CN102969648A - High-power intermediate infrared laser device based on intra-cavity frequency conversion - Google Patents
High-power intermediate infrared laser device based on intra-cavity frequency conversion Download PDFInfo
- Publication number
- CN102969648A CN102969648A CN2012105309898A CN201210530989A CN102969648A CN 102969648 A CN102969648 A CN 102969648A CN 2012105309898 A CN2012105309898 A CN 2012105309898A CN 201210530989 A CN201210530989 A CN 201210530989A CN 102969648 A CN102969648 A CN 102969648A
- Authority
- CN
- China
- Prior art keywords
- laser
- mid
- infrared
- crystal
- fundamental
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
- Lasers (AREA)
Abstract
本发明公开了一种基于腔内频率变换的大功率中红外激光器,其特征在于,包括:沿激光传输方向依次设置的半导体激光泵浦模块、光学耦合系统、基频激光晶体、中红外激光反射镜、中红外非线性晶体,以及将前述基频激光晶体发射出的光形成高光束的基频光束的激光谐振腔、对前述高光束的基频光束进行调制的调制器件。本发明的有益之处在于:结构紧凑,稳定性好;把中红外激光器从1064nm激光转变成3.8μm激光的过程由腔外完成变成了在腔内完成,利用1064nm腔内的高功率密度,大大提高了波长转换效率,从而得到高转换功率的中红外激光输出。
The invention discloses a high-power mid-infrared laser based on intracavity frequency conversion, which is characterized in that it comprises: a semiconductor laser pump module arranged in sequence along the laser transmission direction, an optical coupling system, a fundamental frequency laser crystal, and a mid-infrared laser reflector A mirror, a mid-infrared nonlinear crystal, a laser resonator for forming a high-beam fundamental-frequency beam from the light emitted by the aforementioned fundamental-frequency laser crystal, and a modulation device for modulating the aforementioned high-beam fundamental-frequency beam. The advantages of the present invention are: compact structure and good stability; the process of converting the mid-infrared laser from 1064nm laser to 3.8μm laser is completed outside the cavity to be completed inside the cavity, using the high power density in the 1064nm cavity, The wavelength conversion efficiency is greatly improved, thereby obtaining a mid-infrared laser output with high conversion power.
Description
技术领域 technical field
本发明属于光机电一体化领域,具体涉及一种基于腔内频率变换的大功率中红外激光器。 The invention belongs to the field of optical-mechanical-electrical integration, and in particular relates to a high-power mid-infrared laser based on intracavity frequency conversion.
背景技术 Background technique
端面泵浦激光器因其装置简单、基频激光晶体对泵浦光的吸收十分充分、输出光束质量好,效率高等特点而受欢迎。 End-pumped lasers are popular because of their simple device, sufficient absorption of pump light by fundamental-frequency laser crystals, good output beam quality, and high efficiency.
位于2~5μm中红外波段的激光在国防、医疗、通信方面有着特殊的重要应用。 它位于大气“透明窗口”,处于大多数军用探测器的工作波段, 可以进行战术导弹尾焰红外辐射模拟、人眼安全的激光雷达、激光定向红外干扰等军事用途。在民用领域可用于遥感化学传感、空气污染控制,它还可以用于新一代激光手术,使血液迅速凝结,手术创面小、止血性好(水分子在3μm附近有很强的吸收峰)。此外,采用2~5 μm 替代目前广泛使用的1.55 μm 作为光纤通信工作波长也是一项极具研究价值的课题,由于材料的Rayleigh 散射与光波长的四次方成反比,采用2~5 μm 作为工作波长可以有效降低光纤损耗,增加无中继通信的距离。因此,研发中红外波段的激光器对于国家安全和国民经济建设具有十分重要的意义。 Lasers located in the 2-5 μm mid-infrared band have special and important applications in national defense, medical treatment, and communications. It is located in the "transparent window" of the atmosphere and is in the working band of most military detectors. It can be used for military purposes such as tactical missile tail flame infrared radiation simulation, eye-safe laser radar, and laser directional infrared interference. In the civil field, it can be used for remote sensing chemical sensing and air pollution control. It can also be used in a new generation of laser surgery to coagulate blood quickly, with small surgical wounds and good hemostasis (water molecules have a strong absorption peak near 3 μm). In addition, it is also a topic of great research value to use 2-5 μm to replace the widely used 1.55 μm as the working wavelength of optical fiber communication. Since the Rayleigh scattering of materials is inversely proportional to the fourth power of the light wavelength, 2-5 μm is used as the wavelength. The working wavelength can effectively reduce fiber loss and increase the distance of non-relay communication. Therefore, the research and development of lasers in the mid-infrared band is of great significance to national security and national economic construction.
