卡、运动控制卡、人机界面、串口、信号处理电路,伺服驱动器和驱动电路;所述外骨骼机械腿中的限位开关、力传感器和角度编码器将信号送入信号处理电路,处理完后的数据通过数据采集卡与工控机传输;串口在跑步机的头部,跑步机指令和跑步机速度通过串口与工控机进行传输;线性驱动器的伺服控制量和电机编码器信号通过伺服驱动器和驱动电路与运动控制卡连接,然后将运动控制卡产生的信号与工控机连通。人机界面在工控机上显示。 The control system includes an industrial computer, a data acquisition card, a motion control card, a man-machine interface, a serial port, a signal processing circuit, a servo driver and a drive circuit; a limit switch, a force sensor and an angle encoding in the mechanical legs of the exoskeleton The device sends the signal to the signal processing circuit, and the processed data is transmitted through the data acquisition card and the industrial computer; the serial port is at the head of the treadmill, and the treadmill instruction and the speed of the treadmill are transmitted through the serial port and the industrial computer; the servo of the linear drive The control value and the motor encoder signal are connected to the motion control card through the servo driver and the drive circuit, and then the signal generated by the motion control card is connected to the industrial computer. The man-machine interface is displayed on the industrial computer.
一种用于下肢运动训练的外骨骼机器人运动控制方法,采用上述机器人进行运动训练,其特征在于针对操作者的不同意愿,所述的下肢运动训练包括被动步行运动和主动步行运动两种工作模式。 An exoskeleton robot motion control method for lower limb exercise training, using the above-mentioned robot for exercise training, characterized in that the lower limb exercise training includes two working modes of passive walking movement and active walking movement according to the different wishes of the operator .
上述控制方法,控制步骤如下:当工控机根据通过VC编程实现的控制程序发出指令信号,并经运动控制卡输出伺服控制量到驱动电路中,伺服驱动器即可接收到指令,控制线性驱动器实现机械腿带动操作者步行运动的功能;与此同时工控机通过串口发送指令实现跑步机的同步协调运动;工控机通过数据采集卡实时采集角度编码器、力传感器和限位开关的信号,反馈到步态轨迹的控制器中,实现不同模式下的轨迹控制,并将当前的步行速度、周期、训练时间、关节角度和人机交互作用力信息显示在人机界面上。 The above-mentioned control method, the control steps are as follows: When the industrial computer sends a command signal according to the control program realized by VC programming, and outputs the servo control value to the drive circuit through the motion control card, the servo drive can receive the command and control the linear drive to realize mechanical control. The legs drive the operator to walk; at the same time, the industrial computer sends instructions through the serial port to realize the synchronous and coordinated movement of the treadmill; the industrial computer collects the signals of the angle encoder, force sensor and limit switch in real time through the data acquisition card, and feeds back to the In the controller of the dynamic trajectory, the trajectory control in different modes is realized, and the current walking speed, cycle, training time, joint angle and human-computer interaction force information are displayed on the man-machine interface.
上述控制方法,被动步行运动模式下,操作者在外骨骼式机械腿的完全带动下,在跑步机上以标准的生理学步态轨迹行走或完成特定的运动,并实时检测步行过程中各关节的角度、角速度作为反馈信号,采用基于PD反馈的位置伺服控制方法,驱动机械腿带动操作者实现步行运动。 In the above control method, under the passive walking movement mode, the operator walks on the treadmill with a standard physiological gait trajectory or completes specific movements under the full drive of the exoskeleton mechanical legs, and detects the angles of each joint during walking in real time. The angular velocity is used as the feedback signal, and the position servo control method based on PD feedback is used to drive the mechanical legs to drive the operator to realize walking motion.
上述控制方法,主动步行运动模式下,成为一个典型的双闭环控制系统模型,内环为基于PD反馈的位置控制环,外环为基于位置的阻抗控制力环;在步行运动过程中,利用关节驱动器后安装的拉压力传感器实时采集在操作者下肢主动作用力下所产生的各关节驱动力,进而结合机器人的逆动力学模型计算提取出各关节人机交互作用力矩,从而获得操作者的下肢运动意图;利用阻抗控制器将各关节人机交互力矩转化为相应的步态轨迹的位置、速度和加速度修正量,产生操作者期望的步态轨迹;进而生成操作者期望的轨迹,并输入到机器人关节内环位置控制器中,控制各关节的伺服电机实现期望的轨迹输出,从而驱动机器人根据操作者的主动运动意图不断地调整步行轨迹,间接实现机器人提供行走辅助力、阻抗力的目的,增强操作者主动性。 The above control method becomes a typical double-closed-loop control system model in the active walking movement mode. The inner loop is a position control loop based on PD feedback, and the outer loop is a position-based impedance control force loop; The tension and pressure sensor installed behind the driver collects in real time the driving force of each joint generated under the active force of the operator's lower limbs, and then combines the inverse dynamics model of the robot to calculate and extract the human-computer interaction torque of each joint, thereby obtaining the operator's lower limbs. Motion intention; use the impedance controller to convert the human-computer interaction torque of each joint into the position, velocity and acceleration correction of the corresponding gait trajectory, and generate the gait trajectory expected by the operator; then generate the trajectory expected by the operator and input it to In the position controller of the inner ring of the robot joints, the servo motors of each joint are controlled to achieve the desired trajectory output, thereby driving the robot to continuously adjust the walking trajectory according to the operator's active movement intention, and indirectly realizing the purpose of the robot providing walking assistance and resistance. Enhance operator initiative.
