CN102499692B - Ultrasonic gait detection method - Google Patents
Ultrasonic gait detection method Download PDFInfo
- Publication number
- CN102499692B CN102499692B CN201110393351.XA CN201110393351A CN102499692B CN 102499692 B CN102499692 B CN 102499692B CN 201110393351 A CN201110393351 A CN 201110393351A CN 102499692 B CN102499692 B CN 102499692B
- Authority
- CN
- China
- Prior art keywords
- ultrasonic
- gait
- detection
- data
- experimenter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 91
- 230000005021 gait Effects 0.000 title claims abstract description 77
- 238000000034 method Methods 0.000 claims abstract description 24
- 238000004364 calculation method Methods 0.000 claims abstract description 10
- 210000003141 lower extremity Anatomy 0.000 claims description 9
- 238000002604 ultrasonography Methods 0.000 claims description 6
- 238000013461 design Methods 0.000 claims description 5
- 230000004888 barrier function Effects 0.000 claims 1
- 238000012545 processing Methods 0.000 abstract description 12
- 238000012360 testing method Methods 0.000 abstract description 9
- 238000004458 analytical method Methods 0.000 abstract description 8
- 230000005540 biological transmission Effects 0.000 abstract description 3
- 230000003340 mental effect Effects 0.000 abstract 1
- 210000002414 leg Anatomy 0.000 description 28
- 238000005070 sampling Methods 0.000 description 27
- 238000010586 diagram Methods 0.000 description 7
- 238000012549 training Methods 0.000 description 5
- 238000000605 extraction Methods 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 238000009499 grossing Methods 0.000 description 4
- 206010061296 Motor dysfunction Diseases 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 210000001624 hip Anatomy 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000013144 data compression Methods 0.000 description 1
- 238000013075 data extraction Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 210000004394 hip joint Anatomy 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000007659 motor function Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Landscapes
- Rehabilitation Tools (AREA)
Abstract
本发明公开了一种超声波步态检测装置与方法,其特点是将超声波检测系统安装在助行机器人平台前方,通过多路超声波传感器分别检测受试者左右腿行走时与超声波检测平台之间的距离,提取出人体行走时的步态信息,分析计算步态参数,包括平均步长,平均步速,步频,瞬时速度等参数;该装置包括超声波发射接收装置,数据采集与传输装置,步态数据处理单元,步态特征参数计算分析单元。本发明将检测装置安装在助行机器人平台上,在受试者身上不加装任何设备,可对受试者无任何限制地进行步态检测,减少了受试者步态检测时的心里负担,提取的步态特征参数较精确,检测系统结构简单,使用安装方便,成本较低。
The invention discloses an ultrasonic gait detection device and method, which is characterized in that the ultrasonic detection system is installed in front of the walker robot platform, and the distance between the left and right legs of the subject and the ultrasonic detection platform is respectively detected by multi-channel ultrasonic sensors. distance, extract the gait information when the human body walks, analyze and calculate the gait parameters, including average step length, average pace speed, stride frequency, instantaneous speed and other parameters; the device includes an ultrasonic transmitting and receiving device, a data acquisition and transmission device, a step Gait data processing unit, gait feature parameter calculation and analysis unit. In the present invention, the detection device is installed on the walker robot platform, and no equipment is installed on the subject, so that the gait detection of the subject can be performed without any restrictions, reducing the mental burden of the test subject during gait detection , the extracted gait feature parameters are more accurate, the detection system is simple in structure, easy to use and install, and low in cost.