发明内容 Contents of the invention
本发明的目的在于提供一种充分利用腔内强基波光,得到高效率、高光束质量的基于腔内频率变换的大功率中红外激光器。 The purpose of the present invention is to provide a high-power mid-infrared laser based on intra-cavity frequency conversion that makes full use of the strong fundamental wave light in the cavity to obtain high efficiency and high beam quality.
为了实现上述目标,本发明采用如下的技术方案: In order to achieve the above object, the present invention adopts the following technical solutions:
一种基于腔内频率变换的大功率中红外激光器,其特征在于,包括:沿激光传输方向依次设置的半导体激光泵浦模块、光学耦合系统、基频激光晶体、中红外激光反射镜、中红外非线性晶体,以及将前述基频激光晶体发射出的光形成高光束的基频光束的激光谐振腔、对前述高光束的基频光束进行调制的调制器件;前述光学耦合系统由透镜组成;前述基频激光晶体的“C”轴垂直放置或者水平放置;前述激光谐振腔由腔镜组成。 A high-power mid-infrared laser based on intracavity frequency conversion, characterized in that it includes: a semiconductor laser pump module arranged in sequence along the laser transmission direction, an optical coupling system, a fundamental frequency laser crystal, a mid-infrared laser reflector, a mid-infrared A nonlinear crystal, a laser resonator for forming a high-beam fundamental-frequency beam from the light emitted by the aforementioned fundamental-frequency laser crystal, and a modulation device for modulating the aforementioned high-beam fundamental-frequency beam; the aforementioned optical coupling system is composed of lenses; the aforementioned The "C" axis of the fundamental frequency laser crystal is placed vertically or horizontally; the aforementioned laser resonator is composed of cavity mirrors.
前述半导体激光泵浦模块输出的泵浦光传输到光学耦合系统中,经光学耦合系统准直聚焦后耦合于基频激光晶体端面,基频激光晶体吸收泵浦光能量后产生受激发射,发射出的光在激光谐振腔内经激光谐振腔镜的选模作用形成高光束质量的基频光束,在调制器件的调制作用下,得到高峰值功率的调制激光;调制后的基频激光射入中红外非线性晶体内进行光参量振荡放大,得到中红外激光输出。 The pump light output by the aforementioned semiconductor laser pumping module is transmitted to the optical coupling system, collimated and focused by the optical coupling system, and then coupled to the end face of the fundamental-frequency laser crystal. The fundamental-frequency laser crystal absorbs the energy of the pump light and generates stimulated emission. The emitted light forms a high-beam-quality fundamental frequency beam through the mode selection of the laser resonator mirror in the laser resonator, and under the modulation of the modulation device, a modulated laser with high peak power is obtained; the modulated fundamental frequency laser is injected into the center The optical parametric oscillation is amplified in the infrared nonlinear crystal to obtain the mid-infrared laser output.
前述的基于腔内频率变换的大功率中红外激光器,其特征在于,前述半导体激光泵浦模块的中心波长为808nm或者880nm。 The aforementioned high-power mid-infrared laser based on intracavity frequency conversion is characterized in that the center wavelength of the aforementioned semiconductor laser pump module is 808nm or 880nm.
前述的基于腔内频率变换的大功率中红外激光器,其特征在于,前述基频激光晶体为Nd:YVO4、Nd:YLF、Nd:YAG、Nd:Glass、Yb:YAG或者Er:YAG。 The aforementioned high-power mid-infrared laser based on intracavity frequency conversion is characterized in that the aforementioned fundamental frequency laser crystal is Nd:YVO4, Nd:YLF, Nd:YAG, Nd:Glass, Yb:YAG or Er:YAG.
前述的基于腔内频率变换的大功率中红外激光器,其特征在于,前述基频激光晶体的端面镀有对泵浦光和1064nm激光增透的增透膜。 The aforementioned high-power mid-infrared laser based on intracavity frequency conversion is characterized in that the end face of the aforementioned fundamental frequency laser crystal is coated with an anti-reflection coating for anti-reflection of pump light and 1064nm laser.