本发明与现有技术相比较,具有如下显而易见的突出实质性特点和显著优点: Compared with the prior art, the present invention has the following obvious outstanding substantive features and significant advantages:
采用自动化的下肢外骨骼机器人,模拟人腿的结构,辅助人进行行走运动,降低人在负重或长时间行走情况下的运动强度。提供两种运动模式,在被动模式下,助力行走运动的步态周期、步幅、运动时间等均可手动或自动调节,提高了助力行走运动的自动化程度;可通过调节阻抗参数,适应操作者不同的个体特征和运动需求;步态轨迹的参数化,易于实现主动训练模式下步态轨迹的在线调整;控制方法引入了操作者的主动运动意图,并通过VC编程能实时显示和记录助力行走的速度、时间、周期、关节轨迹、驱动力、人机交互作用力矩等信息,有助于操作者了解自己的行走状态。 The automated lower extremity exoskeleton robot is used to simulate the structure of human legs, assist people in walking, and reduce the exercise intensity of people in the case of weight-bearing or long-term walking. Two exercise modes are provided. In the passive mode, the gait cycle, stride, and exercise time of the assisted walking movement can be adjusted manually or automatically, which improves the automation of the assisted walking movement; the impedance parameter can be adjusted to adapt to the operator Different individual characteristics and exercise requirements; parameterization of gait trajectory, easy to realize online adjustment of gait trajectory in active training mode; control method introduces the operator's active movement intention, and can display and record assist walking in real time through VC programming Information such as speed, time, cycle, joint trajectory, driving force, and human-computer interaction torque can help the operator understand his walking state.
附图说明 Description of drawings
图1是下肢外骨骼机器人系统示意图; Figure 1 is a schematic diagram of the lower extremity exoskeleton robot system;
图2 是外骨骼式机械腿结构图; Figure 2 is a structural diagram of the exoskeleton mechanical leg;
图3是控制系统结构示意图; Fig. 3 is a schematic structural diagram of the control system;
图4是本发明的人机界面示意图; Fig. 4 is a schematic diagram of the man-machine interface of the present invention;
图5是本发明的控制原理框图。 Fig. 5 is a block diagram of the control principle of the present invention.
具体实施方式 Detailed ways
本发明的优选实施例结合附图说明如下: Preferred embodiments of the present invention are described as follows in conjunction with the accompanying drawings:
实施例一: Embodiment one:
参见图1和图2,一种用于下肢运动训练的下肢外骨骼机器人由支撑平衡架(1)、外骨骼机械腿(2)、跑步机(3)及控制系统组成。其特征在于:支撑平衡架(1)下端与跑步机固接,外骨骼机械腿(2)固定于支撑平衡架(1)中部,其足底与跑步机(3)跑带接触,使用者穿戴上外骨骼机械腿(2),通过控制系统的控制,在跑步机(3)上进行运动训练。 Referring to Figures 1 and 2, a lower limb exoskeleton robot for lower limb exercise training consists of a supporting balance frame (1), exoskeleton mechanical legs (2), treadmill (3) and a control system. It is characterized in that: the lower end of the supporting balance frame (1) is fixedly connected with the treadmill, the exoskeleton mechanical leg (2) is fixed in the middle of the supporting balance frame (1), the soles of the feet are in contact with the running belt of the treadmill (3), and the user wears it Put on the exoskeleton mechanical leg (2), and perform exercise training on the treadmill (3) through the control of the control system.