Description
技术领域 technical field
本发明涉及一种助行康复训练装置与方法,特别涉及一种基于助行机器人平台上安装多路超声波传感器,检测人行走时双腿与超声波检测平台之间的距离,通过对检测的距离数据处理分析,提取出人体行走时的步态参数,包括平均步长,平均步速,步频等的超声波步态检测装置与方法。 The present invention relates to a walking aid rehabilitation training device and method, in particular to a walking aid robot platform based on the installation of multi-channel ultrasonic sensors to detect the distance between the legs and the ultrasonic detection platform when a person walks, and through the detected distance data An ultrasonic gait detection device and method for processing and analyzing and extracting gait parameters when the human body walks, including average step length, average pace speed, stride frequency, etc. the
背景技术 Background technique
2011年11月初,世界总人口数已达到70亿,根据中国最新公布的人口普查报告结果显示,全国总人口为1.34亿人,60岁及以上人口为1.77亿人,约占总人口数的13%。60岁及以上人口的比重上升2.93个百分点,65岁及以上人口的比重上升1.91个百分点。随着中国人口老龄化的现象逐渐加剧,在老龄人群中存在大量的下肢运动功能障碍的患者,这类患者除了早期的手术治疗和必要的药物治疗外,正确的、科学的康复训练对恢复或提高下肢运动功能发挥着重要的作用。助行康复训练机器人可对下肢存在运动功能障碍的患者进行及时,科学而且有效的下肢康复训练,而对这类患者的步态信息进行及时的检测与分析是对这类患者进行康复训练的理论依据和必要前提。 At the beginning of November 2011, the world's total population has reached 7 billion. According to the latest census report released by China, the total population of the country is 134 million, and the population aged 60 and above is 177 million, accounting for about 13% of the total population. %. The proportion of the population aged 60 and above increased by 2.93 percentage points, and the proportion of the population aged 65 and above increased by 1.91 percentage points. As the phenomenon of population aging in China is gradually intensifying, there are a large number of patients with lower limb motor dysfunction among the elderly. In addition to early surgical treatment and necessary drug treatment, correct and scientific rehabilitation training is very important for recovery or rehabilitation of these patients. Improving lower extremity motor function plays an important role. Walking aid rehabilitation training robots can provide timely, scientific and effective lower limb rehabilitation training for patients with motor dysfunction in the lower limbs, and timely detection and analysis of the gait information of such patients is the theory of rehabilitation training for such patients Basis and prerequisites. the
目前主流的步态特征提取方法是基于计算机视觉和基于传感器等方法实现。L.Lee等用基于图像轮廓各部分的矩阵特征来分析步态。Li-Shan Chou,Kenton等人采用27个反光片贴在受试者的主要关节部位进行图像采集。J.P.Foster等人提出了一种基于模型的自动跟踪系统,通过建立人体运动模型对图像数据进行处理分析。这些基于图像的处理方法由于摄像机的位置、以及传感器移动会给系统带来误差,必须具备正确的摄像方法和校准系 统,需要操作人员具有专业技术。 The current mainstream gait feature extraction methods are based on computer vision and sensor-based methods. L. Lee et al. used matrix features based on each part of the image contour to analyze gait. Li-Shan Chou, Kenton et al. used 27 reflective sheets to be attached to the main joints of the subjects for image acquisition. J.P.Foster et al. proposed a model-based automatic tracking system to process and analyze image data by establishing a human motion model. These image-based processing methods will bring errors to the system due to the position of the camera and the movement of the sensor. Correct camera methods and calibration systems must be available, and operators must have professional skills. the
在公开的世界专利号5831937提出一种用超声波传感器检测人体行走的步态特征,超声波发射端安装在受试者腰部后面,接收端安装在与发射端同一高度的某一固定位置上,通过距离数据提取人体步态信息。 In the published world patent No. 5831937, an ultrasonic sensor is used to detect the gait characteristics of human walking. The ultrasonic transmitter is installed behind the waist of the subject, and the receiver is installed at a fixed position at the same height as the transmitter. Data extraction of human gait information. the
在公开的中国专利申请号200420059643.5中提出一种应变式三维测力台方法检测步态信息,三维测力台需要安装在专用步道上,安装繁琐,成本较高。 In the published Chinese patent application No. 200420059643.5, a strain-type three-dimensional force plate method is proposed to detect gait information. The three-dimensional force plate needs to be installed on a special walkway, which is cumbersome to install and high in cost. the