前述的基于腔内频率变换的大功率中红外激光器,其特征在于,前述中红外非线性晶体为磷锗锌或者PPLN人工晶体。 The aforementioned high-power mid-infrared laser based on intracavity frequency conversion is characterized in that the aforementioned mid-infrared nonlinear crystal is phosphorus germanium zinc or PPLN artificial crystal.
前述的基于腔内频率变换的大功率中红外激光器,其特征在于,前述中红外非线性晶体的两端镀有1064nm、1.4μm及3.8μm三色高透膜。 The aforementioned high-power mid-infrared laser based on intracavity frequency conversion is characterized in that the two ends of the aforementioned mid-infrared nonlinear crystal are coated with three-color high-transparency films of 1064 nm, 1.4 μm and 3.8 μm.
前述的基于腔内频率变换的大功率中红外激光器,其特征在于,前述激光谐振腔的结构为Z型腔、V型腔或者其它角度折叠腔结构。 The aforementioned high-power mid-infrared laser based on intracavity frequency conversion is characterized in that the structure of the aforementioned laser resonator is a Z-shaped cavity, a V-shaped cavity or other angle-folded cavity structures.
前述的基于腔内频率变换的大功率中红外激光器,其特征在于,前述激光谐振腔的腔镜为平面镜或凹面镜或二者的组合。 The aforementioned high-power mid-infrared laser based on intracavity frequency conversion is characterized in that the cavity mirror of the aforementioned laser resonator is a plane mirror or a concave mirror or a combination of both.
前述的基于腔内频率变换的大功率中红外激光器,其特征在于,前述调制器件为声光调制器件、电光调制器件或者吸收型被动调Q开关。 The aforementioned high-power mid-infrared laser based on intracavity frequency conversion is characterized in that the aforementioned modulation device is an acousto-optic modulation device, an electro-optic modulation device or an absorption passive Q-switching switch.
前述的基于腔内频率变换的大功率中红外激光器,其特征在于,前述激光谐振腔内激光输出端设置有腔内透镜或者透镜组。 The aforementioned high-power mid-infrared laser based on intracavity frequency conversion is characterized in that the laser output end in the aforementioned laser resonator is provided with an intracavity lens or lens group.
本发明的有益之处在于:结构紧凑,稳定性好;把中红外激光器从1064nm激光转变成3.8μm激光的过程由腔外完成变成了在腔内完成,利用1064nm腔内的高功率密度,大大提高了波长转换效率,从而得到高转换功率的中红外激光输出;在不改变激光器内部结构的情况下,在基频激光晶体破坏值范围内,可以通过提高半导体激光泵浦模块的泵浦功率,进一步增加腔内基频激光的功率密度,从而得到更高功率的中红外激光输出。 The advantages of the present invention are: compact structure and good stability; the process of converting the mid-infrared laser from 1064nm laser to 3.8μm laser is completed outside the cavity to be completed inside the cavity, using the high power density in the 1064nm cavity, The wavelength conversion efficiency is greatly improved, so that the mid-infrared laser output with high conversion power can be obtained; without changing the internal structure of the laser, within the range of the damage value of the fundamental frequency laser crystal, the pumping power of the semiconductor laser pump module can be increased , to further increase the power density of the fundamental frequency laser in the cavity, so as to obtain a higher power mid-infrared laser output.
附图说明 Description of drawings
图1是本发明的基于腔内频率变换的大功率中红外激光器的一个具体实施例的结构示意图; Fig. 1 is a schematic structural view of a specific embodiment of a high-power mid-infrared laser based on intracavity frequency conversion of the present invention;
图2是图1中的激光器输出光谱测试结果图; Fig. 2 is the laser output spectrum test result figure in Fig. 1;
图3是图1中的激光器功率稳定性测试结果图; Fig. 3 is the laser power stability test result diagram in Fig. 1;
图4是图1中的激光器电流与输出功率关系图; Fig. 4 is a graph showing the relationship between laser current and output power in Fig. 1;
图中附图标记的含义:1-半导体激光泵浦模块,2-透镜,3-透镜,4-腔镜,5-基频激光晶体,6-腔镜,7-腔镜,8-调制器件,9-腔镜,10-腔镜,11-腔镜,12-腔镜,13-腔内透镜,14-中红外激光反射镜,15-中红外非线性晶体,16-腔镜。 The meanings of reference signs in the figure: 1-semiconductor laser pump module, 2-lens, 3-lens, 4-cavity mirror, 5-fundamental frequency laser crystal, 6-cavity mirror, 7-cavity mirror, 8-modulation device , 9-cavity mirror, 10-cavity mirror, 11-cavity mirror, 12-cavity mirror, 13-cavity lens, 14-mid-infrared laser mirror, 15-mid-infrared nonlinear crystal, 16-cavity mirror.