实施例二: Embodiment two:
本实施例与实施例一基本相同,特别之处如下:
This embodiment is basically the same as
所述的外骨骼机械腿(2)(参见图2)具有髋关节弯曲/伸展、膝关节弯曲/伸展、踝关节跖屈/背屈三个自由度,可以模拟人在步行时矢状面内的三关节的转动,实现三自由度的运动,在每个关节处安装有滚珠丝杠线性驱动器(4)用于驱动矫形器各关节运动。该步行下肢外骨骼机器人系统为操作者提供各关节的单关节运动和步行运动。分别安装在髋、膝、踝关节处的(6)个角度传感器6用于测量运动过程中的关节角度,在各线性驱动器的后方安装的(6)个拉压力传感器(5)用于检测驱动器(4)提供的驱动力,两种信息均用于检测步行运动状态,并应用在不同的运动模式中。 The exoskeleton mechanical leg (2) (see Figure 2) has three degrees of freedom of hip joint flexion/extension, knee joint flexion/extension, and ankle joint plantarflexion/dorsiflexion, which can simulate human walking in the sagittal plane. The rotation of the three joints realizes the movement of three degrees of freedom, and a ball screw linear drive (4) is installed at each joint to drive the movement of each joint of the orthosis. The walking lower extremity exoskeleton robot system provides the operator with single-joint motion and walking motion of each joint. The (6) angle sensors 6 installed at the hip, knee, and ankle joints are used to measure the joint angle during movement, and the (6) tension and pressure sensors (5) installed behind each linear actuator are used to detect the actuator (4) The driving force provided, both kinds of information are used to detect the walking motion state and applied in different motion modes.
所述的控制系统包括工控机(14)、数据采集卡(12)、运动控制卡(13)、人机界面(15)、串口(8)、信号处理电路(9),伺服驱动器(10)和驱动电路(11)。其结构是:外骨骼机械腿(2)中的限位开关(7)、力传感器(5)和角度编码器(6)将信号送入信号处理电路(9),处理完后的数据通过数据采集卡(12)与工控机(14)传输;串口(8)在跑步机(3)的头部,跑步机指令和跑步机速度通过串口(8)与工控机(14)进行传输;线性驱动器(4)的伺服控制量和电机编码器信号通过伺服驱动器(10)和驱动电路(11)与运动控制卡(13)连接,然后将运动控制卡(13)产生的信号与工控机(14)连通。人机界面(15)在工控机(14)显示。 The control system includes an industrial computer (14), a data acquisition card (12), a motion control card (13), a man-machine interface (15), a serial port (8), a signal processing circuit (9), and a servo driver (10) and drive circuit (11). Its structure is: the limit switch (7), the force sensor (5) and the angle encoder (6) in the exoskeleton mechanical leg (2) send the signal to the signal processing circuit (9), and the processed data passes through the data The acquisition card (12) and the industrial computer (14) are transmitted; the serial port (8) is at the head of the treadmill (3), and the treadmill instructions and the speed of the treadmill are transmitted through the serial port (8) and the industrial computer (14); the linear drive (4) The servo control value and the motor encoder signal are connected to the motion control card (13) through the servo driver (10) and the drive circuit (11), and then the signal generated by the motion control card (13) is connected to the industrial computer (14) connected. The man-machine interface (15) is displayed on the industrial computer (14).
实施例三: Embodiment three:
参见图5,一种用于下肢运动训练的外骨骼机器人运动控制方法,采用上述机器人进行运动训练,其特征在于:针对操作者的不同意愿,所述的下肢运动训练包括被动步行运动和主动步行运动两种工作模式。 Referring to Fig. 5, an exoskeleton robot motion control method for lower limb exercise training, using the above-mentioned robot for exercise training, is characterized in that: according to the different wishes of the operator, the lower limb exercise training includes passive walking and active walking Sport two working modes.
实施例四: Embodiment four:
本实施例与实施例三基本相同,特别之处如下: The present embodiment is basically the same as the third embodiment, and the special features are as follows:
上述的用于下肢运动训练的外骨骼机器人运动控制方法,控制步骤如下:当工控机(14)根据通过VC编程实现的控制程序发出指令信号,并经运动控制卡(13)输出伺服控制量到驱动电路(11)中,伺服驱动器(10)即可接收到指令,控制线性驱动器(4)实现机械腿带动操作者步行运动的功能;与此同时工控机(14)通过串口(8)发送指令实现跑步机的同步协调运动;工控机(14)通过数据采集卡(12)实时采集角度编码器(6)、力传感器(5)、限位开关(7)等的信号,反馈到步态轨迹的控制器中,实现不同模式下的轨迹控制,并将当前的步行速度、周期、训练时间、关节角度、人机交互作用力等信息显示在人机界面(15)上。人机界面参见附图4。 The above-mentioned exoskeleton robot motion control method for lower limb exercise training, the control steps are as follows: when the industrial computer (14) sends out an instruction signal according to the control program realized by VC programming, and outputs the servo control amount to the In the driving circuit (11), the servo driver (10) can receive the command and control the linear driver (4) to realize the function of the mechanical leg driving the operator to walk; at the same time, the industrial computer (14) sends the command through the serial port (8) Realize the synchronous and coordinated movement of the treadmill; the industrial computer (14) collects the signals of the angle encoder (6), force sensor (5), limit switch (7) and so on through the data acquisition card (12) in real time, and feeds them back to the gait trajectory In the controller, trajectory control in different modes is realized, and current walking speed, cycle, training time, joint angle, human-computer interaction force and other information are displayed on the man-machine interface (15). See Figure 4 for the man-machine interface.