在公开的中国专利申请号200910069062.7中提出一种用将超声波传感器放入鞋底检测距离信号的一种步态测量装置,这种检测方法成本很低,但只能检测在双脚落地时进行步长和频率。 In the published Chinese patent application number 200910069062.7, a kind of gait measurement device is proposed by putting an ultrasonic sensor into the sole of the shoe to detect the distance signal. This detection method is very low in cost, but it can only detect the step length when the feet are on the ground. and frequency. the
在公开的中国专利申请号200910154024.1中提出一种在人体腰部前面安装两轴加速度传感器进行人体步态的步速测量,这种步态检测方法简便,成本较低,但将传感器安装在受试者身上,对传感器位置的安装需要进行多次调试,检测过程中携带在受试者身体上的传感器的抖动会带来很多干扰。 In the published Chinese patent application No. 200910154024.1, it is proposed to install a two-axis acceleration sensor in front of the waist of the human body to measure the gait speed of the human body. This gait detection method is simple and low in cost, but the sensor is installed on the subject. On the body, the installation of the sensor position requires multiple adjustments, and the vibration of the sensor carried on the subject's body during the detection process will cause a lot of interference. the
发明内容 Contents of the invention
本发明的目的在于解决现有技术存在的上述问题,提供出一种用多路超声波步态检测装置与方法。本发明提出的这种装置与方法可以检测人体行走时的步态特征数据,对数据进行处理分析,计算出步长,平均步速,步频等步态特征参数。 The purpose of the present invention is to solve the above-mentioned problems in the prior art, and provide a multi-channel ultrasonic gait detection device and method. The device and method proposed by the present invention can detect gait characteristic data when the human body walks, process and analyze the data, and calculate gait characteristic parameters such as step length, average pace speed, and stride frequency. the
本发明给出的技术方案是:这种用多路超声波步态检测的方法,采用超声波传感器检测人体行走的步态特征,其特点是将超声波检测装置安装在助行机器人平台前方,,在受试者身体上不加装任何检测设备,通过多路超声 波传感器分别检测受试者左右腿行走时与超声波检测平台之间的距离,提取出人体行走时的步态信息,分析计算步态参数,包括平均步长,平均步速,步频,瞬时速度等参数。 The technical scheme provided by the present invention is: this multi-channel ultrasonic gait detection method uses an ultrasonic sensor to detect the gait characteristics of human walking, and is characterized in that the ultrasonic detection device is installed in front of the walker robot platform, The tester does not install any detection equipment on the body, and the distance between the subject's left and right legs and the ultrasonic detection platform is detected by multiple ultrasonic sensors, and the gait information of the human body is extracted, and the gait parameters are analyzed and calculated. , including average step length, average pace speed, stride frequency, instantaneous speed and other parameters. the
设置在助行机器人平台上的超声波检测装置与受试者同时移动,多路超声波检测受试者在行走过程中左右腿与超声波检测平台之间的相对距离数据,通过检测的距离数据分析受试者步态信息,多路独立的超声波和其发射接受装置,通过超声波发射到受试者腿部并返回到接收端。 The ultrasonic detection device set on the walker robot platform moves with the subject at the same time, and the multi-channel ultrasonic detection detects the relative distance data between the left and right legs of the subject and the ultrasonic detection platform during walking, and analyzes the subject through the detected distance data. The gait information of the subject, multiple independent ultrasonic waves and their transmitting and receiving devices, are transmitted to the subject's legs through ultrasonic waves and returned to the receiving end. the
所述多路超声波检测受试者在行走过程中左右腿与超声波检测平台之间的相对距离数据时是通过多路超声波进行循环数据检测。 When the multi-channel ultrasonic wave detects the relative distance data between the left and right legs of the subject and the ultrasonic detection platform during walking, the multi-channel ultrasonic wave is used for cyclic data detection. the
检测系统对检测区域范围的设置,包括: The setting of the detection area by the detection system includes:
(1)超声波检测系统平台与受试者行走方向垂直。 (1) The platform of the ultrasonic detection system is perpendicular to the walking direction of the subject. the