具体实施方式 Detailed ways
以下结合附图和具体实施例对本发明作具体的介绍。 The present invention will be specifically introduced below in conjunction with the accompanying drawings and specific embodiments.
参照图1,本发明的基于腔内频率变换的大功率中红外激光器包括:沿激光传输方向依次设置的半导体激光泵浦模块1、光学耦合系统、基频激光晶体5、中红外激光反射镜14、中红外非线性晶体15,以及将基频激光晶体5发射出的光形成高光束的基频光束的激光谐振腔、对上述高光束的基频光束进行调制的调制器件8。其中,光学耦合系统由透镜组成,具体包括透镜2和透镜3;基频激光晶体5的“C”轴垂直放置,可以保证其产生的基频激光的偏振方向为垂直方向,“C”轴也可以旋转90度即水平放置,相应的,中红外非线性晶体15的方向也旋转90度放置;激光谐振腔由腔镜组成,具体包括腔镜4、6、7、9、10、11、12、16,其中腔镜4、6、7、10、11、12与水平方向呈45度角或者135度角放置,腔镜9、16竖直放置。
Referring to Fig. 1, the high-power mid-infrared laser based on intracavity frequency conversion of the present invention includes: a semiconductor
本发明的激光器还包括把半导体激光泵浦模块1输出的泵浦光传输到光学耦合系统中的光纤(未图示),也可以将半导体激光泵浦模块1输出的泵浦光不经过光纤而直接传输到光学耦合系统。
The laser of the present invention also includes an optical fiber (not shown) that transmits the pump light output by the semiconductor
参照图1,本发明的激光器的工作原理为:半导体激光泵浦模块1输出的泵浦光传输到光学耦合系统中,经光学耦合系统准直聚焦后耦合于基频激光晶体5的端面,基频激光晶体5吸收泵浦光能量后产生受激发射,发射出的光在激光谐振腔内经激光谐振腔镜的选模作用形成高光束质量的基频光束,在调制器件8的调制作用下,得到高峰值功率的调制激光;调制后的基频激光射入中红外非线性晶体15内进行光参量振荡放大,得到中红外激光输出。
Referring to Fig. 1, the working principle of the laser of the present invention is: the pumping light output by the semiconductor
作为一种优选的方案,激光谐振腔内激光输出端设置有一个腔内透镜13或者由若干腔内透镜13组成的透镜组。腔内透镜13为凸透镜,其上镀有对1064nm激光高透膜,由于其具有会聚作用,基频激光经会聚后,在中红外非线性晶体15内部可获得较小的光斑及较大的功率密度。 As a preferred solution, the laser output end in the laser resonator cavity is provided with an intracavity lens 13 or a lens group composed of several intracavity lenses 13 . The intracavity lens 13 is a convex lens coated with a high-transparency film for 1064nm laser. Because it has a converging effect, after the fundamental frequency laser is converged, a smaller spot and a larger power can be obtained inside the mid-infrared nonlinear crystal 15. density.
在本发明中,半导体激光泵浦模块1为半导体激光二极管,其中心波长为808nm,最高输出功率为30W。还可以根据所选用的基频激光晶体5不同而选用其他中心波长的半导体激光二极管,例如选用中心波长为880nm的半导体激光二极管。
In the present invention, the semiconductor
在本发明中,基频激光晶体5为Nd:YVO4,其也可以是Nd:YLF、Nd:YAG、Nd:Glass、Yb:YAG或者Er:YAG。作为一种优选的方案,基频激光晶体5的端面镀有对泵浦光和1064nm激光增透的增透膜,用以增加其对泵浦光的吸收。 In the present invention, the fundamental frequency laser crystal 5 is Nd:YVO4, which can also be Nd:YLF, Nd:YAG, Nd:Glass, Yb:YAG or Er:YAG. As a preferred solution, the end face of the fundamental frequency laser crystal 5 is coated with an anti-reflection coating for pumping light and 1064nm laser to increase its absorption of pumping light.