上述的用于下肢运动训练的外骨骼机器人运动控制方法,被动步行运动模式下,操作者在外骨骼式机械腿的完全带动下,在跑步机上以标准的生理学步态轨迹行走或完成特定的运动,并实时检测步行过程中各关节的角度、角速度作为反馈信号,采用基于PD反馈的位置伺服控制方法,驱动机械腿带动操作者实现步行运动。 In the above-mentioned exoskeleton robot motion control method for lower limb exercise training, in the passive walking motion mode, the operator walks on a treadmill with a standard physiological gait trajectory or completes a specific motion under the full drive of the exoskeleton mechanical leg. The angle and angular velocity of each joint during walking are detected in real time as feedback signals, and the position servo control method based on PD feedback is used to drive the mechanical legs to drive the operator to realize walking motion.
上述的用于下肢运动训练的外骨骼机器人运动控制方法,主动步行运动模式下,其为一个典型的双闭环控制系统模型,内环为基于PD反馈的位置控制环,外环为基于位置的阻抗控制力环;在步行运动过程中,利用关节驱动器后安装的拉压力传感器实时采集在操作者下肢主动作用力下所产生的各关节驱动力,进而结合机器人的逆动力学模型计算提取出各关节人机交互作用力矩,从而获得操作者的下肢运动意图;利用阻抗控制器将各关节人机交互力矩转化为相应的步态轨迹的位置、速度和加速度修正量,产生操作者期望的步态轨迹;进而生成操作者期望的轨迹,并输入到机器人关节内环位置控制器中,控制各关节的伺服电机实现期望的轨迹输出,从而驱动机器人根据操作者的主动运动意图不断地调整步行轨迹,间接实现机器人提供行走辅助力、阻抗力的目的,增强操作者主动性。 The above-mentioned exoskeleton robot motion control method for lower limb exercise training is a typical double closed-loop control system model in the active walking motion mode, the inner loop is a position control loop based on PD feedback, and the outer loop is a position-based impedance Control the force ring; during the walking movement, the tension and pressure sensors installed behind the joint driver are used to collect the driving force of each joint under the active force of the operator's lower limbs in real time, and then combined with the robot's inverse dynamics model to calculate and extract the joints Human-computer interaction torque, so as to obtain the operator's lower limb movement intention; use the impedance controller to convert the human-computer interaction torque of each joint into the corresponding position, speed and acceleration correction of the gait trajectory, and generate the gait trajectory expected by the operator ; and then generate the trajectory expected by the operator, and input it to the position controller of the inner ring of the robot joints, control the servo motors of each joint to achieve the desired trajectory output, so as to drive the robot to continuously adjust the walking trajectory according to the operator's active movement intention, indirectly Realize the purpose of the robot providing walking assistance force and resistance force, and enhance the initiative of the operator.
Claims (7)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2012105558161A CN103040586A (en) | 2012-12-20 | 2012-12-20 | External skeleton robot for exercising lower limbs and exercise control method thereof |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2012105558161A CN103040586A (en) | 2012-12-20 | 2012-12-20 | External skeleton robot for exercising lower limbs and exercise control method thereof |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN103040586A true CN103040586A (en) | 2013-04-17 |
Family
ID=48053600
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN2012105558161A Pending CN103040586A (en) | 2012-12-20 | 2012-12-20 | External skeleton robot for exercising lower limbs and exercise control method thereof |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN103040586A (en) |
Cited By (38)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103340735A (en) * | 2013-07-26 | 2013-10-09 | 上海市第六人民医院 | Force measurement type walking aid device |
| CN103610569A (en) * | 2013-11-28 | 2014-03-05 | 中山大学 | Wearable lower limb power-assisting device and control method thereof |
| CN103876756A (en) * | 2014-04-18 | 2014-06-25 | 南京工程学院 | Lower limb power-assisted exoskeleton robot gait pattern identification method and system |
| CN104107131A (en) * | 2014-07-01 | 2014-10-22 | 西安交通大学 | Self adaptive support weight losing device for lower limb exoskeleton rehabilitation robot |
| CN104898672A (en) * | 2015-05-12 | 2015-09-09 | 北京理工大学 | Optimized control method of humanoid robot walking track |