(2)通过增加超声波传感器数量来增加检测区域的宽度。 (2) Increase the width of the detection area by increasing the number of ultrasonic sensors. the
(3)通过软件设置单路超声波传感器的最大检测距离,避免助行机器人和其他障碍物对数据检测产生干扰。 (3) Set the maximum detection distance of the single-channel ultrasonic sensor through the software to avoid the interference of the walking robot and other obstacles on the data detection. the
(4)通过结构设计改变超声波传感器与检测平台之间的角度,减小超声波检测时产生的干扰。 (4) Change the angle between the ultrasonic sensor and the detection platform through structural design to reduce the interference generated during ultrasonic detection. the
采样时间的设置,通过在已设置的采样周期内部进行采样,采样时间要小于采样周期,增加了采样密度,确保每次采样周期相同。 The setting of the sampling time, by sampling within the set sampling period, the sampling time is shorter than the sampling period, which increases the sampling density and ensures that each sampling period is the same. the
通过单片机控制超声波传感器采集数据,通过单片机与计算机进行串行通讯,将采集回的数据传入计算机。 The ultrasonic sensor is controlled by the single-chip microcomputer to collect data, and the serial communication is carried out with the computer through the single-chip microcomputer, and the collected data is transmitted to the computer. the
对数据的处理方方法,包括对去除数据中噪声,对数据进行平滑滤波,采集的数据进行合并,数据的峰值检测。 The data processing method includes removing noise in the data, smoothing and filtering the data, merging the collected data, and detecting the peak value of the data. the
通过判断相邻采样数据的差值大小去除噪声,判断对多路数据在同一采样时刻数据差值大小合并多路数据,通过局部数据的变化判断峰值。 Noise is removed by judging the difference between adjacent sampling data, judging the data difference of multi-channel data at the same sampling time and merging multiple data, and judging the peak value through the change of local data. the
通过数据处理后对步态信息的提取方法,包括通过峰值对步态周期的判定,平均步长的确定,平均步速的确定,步频的确定。 The method for extracting the gait information after data processing includes judging the gait cycle through the peak value, determining the average step length, determining the average pace speed, and determining the stride frequency. the
根据处理后的左腿和右腿的检测数据最大差值计算步长,通过检测数据与步长的关系计算步长的方法,通过峰值检测确定步长时间,步态周期时间,计算平均步长,平均步速和步频。 Calculate the step length according to the maximum difference between the detected data of the left leg and the right leg after processing, calculate the step length through the relationship between the detected data and the step length, determine the step length and gait cycle time through peak detection, and calculate the average step length , average pace and cadence. the
本发明给出的这种用多路超声波步态检测装置,其特点是包括有:基于助行机器人平台的超声波步态检测装置,多路独立的超声波和其发射接收装置,单片机数据采集与传输装置,安装在计算机之内的步态数据处理单元、步态特征参数计算与分析单元。 This multi-channel ultrasonic gait detection device provided by the present invention is characterized in that it includes: an ultrasonic gait detection device based on a walker robot platform, multi-channel independent ultrasonic waves and its transmitting and receiving device, single-chip data acquisition and transmission The device is a gait data processing unit and a gait characteristic parameter calculation and analysis unit installed in the computer. the
为更好的实现本发明的目的,所述的超声波和其发射接收装置采用超声波测距模块,该模块集成超声波信号触发器,超声波发射,接收电路,通过触发信号控制超声波发射信号,再通过压电效应的换能器,将接收的超声波信号转换为DC5V电压,通过检测返回电压时间检测障碍物的距离位置。 In order to better realize the purpose of the present invention, the ultrasonic wave and its transmitting and receiving device adopt an ultrasonic ranging module, which integrates an ultrasonic signal trigger, an ultrasonic transmitting and receiving circuit, and controls the ultrasonic transmitting signal through the trigger signal, and then passes the pressure The electric effect transducer converts the received ultrasonic signal into DC5V voltage, and detects the distance and position of obstacles by detecting the return voltage time. the
(1)主要技术参数 (1) Main technical parameters