在本发明中,中红外激光反射镜14为平面镜,其上镀有对1064nm激光高透膜、1.4μm及3.8μm激光高反膜。 In the present invention, the mid-infrared laser reflector 14 is a plane mirror, coated with a high-transparency film for 1064nm laser, and a high-reflection film for 1.4 μm and 3.8 μm laser.
在本发明中,中红外非线性晶体15为磷锗锌,其还可以是PPLN人工晶体。 In the present invention, the mid-infrared nonlinear crystal 15 is phosphorous germanium zinc, and it can also be a PPLN artificial crystal.
作为一种优选的方案,中红外非线性晶体15的两端镀有1064nm、1.4μm及3.8μm三色高透膜。 As a preferred solution, both ends of the mid-infrared nonlinear crystal 15 are coated with three-color high-transparency films of 1064 nm, 1.4 μm and 3.8 μm.
作为一种优选的方案,基频激光晶体5和中红外非线性晶体15均用铟箔包裹后放入散热晶体座中。 As a preferred solution, both the fundamental-frequency laser crystal 5 and the mid-infrared nonlinear crystal 15 are wrapped with indium foil and placed in a heat-dissipating crystal seat.
下面介绍激光谐振腔。 The following describes the laser resonator.
激光谐振腔用于将基频激光晶体5发出的光形成高光束的基频光束,其由腔镜组成,具体包括腔镜4、6、7、9、10、11、12、16。其中,腔镜4设置在基频激光晶体5的前端,与水平方向呈45度角,其端面镀有对泵浦光高透膜、对1064nm激光高反膜;腔镜6、7设置在基频激光晶体5与调制器件8之间,分别与水平方向呈45度角和135度角,其端面镀有对1064nm激光高反膜;腔镜10、11、12设置于基频激光晶体5与腔内透镜13之间,分别与水平方向呈135度角、45度角、45度角,端面镀有对1064nm激光高反膜;腔镜9设置于调制器件8的另一端,呈竖直放置,端面镀有对1064nm激光高反膜;腔镜16竖直放置,设置于中红外非线性晶体15的尾端,其端面镀有对1064nm及1.4μm激光高反膜、对3.8μm激光高透膜。 The laser resonator is used to form a high-beam fundamental-frequency beam from the light emitted by the fundamental-frequency laser crystal 5 . Among them, the cavity mirror 4 is set on the front end of the fundamental frequency laser crystal 5, which is at an angle of 45 degrees to the horizontal direction, and its end face is coated with a high-transparency film for pump light and a high-reflection film for 1064nm laser; the cavity mirrors 6 and 7 are set on the base Between the frequency laser crystal 5 and the modulation device 8, the angles to the horizontal direction are 45 degrees and 135 degrees respectively, and the end faces are coated with a high reflection film for 1064nm laser; cavity mirrors 10, 11, 12 are arranged between the base frequency laser crystal 5 and the Between the intracavity lenses 13, angles of 135 degrees, 45 degrees, and 45 degrees are respectively formed with the horizontal direction, and the end faces are coated with a high-reflection film for 1064nm laser; , the end surface is coated with a high reflection film for 1064nm laser; the cavity mirror 16 is placed vertically and set at the tail end of the mid-infrared nonlinear crystal 15, and its end surface is coated with a high reflection film for 1064nm and 1.4μm laser, and a high transparency for 3.8μm laser membrane.
腔镜4、6、7、9、10、11、12、16可以皆为平面镜,也可以皆为凹面镜,还可以是平面镜与凹面镜的组合。 The cavity mirrors 4, 6, 7, 9, 10, 11, 12, and 16 can all be plane mirrors, also can all be concave mirrors, or can be a combination of plane mirrors and concave mirrors.
作为一种优选的方案,腔镜4、6、7、9、10、11、12、16皆为平面镜。 As a preferred solution, the cavity mirrors 4, 6, 7, 9, 10, 11, 12, and 16 are all plane mirrors.
作为一种优选的方案,本发明激光器的激光谐振腔的结构为Z型腔、V型腔或者其它角度折叠腔结构。 As a preferred solution, the structure of the laser resonant cavity of the laser of the present invention is a Z-shaped cavity, a V-shaped cavity or other angle-folded cavity structures.
本发明的激光器其典型输出波长包括1.3-5μm中红外波段,不仅限于3.8μm,输出波长具体由中红外非线性晶体15的相位匹配条件决定。 The typical output wavelength of the laser of the present invention includes the mid-infrared band of 1.3-5 μm, not limited to 3.8 μm, and the output wavelength is specifically determined by the phase matching condition of the mid-infrared nonlinear crystal 15 .