| CN104977928A (en) * | 2014-04-04 | 2015-10-14 | 现代自动车株式会社 | Walking intension detection device and system of walk and method thereof |
| CN105832496A (en) * | 2016-03-17 | 2016-08-10 | 合肥工业大学 | Novel lower extremity exoskeleton rehabilitation training device and training method |
| CN106109175A (en) * | 2016-07-15 | 2016-11-16 | 江苏大学 | A kind of exoskeleton-type knee joint and ankle joint rehabilitation device |
| CN106112985A (en) * | 2016-08-11 | 2016-11-16 | 上海交通大学 | The ectoskeleton hybrid control system of lower limb walk help machine and method |
| CN106137683A (en) * | 2016-08-31 | 2016-11-23 | 上海交通大学 | Lower limb exoskeleton rehabilitation system based on coordinated Impedance Control |
| WO2016197923A1 (en) * | 2015-06-12 | 2016-12-15 | 夏楠 | Follow-up control device for exoskeleton robot |
| CN106730629A (en) * | 2016-12-15 | 2017-05-31 | 中国科学院自动化研究所 | Lower limb robot and the control method of active movement is carried out using the robot |
| CN106859928A (en) * | 2017-04-19 | 2017-06-20 | 杭州福祉医疗器械有限公司 | Gait rehabilitation training robot and the force-feedback control method for the robot |
| CN106880469A (en) * | 2017-02-24 | 2017-06-23 | 上海交通大学 | Ankle rehabilitation ESD |
| CN107106396A (en) * | 2014-10-29 | 2017-08-29 | 村田机械株式会社 | Training device and strength correction method |
| CN107635622A (en) * | 2015-04-01 | 2018-01-26 | 睿博专利有限公司 | For in combination in the lower limb and the device in vertical position training walking of dorsal position or part clinostatism training of human |
| CN107921631A (en) * | 2015-06-22 | 2018-04-17 | 马里兰大学巴尔的摩分校 | Adaptive assistance method and apparatus for providing economical, portable, deficit adjustment during a movement phase of a damaged ankle |
| CN108044601A (en) * | 2017-11-07 | 2018-05-18 | 深圳市奇诺动力科技有限公司 | Ancillary equipment of walking and its control method |
| CN105213153B (en) * | 2015-09-14 | 2018-06-26 | 西安交通大学 | Lower limb rehabilitation robot control method based on brain flesh information impedance |
| CN108309689A (en) * | 2018-02-02 | 2018-07-24 | 哈尔滨工业大学 | A kind of gradual recovery training method based on exoskeleton robot |
| CN109620565A (en) * | 2019-02-25 | 2019-04-16 | 温州医科大学附属第二医院、温州医科大学附属育英儿童医院 | A kind of medical scooter that can assist lower limb rehabilitation |
| CN110302497A (en) * | 2018-03-27 | 2019-10-08 | 乔山健康科技(上海)有限公司 | The dynamical type sports equipment of convertible leg exercise mode |
| CN110327186A (en) * | 2019-07-05 | 2019-10-15 | 上海电气集团股份有限公司 | Loss of weight control method, system, equipment and the storage medium of lower limb rehabilitation robot |
| CN110370251A (en) * | 2019-08-07 | 2019-10-25 | 广东博智林机器人有限公司 | Exoskeleton robot, walk help control method, terminal and computer equipment |
| CN110405771A (en) * | 2019-08-07 | 2019-11-05 | 广东博智林机器人有限公司 | Exoskeleton robot, walk help control method, terminal and computer installation |
| CN111164004A (en) * | 2017-06-30 | 2020-05-15 | 马凯特大学 | Motor-assisted separating crank treading device |
| CN112155940A (en) * | 2020-10-12 | 2021-01-01 | 上海电气集团股份有限公司 | Rehabilitation motion control method, system, equipment and medium based on rehabilitation robot |
| CN112569025A (en) * | 2019-09-29 | 2021-03-30 | 北京信息科技大学 | Intelligent control algorithm for electric power-assisted knee joint |
| CN112847398A (en) * | 2021-01-08 | 2021-05-28 | 北京工业大学 | Method for automatically protecting walking aid safety abnormity |
| CN112932897A (en) * | 2021-01-28 | 2021-06-11 | 上海电气集团股份有限公司 | Method and device for movement of rehabilitation robot and rehabilitation robot |
| CN113456434A (en) * | 2020-03-30 | 2021-10-01 | 纬创资通股份有限公司 | Force application assisting device and control method thereof |
| CN113558609A (en) * | 2021-06-30 | 2021-10-29 | 杭州程天科技发展有限公司 | Training data processing method based on sitting and lying type lower limb rehabilitation equipment and related equipment |
| CN114159278A (en) * | 2021-09-28 | 2022-03-11 | 杭州程天科技发展有限公司 | Automatic correction control method suitable for exoskeleton hangers and related equipment |
| CN114800509A (en) * | 2016-12-13 | 2022-07-29 | 波士顿动力公司 | Robot system and method for controlling robot system |