实用电压:DC5V。静态电流:2mA。电平输出:高5V,低0V。感应角度:不大于15度。探测距离:2cm-450cm。精度:可达1mm Practical voltage: DC5V. Quiescent current: 2mA. Level output: high 5V, low 0V. Induction angle: no more than 15 degrees. Detection distance: 2cm-450cm. Accuracy: up to 1mm
(2)接线方式: (2) Wiring method:
VCC、trig(控制端)、echo(接收端)、GND VCC, trig (control terminal), echo (receiving terminal), GND
(3)使用方法: (3) How to use:
一个控制口发一个10us的高电平信号,模块的信号触发器发射40k赫兹 的方波,在接受端等待高电平输出来检测是否有信号返回,一有输出便开定时器计时,当接收端变为低电平时读取定时器的值,此时间为测距的时间,检测距离=(高电平时间*声速(340m/s))/2。 A control port sends a 10us high-level signal, the signal trigger of the module emits a 40k Hz square wave, waits for a high-level output at the receiving end to detect whether there is a signal return, and starts a timer to count when there is an output. Read the value of the timer when the terminal becomes low level, this time is the time of distance measurement, detection distance=(high level time*sound speed (340m/s))/2. the
四路超声波采集系统结构的设计:超声波位置距离数据是根据全方向康复助行机器人的实体距离大小而设计的,并经过多次反复检测实验设计出的最佳位置,可使在系统检测时最大限度排除两腿之间的数据检测干扰和车体对检测产生的干扰。1、2路超声波检测左腿行走时的数据,3、4路超声波检测右腿行走时的数据。 The design of the structure of the four-way ultrasonic acquisition system: the ultrasonic position and distance data are designed according to the physical distance of the omni-directional rehabilitation walker robot, and the optimal position is designed after repeated testing experiments, which can make the maximum The data detection interference between the two legs and the interference caused by the car body to the detection are excluded to a minimum. 1, 2-channel ultrasonic detection data when the left leg is walking, 3, 4-channel ultrasonic detection data when the right leg is walking. the
为更好的实现本发明的目的,所述的单片机数据采集与传输装置 For better realizing the purpose of the present invention, described single-chip microcomputer data acquisition and transmission device
采用PIC16F877A单片机,每个I/O口的最大推拉电流能力20mA,足以达到每个超声波2mA的静态电流要求。用单片机的四个I/O口做触发信号,用令四个I/O接收返回信号。通过循环检测四路超声波数据消除超声波之间的干扰,用定时器0设置单路超声波的采样时间,用定时器1获取超声波检测时间,在规定的采样时间内执行超声波检测,所以采样时间的设置要大于超声波的检测时间,在采样周期内进行采样,这和以往的采样不同,在很大程度上减少采样时间,在单位时间内获取更多的数据。
Using PIC16F877A single-chip microcomputer, the maximum push-pull current capability of each I/O port is 20mA, which is enough to meet the quiescent current requirement of each ultrasonic wave of 2mA. Use the four I/O ports of the microcontroller as trigger signals, and use the four I/O ports to receive return signals. Eliminate the interference between ultrasonic waves by circularly detecting four-way ultrasonic data, use timer 0 to set the sampling time of single-channel ultrasonic waves, use
超声波检测距离限制,超声波发射接收装置的检测范围为2cm-450cm,而本套检测系统需要检测的最大距离为70cm,经过计算后,通过检测定时器的TMR1H寄存器的值,判断TMR1H的值是否超过70cm的检测值,如果超过测结束检测,进行下一路超声波检测。 Ultrasonic detection distance is limited. The detection range of the ultrasonic transmitting and receiving device is 2cm-450cm, and the maximum distance that this detection system needs to detect is 70cm. After calculation, by detecting the value of the TMR1H register of the timer, judge whether the value of TMR1H exceeds If the detected value of 70cm exceeds the end of the test, the next ultrasonic test will be carried out. the
单路超声波检测过程,通过单片机I/O引脚触发给超声波控制端trig一个20微秒的高电平触发信号,用定时器1计时20微秒后关掉定时器1,将超声 波接收端介入单片机I/O引脚,等待接收端返回高电平信号,用定时器1计算返回高电平信号持续的时间。
During the single-channel ultrasonic detection process, a 20-microsecond high-level trigger signal is given to the ultrasonic control terminal trig through the I/O pin of the single-chip microcomputer, and the
检测数据压缩,定时器1为16位定时器,在不影响步态数据分析的情况下,将16位数据压缩到8位数据后可减少检测时间和减少数据处理难度,通过70cm的最大检测距离,定时器1所需存放的最大数位为11位,省略其后三位,将数据压缩成8位,这样就保证了用一个字节的八位数据传送,节省了数据上传时间,但数据的精度同时变成了8微秒的距离,也就是1.36毫米,这个精度能够满足步态数据检测分析的要求。将检测的数据经过串口传入计算机内,再对采样数据进行处理。
Detection data compression,