采用本发明的激光器,在不改变激光器内部结构的情况下,在基频激光晶体破坏阀值范围内,还可以提高激光二极管的泵浦功率,进一步增加腔内基频激光的功率密度,从而得到更高功率的中红外激光输出。 With the laser of the present invention, without changing the internal structure of the laser, within the range of the fundamental frequency laser crystal destruction threshold, the pumping power of the laser diode can be increased, and the power density of the fundamental frequency laser in the cavity can be further increased, thereby obtaining Higher power mid-infrared laser output.
参照图2至图4,对根据上述技术方案所建立的基于腔内频率变换的大功率中红外激光器进行试验,试验结果如下:实测激光波长为3.843μm;当激光脉冲功率为40khz时,在30W、808nm光泵浦功率下,3.8μm最大输出功率达到2.3W;在连续一小时的测试过程中,激光器最小功率为2.12W,最大功率为2.22W,平均功率为2.18W,长期稳定性为4.6%。由此可见,本发明的激光器具有结构紧凑,转换效率高,稳定性好等优点。 Referring to Figures 2 to 4, the high-power mid-infrared laser based on intracavity frequency conversion established according to the above technical scheme was tested. The test results are as follows: the measured laser wavelength is 3.843 μm; when the laser pulse power is 40khz, at 30W , 808nm optical pump power, the maximum output power of 3.8μm reaches 2.3W; in the continuous one-hour test process, the minimum power of the laser is 2.12W, the maximum power is 2.22W, the average power is 2.18W, and the long-term stability is 4.6 %. It can be seen that the laser device of the present invention has the advantages of compact structure, high conversion efficiency, good stability and the like.
需要说明的是,上述实施例不以任何形式限制本发明,凡采用等同替换或等效变换的方式所获得的技术方案,均落在本发明的保护范围内。 It should be noted that the above embodiments do not limit the present invention in any form, and all technical solutions obtained by means of equivalent replacement or equivalent transformation fall within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201210530989.8A CN102969648B (en) | 2012-12-11 | 2012-12-11 | High-power intermediate infrared laser device based on intra-cavity frequency conversion |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201210530989.8A CN102969648B (en) | 2012-12-11 | 2012-12-11 | High-power intermediate infrared laser device based on intra-cavity frequency conversion |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN102969648A true CN102969648A (en) | 2013-03-13 |
| CN102969648B CN102969648B (en) | 2014-11-05 |
Family
ID=47799613
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201210530989.8A Expired - Fee Related CN102969648B (en) | 2012-12-11 | 2012-12-11 | High-power intermediate infrared laser device based on intra-cavity frequency conversion |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN102969648B (en) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103199423A (en) * | 2013-03-29 | 2013-07-10 | 中山大学 | Two-micrometer laser device based on intracavity optical parametric oscillator |
| CN106546992A (en) * | 2015-09-18 | 2017-03-29 | 弗劳恩霍夫应用研究促进协会 | For the apparatus and method of detection object within a detection region |
| CN112350147A (en) * | 2020-11-06 | 2021-02-09 | 长春理工大学 | Intermediate infrared laser based on annular cavity mixing end pump pulse output |
| CN113288418A (en) * | 2021-05-22 | 2021-08-24 | 中国科学院理化技术研究所 | Laser scalpel with tunable wavelength |
| CN113346348A (en) * | 2021-05-22 | 2021-09-03 | 中国科学院理化技术研究所先进激光研究院(济南) | Laser scalpel with ultralow collateral damage |
| CN119834045A (en) * | 2024-12-26 | 2025-04-15 | 中国科学院理化技术研究所 | Ultra-wide band tunable mid-infrared laser device and beam pointing stabilization method |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102801102A (en) * | 2012-09-07 | 2012-11-28 | 长春理工大学 | 3.9 mu m mid infrared laser |
| CN202977963U (en) * | 2012-12-11 | 2013-06-05 | 苏州镭创光电技术有限公司 | Intracavity frequency conversion-based high-power mid-infrared laser |
-
2012
- 2012-12-11 CN CN201210530989.8A patent/CN102969648B/en not_active Expired - Fee Related
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102801102A (en) * | 2012-09-07 | 2012-11-28 | 长春理工大学 | 3.9 mu m mid infrared laser |