| CN113829339B (en) * | 2021-08-02 | 2023-09-15 | 上海大学 | Exoskeleton motion coordination method based on long short-term memory network |
| CN117565023A (en) * | 2022-12-30 | 2024-02-20 | 爱布(上海)人工智能科技有限公司 | Muscle movement sensing system for grasping walking intention and implementation method thereof |
| CN117656100A (en) * | 2024-01-31 | 2024-03-08 | 燕山大学 | Motion axis adaptive ankle joint motion robot and its control method |
| CN118617388A (en) * | 2024-08-09 | 2024-09-10 | 中国科学院苏州生物医学工程技术研究所 | Lower limb rehabilitation exoskeleton robot control method and system, electronic equipment, medium |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0911015A1 (en) * | 1997-10-27 | 1999-04-28 | Benito Ferrati | Orthopedic rehabilitation apparatus using virtual reality units |
| JP2004329278A (en) * | 2003-04-30 | 2004-11-25 | Kochi Univ Of Technology | Body lifting device and walking training machine equipped with the device |
| CN102058464A (en) * | 2010-11-27 | 2011-05-18 | 上海大学 | Motion control method of lower limb rehabilitative robot |
-
2012
- 2012-12-20 CN CN2012105558161A patent/CN103040586A/en active Pending
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0911015A1 (en) * | 1997-10-27 | 1999-04-28 | Benito Ferrati | Orthopedic rehabilitation apparatus using virtual reality units |
| JP2004329278A (en) * | 2003-04-30 | 2004-11-25 | Kochi Univ Of Technology | Body lifting device and walking training machine equipped with the device |
| CN102058464A (en) * | 2010-11-27 | 2011-05-18 | 上海大学 | Motion control method of lower limb rehabilitative robot |
Cited By (56)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103340735A (en) * | 2013-07-26 | 2013-10-09 | 上海市第六人民医院 | Force measurement type walking aid device |
| CN103340735B (en) * | 2013-07-26 | 2015-11-25 | 上海市第六人民医院 | Force measurement type walking aid device |
| CN103610569B (en) * | 2013-11-28 | 2015-12-09 | 中山大学 | A wearable lower limb assist device and its control method |
| CN103610569A (en) * | 2013-11-28 | 2014-03-05 | 中山大学 | Wearable lower limb power-assisting device and control method thereof |
| CN104977928B (en) * | 2014-04-04 | 2019-12-27 | 现代自动车株式会社 | Walking intention detection device and system and method thereof |
| CN104977928A (en) * | 2014-04-04 | 2015-10-14 | 现代自动车株式会社 | Walking intension detection device and system of walk and method thereof |
| CN103876756A (en) * | 2014-04-18 | 2014-06-25 | 南京工程学院 | Lower limb power-assisted exoskeleton robot gait pattern identification method and system |
| CN104107131A (en) * | 2014-07-01 | 2014-10-22 | 西安交通大学 | Self adaptive support weight losing device for lower limb exoskeleton rehabilitation robot |
| CN107106396A (en) * | 2014-10-29 | 2017-08-29 | 村田机械株式会社 | Training device and strength correction method |
| CN107635622A (en) * | 2015-04-01 | 2018-01-26 | 睿博专利有限公司 | For in combination in the lower limb and the device in vertical position training walking of dorsal position or part clinostatism training of human |
| CN104898672A (en) * | 2015-05-12 | 2015-09-09 | 北京理工大学 | Optimized control method of humanoid robot walking track |
| WO2016197923A1 (en) * | 2015-06-12 | 2016-12-15 | 夏楠 | Follow-up control device for exoskeleton robot |
| US10421185B2 (en) | 2015-06-12 | 2019-09-24 | Hangzhou Qisu Technology Co., Ltd. | Follow-up control device for an exoskeleton robot |
| CN107921631B (en) * | 2015-06-22 | 2022-04-22 | 马里兰大学巴尔的摩分校 | Adaptive assistance method and apparatus for providing economical, portable, deficit adjustment during a movement phase of a damaged ankle |
| CN107921631A (en) * | 2015-06-22 | 2018-04-17 | 马里兰大学巴尔的摩分校 | Adaptive assistance method and apparatus for providing economical, portable, deficit adjustment during a movement phase of a damaged ankle |
| CN105213153B (en) * | 2015-09-14 | 2018-06-26 | 西安交通大学 | Lower limb rehabilitation robot control method based on brain flesh information impedance |
| CN105832496A (en) * | 2016-03-17 | 2016-08-10 | 合肥工业大学 | Novel lower extremity exoskeleton rehabilitation training device and training method |