为更好的实现本发明的目的,所述的安装在计算机之内的步态数据处理与分析单元是根据四路超声波检测的数据,对数据进行合并,去噪,滤波,峰值检测,周期划分等处理,合并后的两路数据分别为左腿和右腿与检测平台之间的距离,通过峰值确定在每个步态周期中双腿之间的最大距离,在经过比例变换计算出实际步长,再计算出所有步长的均值,便可计算出平均步长,根据采样时间的提取和峰值检测,便可计算出平均步速和步频。 In order to better realize the purpose of the present invention, the gait data processing and analysis unit installed in the computer is based on the data detected by the four-way ultrasonic wave, the data is merged, denoised, filtered, peak detection, period division and so on, the merged two-way data are the distance between the left leg and right leg and the detection platform, the maximum distance between the legs in each gait cycle is determined by the peak value, and the actual step is calculated after the scale transformation After calculating the average value of all step lengths, the average step length can be calculated. According to the sampling time extraction and peak detection, the average pace speed and stride frequency can be calculated. the
通过对经过处理后的距离数据与时间的微分,便可计算出每一个采样点的瞬时速度值。 By differentiating the processed distance data and time, the instantaneous velocity value of each sampling point can be calculated. the
还可以通过对检测的左右腿数据在同一周期内的不同位置,速度,以及周期相位的不同,在后期对受试者的步态对称性进行分析。 It is also possible to analyze the gait symmetry of the subject at a later stage by analyzing the different positions, velocities, and cycle phases of the detected left and right leg data in the same cycle. the
通过计算的步态参数与实际的步态参数进行比较分析,来判断超声波步态检测装置的精确度。 The accuracy of the ultrasonic gait detection device is judged by comparing and analyzing the calculated gait parameters with the actual gait parameters. the
与现有技术相比,本发明的有益效果为: Compared with prior art, the beneficial effect of the present invention is:
(1)基于助行机器人平台搭建超声波步态检测系统,受试者身上不加装任何设备,可对受试者无任何限制地进行步态数据检测。这样很大程度上提高了受试者在检测过程中的心里素质,增加对有下肢运动功能障碍的患者康复的信心,而且可频繁、高效的对不同受试者进行步态检测。 (1) An ultrasonic gait detection system is built based on the walking aid robot platform, and no equipment is installed on the subject, and the gait data detection of the subject can be performed without any restrictions. This greatly improves the psychological quality of the subjects during the testing process, increases confidence in the rehabilitation of patients with lower limb motor dysfunction, and can frequently and efficiently perform gait testing on different subjects. the
(2)在全方向助行机器人前面安装多路超声波传感器,将检测范围规定在受试者行走的一个固定检测区域。通过循环检测消除超声波之间回波干扰,再通过对检测装置的机械结构进行合理的优化设计,减少受试者行走时双腿之间对数据采样时的干扰。 (2) Install multi-channel ultrasonic sensors in front of the omnidirectional walker robot, and define the detection range in a fixed detection area where the subject walks. Eliminate the echo interference between ultrasonic waves through cyclic detection, and then rationally optimize the mechanical structure of the detection device to reduce the interference between the legs of the subject during data sampling when walking. the
(3)设置采样周期的方式不同于以往的采样方式,在设置的采样周期内部进行采样,等待采用周期结束后进行下一次采样,这样增加了采样数据的密度。 (3) The method of setting the sampling period is different from the previous sampling method. Sampling is performed within the set sampling period, and the next sampling is performed after the sampling period is over, which increases the density of sampling data. the
(4)检测的数据是人体行走时双腿与检测平台之间的距离数据,通过数据能确定行走时每一时刻的状态,还可计算出每一时刻的瞬时速度。根据检测的数据进行相应的处理计算,可以很方便的提取出步态特征参数,包括对平均步长、平均步速、步频和瞬时速度的提取,还可对后期的步态对称性及稳定性进行分析。 (4) The detected data is the distance data between the legs and the detection platform when the human body is walking. Through the data, the state at each moment of walking can be determined, and the instantaneous speed at each moment can also be calculated. According to the corresponding processing and calculation of the detected data, the characteristic parameters of the gait can be easily extracted, including the extraction of the average step length, average pace, stride frequency and instantaneous speed, and the symmetry and stability of the gait in the later period can also be calculated. gender analysis. the