| CN202977963U (en) * | 2012-12-11 | 2013-06-05 | 苏州镭创光电技术有限公司 | Intracavity frequency conversion-based high-power mid-infrared laser |
Non-Patent Citations (2)
| Title |
|---|
| 吴峻等人: "基于PPMgOLN晶体的高重频高效率中红外参量振荡器", 《科技通报》 * |
| 谢刚等人: "高功率中红外3.8um激光器", 《强激光与粒子束》 * |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103199423A (en) * | 2013-03-29 | 2013-07-10 | 中山大学 | Two-micrometer laser device based on intracavity optical parametric oscillator |
| CN103199423B (en) * | 2013-03-29 | 2015-08-05 | 中山大学 | A kind of 2 μm of lasers based on Intracavity OPO |
| CN106546992A (en) * | 2015-09-18 | 2017-03-29 | 弗劳恩霍夫应用研究促进协会 | For the apparatus and method of detection object within a detection region |
| CN112350147A (en) * | 2020-11-06 | 2021-02-09 | 长春理工大学 | Intermediate infrared laser based on annular cavity mixing end pump pulse output |
| CN112350147B (en) * | 2020-11-06 | 2022-06-24 | 长春理工大学 | A mid-infrared laser with mixed end-pump pulse output based on ring cavity |
| CN113288418A (en) * | 2021-05-22 | 2021-08-24 | 中国科学院理化技术研究所 | Laser scalpel with tunable wavelength |
| CN113346348A (en) * | 2021-05-22 | 2021-09-03 | 中国科学院理化技术研究所先进激光研究院(济南) | Laser scalpel with ultralow collateral damage |
| CN119834045A (en) * | 2024-12-26 | 2025-04-15 | 中国科学院理化技术研究所 | Ultra-wide band tunable mid-infrared laser device and beam pointing stabilization method |
| CN119834045B (en) * | 2024-12-26 | 2025-10-17 | 中国科学院理化技术研究所 | Ultra-wide band tunable mid-infrared laser device and beam pointing stabilization method |
Also Published As
| Publication number | Publication date |
|---|---|
| CN102969648B (en) | 2014-11-05 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN102969648B (en) | High-power intermediate infrared laser device based on intra-cavity frequency conversion | |
| CN103022869B (en) | Passive mode-locking guide gain-modulated dual-wavelength pulse fiber laser | |
| CN109687266A (en) | A kind of 2.79 microns of erbium lasers of high-peak power | |
| CN103618205A (en) | Full-solid-state single longitudinal mode yellow light laser | |
| CN111653926A (en) | A miniaturized eye-safe pulsed laser | |
| CN101572380B (en) | 2.12 micron mode-locked laser | |
| CN101179176A (en) | Semiconductor dual-end pumped third harmonic ultraviolet laser | |
| CN104319614A (en) | 1.5-micron human eye safety wave band ultrashort pulse laser | |
| CN106229806A (en) | The tunable alaxadrite laser of Raman gold-tinted pumping | |
| CN104852260A (en) | Dual-wavelength Q-switched pulse fiber laser | |
| CN102244361A (en) | Self-Raman frequency conversion self-mode locking solid laser | |
| CN101807774B (en) | An In-Band Pumped Self-Stimulated Raman Scattering Laser | |
| CN105977775A (en) | Cascade gain modulation dual-wavelength medium-infrared pulse optical fiber laser device | |
| CN102842849A (en) | High power 3 mum -5mum wave band solid laser of optical fiber laser pump | |
| CN107611760A (en) | A kind of torsional pendulum chamber pure-tone pulse laser | |
| CN101814695B (en) | Directly pumped self-stimulated Raman scattering laser in the eye-safe band | |
| CN106058632B (en) | A passively Q-switched Raman laser system with adjustable pulse energy based on bonded crystals | |
| CN103001113B (en) | 473nm electro-optic q-switch laser | |
| CN207753292U (en) | Two-frequency laser | |
| CN104184042A (en) | Combined 1.9 mu m wavelength converter of hollow-core photonic crystal fiber and seal cavity | |
| CN100555053C (en) | All-solid-state CW tunable yellow-orange coherent light source | |
| CN103337775A (en) | Optical fiber end-pumped laser | |
| CN202276060U (en) | Self-Raman frequency conversion self-locking mode solid laser | |
| CN201149952Y (en) | Self-Raman frequency doubling solid-state yellow laser | |
| CN203387045U (en) | Optical fiber end-pumped laser |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20141105 |