| CN105832496B (en) * | 2016-03-17 | 2018-03-16 | 合肥工业大学 | A kind of novel lower limb exoskeleton rehabilitation training device and training method |
| CN106109175A (en) * | 2016-07-15 | 2016-11-16 | 江苏大学 | A kind of exoskeleton-type knee joint and ankle joint rehabilitation device |
| CN106112985B (en) * | 2016-08-11 | 2020-05-22 | 上海交通大学 | Exoskeleton hybrid control system and method for lower limb walking aid machine |
| CN106112985A (en) * | 2016-08-11 | 2016-11-16 | 上海交通大学 | The ectoskeleton hybrid control system of lower limb walk help machine and method |
| CN106137683A (en) * | 2016-08-31 | 2016-11-23 | 上海交通大学 | Lower limb exoskeleton rehabilitation system based on coordinated Impedance Control |
| CN106137683B (en) * | 2016-08-31 | 2019-11-15 | 上海交通大学 | Lower limb exoskeleton rehabilitation system based on coordinated impedance control |
| CN114800509A (en) * | 2016-12-13 | 2022-07-29 | 波士顿动力公司 | Robot system and method for controlling robot system |
| CN114800509B (en) * | 2016-12-13 | 2025-08-05 | 波士顿动力公司 | Robot system and method for controlling the same |
| CN106730629B (en) * | 2016-12-15 | 2019-03-26 | 中国科学院自动化研究所 | Lower limb robot and the control method that active movement is carried out using the robot |
| CN106730629A (en) * | 2016-12-15 | 2017-05-31 | 中国科学院自动化研究所 | Lower limb robot and the control method of active movement is carried out using the robot |
| CN106880469A (en) * | 2017-02-24 | 2017-06-23 | 上海交通大学 | Ankle rehabilitation ESD |
| CN106859928A (en) * | 2017-04-19 | 2017-06-20 | 杭州福祉医疗器械有限公司 | Gait rehabilitation training robot and the force-feedback control method for the robot |
| CN111164004B (en) * | 2017-06-30 | 2021-12-28 | 马凯特大学 | Motor-assisted separating crank treading device |
| CN111164004A (en) * | 2017-06-30 | 2020-05-15 | 马凯特大学 | Motor-assisted separating crank treading device |
| CN108044601A (en) * | 2017-11-07 | 2018-05-18 | 深圳市奇诺动力科技有限公司 | Ancillary equipment of walking and its control method |
| CN108309689A (en) * | 2018-02-02 | 2018-07-24 | 哈尔滨工业大学 | A kind of gradual recovery training method based on exoskeleton robot |
| CN110302497B (en) * | 2018-03-27 | 2021-03-30 | 乔山健康科技(上海)有限公司 | Power type sports equipment capable of changing leg sports mode |
| CN110302497A (en) * | 2018-03-27 | 2019-10-08 | 乔山健康科技(上海)有限公司 | The dynamical type sports equipment of convertible leg exercise mode |
| CN109620565A (en) * | 2019-02-25 | 2019-04-16 | 温州医科大学附属第二医院、温州医科大学附属育英儿童医院 | A kind of medical scooter that can assist lower limb rehabilitation |
| CN110327186A (en) * | 2019-07-05 | 2019-10-15 | 上海电气集团股份有限公司 | Loss of weight control method, system, equipment and the storage medium of lower limb rehabilitation robot |
| CN110405771A (en) * | 2019-08-07 | 2019-11-05 | 广东博智林机器人有限公司 | Exoskeleton robot, walk help control method, terminal and computer installation |
| CN110370251A (en) * | 2019-08-07 | 2019-10-25 | 广东博智林机器人有限公司 | Exoskeleton robot, walk help control method, terminal and computer equipment |
| CN112569025A (en) * | 2019-09-29 | 2021-03-30 | 北京信息科技大学 | Intelligent control algorithm for electric power-assisted knee joint |
| CN113456434B (en) * | 2020-03-30 | 2023-10-27 | 纬创资通股份有限公司 | Force application auxiliary equipment and control method thereof |
| CN113456434A (en) * | 2020-03-30 | 2021-10-01 | 纬创资通股份有限公司 | Force application assisting device and control method thereof |
| CN112155940A (en) * | 2020-10-12 | 2021-01-01 | 上海电气集团股份有限公司 | Rehabilitation motion control method, system, equipment and medium based on rehabilitation robot |
| CN112847398A (en) * | 2021-01-08 | 2021-05-28 | 北京工业大学 | Method for automatically protecting walking aid safety abnormity |
| CN112932897A (en) * | 2021-01-28 | 2021-06-11 | 上海电气集团股份有限公司 | Method and device for movement of rehabilitation robot and rehabilitation robot |
| CN112932897B (en) * | 2021-01-28 | 2023-11-28 | 上海电气集团股份有限公司 | Method and device for rehabilitation robot to move and rehabilitation robot |
| CN113558609A (en) * | 2021-06-30 | 2021-10-29 | 杭州程天科技发展有限公司 | Training data processing method based on sitting and lying type lower limb rehabilitation equipment and related equipment |