(5)相对其它方法,该方法对步态参数的提取简单易懂,成本较低,使用安装方便,数据处理速度快。但该方法最大的不足在于超声波检测时产生的多种干扰,通过检测算法的优化和检测装置机械结构的设计可大量减少这些干扰。 (5) Compared with other methods, the extraction of gait parameters by this method is simple and easy to understand, the cost is low, the use and installation are convenient, and the data processing speed is fast. However, the biggest shortcoming of this method lies in the various interferences generated during ultrasonic testing, which can be greatly reduced by optimizing the detection algorithm and designing the mechanical structure of the detection device. the
附图说明 Description of drawings
图1为基于助行机器人的超声波步态检测系统示意图,其中1为助行机器 人,2为超声波检测系统,3为受试者。 Figure 1 is a schematic diagram of an ultrasonic gait detection system based on a walker robot, where 1 is the walker robot, 2 is the ultrasonic detection system, and 3 is the subject. the
图2为超声波检测原理框图。 Figure 2 is a block diagram of the principle of ultrasonic detection. the
图3为超声波步态检测系统结构设计图,其中4,5,6,7为四个超声波传感器。 Figure 3 is a structural design diagram of the ultrasonic gait detection system, in which 4, 5, 6, and 7 are four ultrasonic sensors. the
图4为基本步态参数定义示意图,其中8为步长,9为跨步长,10为步态周期,11为内步宽,12为外步宽。 Figure 4 is a schematic diagram of the definition of basic gait parameters, where 8 is the step length, 9 is the stride length, 10 is the gait cycle, 11 is the inner step width, and 12 is the outer step width. the
图5为一组经过数据处理后的步态数据曲线,其中A为检测的右腿步态数据曲线,B为检测的左腿步态数据曲线。 Fig. 5 is a set of gait data curves after data processing, wherein A is the detected gait data curve of the right leg, and B is the detected gait data curve of the left leg. the
图6为步长计算各参数示意图,其中13为超声波传感器。 Fig. 6 is a schematic diagram of calculating parameters by step length, wherein 13 is an ultrasonic sensor. the
具体实施方式 Detailed ways
下面结合附图和实例对本发明的技术方案做进一步详细说明。 The technical solutions of the present invention will be described in further detail below in conjunction with the accompanying drawings and examples. the
一步态检测装置 One step detection device
如图1所示,超声波检测系统安装在助行机器人平台前面,检测人行走时与超声波位于同一高度的步态数据,把检测的数据再进行相应的比例变换,从而计算出步长值。 As shown in Figure 1, the ultrasonic detection system is installed in front of the walker robot platform to detect the gait data at the same height as the ultrasonic wave when the person walks, and convert the detected data to the corresponding ratio to calculate the step length value. the
超声波接受发射模块检测原理如图2,通过对超声波控制端触发20微秒高电平信号,模块对信号进行调制,产生40千赫振荡脉冲信号,发射超声波,当遇到障碍物后超声波信号返回,在对信号进行增益放大后传送到返回端定时器计时,再传送到控制端。 The detection principle of the ultrasonic receiving and transmitting module is shown in Figure 2. By triggering a 20 microsecond high-level signal on the ultrasonic control terminal, the module modulates the signal to generate a 40 kHz oscillating pulse signal and emits ultrasonic waves. When an obstacle is encountered, the ultrasonic signal returns , after the signal is amplified, it is sent to the return end timer for timing, and then sent to the control end. the
超声波检测系统结构设计如图3,其中单位均为厘米。每个超声波最大感应角度15度,最大检测距离为70cm。阴影部分为超声波的检测区域,黑色外框为助行机器人的内部边界。图中1、2两路超声波检测左腿行走时的数据, 3、4两路超声波检测右腿行走时的数据。1路和2路,3路和4路超声波之间的距离为9cm。正常人行走的内步宽为5cm-10cm,外步宽为25cm-30cm,基本步态运动参数定义如图4所示,为了减少分别检测两腿行走时的超声波检测干扰,并通过实验验证,将2、3路传感器时间距离设置为17cm。为了去除左右腿行走时对超声波之间检测的干扰,2路和3路超声波与检测平台成7.5度角,1路和4路超声波与检测平台平行放置。
The structural design of the ultrasonic testing system is shown in Figure 3, where the units are centimeters. The maximum sensing angle of each ultrasonic wave is 15 degrees, and the maximum detection distance is 70cm. The shaded part is the ultrasonic detection area, and the black frame is the inner boundary of the walker robot. In the figure 1, 2 two-way ultrasonic detection data when the left leg is walking, 3, 4 two-way ultrasonic detection data when the right leg is walking. The distance between 1-way and 2-way, 3-way and 4-way ultrasound is 9cm. The inner step width of normal people is 5cm-10cm, and the outer step width is 25cm-30cm. The definition of basic gait motion parameters is shown in Figure 4. In order to reduce the interference of ultrasonic detection when two legs are walking, and through experimental verification, Set the time distance of