| CN113829339B (en) * | 2021-08-02 | 2023-09-15 | 上海大学 | Exoskeleton motion coordination method based on long short-term memory network |
| CN114159278A (en) * | 2021-09-28 | 2022-03-11 | 杭州程天科技发展有限公司 | Automatic correction control method suitable for exoskeleton hangers and related equipment |
| CN114159278B (en) * | 2021-09-28 | 2024-03-15 | 杭州程天科技发展有限公司 | Automatic correction control method and related equipment suitable for exoskeleton hanger |
| CN117565023B (en) * | 2022-12-30 | 2024-05-17 | 爱布(上海)人工智能科技有限公司 | Muscle movement sensing system for grasping walking intention and implementation method thereof |
| CN117565023A (en) * | 2022-12-30 | 2024-02-20 | 爱布(上海)人工智能科技有限公司 | Muscle movement sensing system for grasping walking intention and implementation method thereof |
| CN117656100A (en) * | 2024-01-31 | 2024-03-08 | 燕山大学 | Motion axis adaptive ankle joint motion robot and its control method |
| CN117656100B (en) * | 2024-01-31 | 2024-04-05 | 燕山大学 | Motion axis adaptive ankle joint motion robot and control method thereof |
| CN118617388A (en) * | 2024-08-09 | 2024-09-10 | 中国科学院苏州生物医学工程技术研究所 | Lower limb rehabilitation exoskeleton robot control method and system, electronic equipment, medium |
| CN118617388B (en) * | 2024-08-09 | 2024-11-15 | 中国科学院苏州生物医学工程技术研究所 | Control method and system for exoskeleton robot for lower limb rehabilitation, electronic equipment and medium |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN103040586A (en) | External skeleton robot for exercising lower limbs and exercise control method thereof | |
| CN110812127B (en) | Lower limb exoskeleton control method and device | |
| CN102058464A (en) | Motion control method of lower limb rehabilitative robot | |
| US10123932B2 (en) | Motion assist device and motion assist method | |
| CN109846672B (en) | Variable-rigidity ankle-foot rehabilitation orthosis and motion control method thereof | |
| CN104688486A (en) | Lower limbs rehabilitation robot motion control system | |
| CN105963100B (en) | By the lower limb rehabilitation robot self-adaptation control method assisted needed for patient motion | |
| CN105796286B (en) | Use the lower limb exoskeleton robot control method of air bag sensor | |
| CN107320292A (en) | A kind of wearable ectoskeleton power assisting device of tubular modulesization and its control method | |
| CN107753241B (en) | Control method of intelligent exoskeleton robot for lower limb rehabilitation therapy | |
| CN111390877B (en) | Exoskeleton device and exoskeleton variable admittance control method | |
| CN201642750U (en) | A lower limb rehabilitation training robot | |
| CN103536424A (en) | A control method for a gait rehabilitation training robot | |
| CN106112985B (en) | Exoskeleton hybrid control system and method for lower limb walking aid machine | |
| CN106325273A (en) | Multi-phase gait switching control system and control method for power-assisted exoskeleton robot | |
| CN110251898B (en) | A closed-loop control system for wrist rehabilitation exoskeleton based on force feedback | |
| CN203524950U (en) | Reversely drivable ankle joint power-assisting device | |
| CN106859928B (en) | Gait rehabilitation training robot and force-feedback control method for the robot | |
| CN112263440B (en) | Flexible lower limb exoskeleton and walking aid co-fusion rehabilitation assistance method and device | |
| CN205391322U (en) | Myoelectric control's ectoskeleton helps capable robot | |
| CN111759672A (en) | A lower limb rehabilitation mirror training method based on a lower limb rehabilitation robot | |
| CN106863273A (en) | A kind of wearable knee joint booster of intelligence | |
| CN106901949A (en) | Full lower limb exoskeleton and its operating method | |
| CN112472531A (en) | Gait smoothing algorithm of lower limb exoskeleton robot for medical rehabilitation and assisted walking | |
| CN115463008A (en) | A lower limb exoskeleton control device and method based on IMU |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
| WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20130417 |