将超声波传感器与单片机连接,四路I/O口提供触发信号,另外四路I/O口接收返回信号。用手提电脑USB口为单片机提供电源,用串口转USB装置和串口线将单片机连接,使单片机和计算机进行异步串行通信。 Connect the ultrasonic sensor with the microcontroller, four I/O ports provide trigger signals, and the other four I/O ports receive return signals. Use the USB port of the laptop to provide power for the single-chip microcomputer, and connect the single-chip microcomputer with a serial port to USB device and a serial port line, so that the single-chip microcomputer and the computer can perform asynchronous serial communication. the
二数据处理 Two data processing
求出每一路超声波相邻采样点数据的平均差值,如果其中某个数据大于平均差值的3倍以上,就认为此数据为跳变点,如果这些跳变点前后10个数据点导数均为正值或负值,则这些跳变点用前后的10数据点的均值代替,如果这些跳变点的前面或者后面的导数有出现正值和负值,则该数据点用其导数为同号的数据点均值代替,这样避免了步态参数计算时的误差。用同样原理进行峰值检测,如果某一数据点前后10个数据点导数异号,则认为该数据点为峰值点。1、2路和3、4路坚持的数据分别合并成一路超声波,1、2路超声波检测左腿数据,两路数据差值很小,求出两路差值的平均值,如果两路差值大于平均差值的3倍,则取数据值较为平滑的数据值,也就是相邻数据差值小的那一路数据,若两路数据差值很小,则取两路超声波检测的较大数据值,这样最大限度的排除了检测时的异常数据,以及在不影响步态分析的前提将两路超声波合并,3、4路超声波也按照相同原理合并。之后对每个数 据进行五点二次平滑滤波,其定义为:
Calculate the average difference of the adjacent sampling point data of each channel of ultrasonic waves. If one of the data is more than 3 times the average difference, it is considered that this data is a jump point. If the derivatives of the 10 data points before and after these jump points are equal to If the value is positive or negative, these jump points are replaced by the mean value of the 10 data points before and after these jump points. The average value of the data points of the number is replaced, which avoids the error in the calculation of gait parameters. The same principle is used for peak detection. If the derivatives of 10 data points before and after a certain data point have different signs, the data point is considered as the peak point. The data of
其中xi为第i个数据值,yi为xi经过平滑滤波之后的数据值。 Among them, x i is the i-th data value, and y i is the data value of x i after smoothing and filtering.
三步态特征参数计算 Calculation of three gait characteristic parameters
通过对检测的步态数据进行去噪,滤波后,将1,2和3,4路超声波的数据特性合成左右腿步态数据曲线,利用平滑滤波方法对数据进行处理后对其进行峰值检测,计算出波峰波谷数据以及时间。如图5所示为一组经过数据处理后的数据曲线示意图,其中实线和虚线分别代表右腿和左腿与超声波检测平台之间的距离与时间的关系曲线,两条数据曲线相差180度相位并周期性变化。 After denoising and filtering the detected gait data, the data characteristics of the 1, 2, 3, and 4 channels are synthesized into the left and right leg gait data curves, and the data is processed by the smoothing filter method and then the peak value is detected. Calculate the peak and valley data and time. Figure 5 is a schematic diagram of a set of data curves after data processing, in which the solid line and the dotted line represent the relationship between the distance and time between the right leg and left leg and the ultrasonic testing platform, and the difference between the two data curves is 180 degrees phase and changes periodically. the
图6为通过检测数据提取步态信息时一些计算参数与步长之间的关系示意图,其中H1和H2分别为受试者的髋关节和超声波传感器与地面之间的距离。D1和D2分别为超声波传感器检测的左右腿与传感器之间的距离数据。LV为待求的步长值,设置L1为受试者的腿部长度,则以上各参数有如下两个关系, Figure 6 is a schematic diagram of the relationship between some calculation parameters and the step length when extracting gait information through detection data, where H 1 and H 2 are the distances between the subject's hip joint and the ultrasonic sensor and the ground, respectively. D 1 and D 2 are respectively the distance data between the left and right legs and the sensor detected by the ultrasonic sensor. L V is the step length value to be sought, and L 1 is set as the subject's leg length, then the above parameters have the following two relationships,
通过以上两个关系式可求出步长LV的值。同理可求出所有的步长值,再求出平均的步长,设S为从第一步行走到第n步的总距离,则 The value of the step length L V can be obtained through the above two relational expressions. In the same way, all the step length values can be obtained, and then the average step length can be obtained. Let S be the total distance from the first step to the nth step, then
其中Li(i=1,…,n)为第i个步态周期的步长值,设T为检测过程的总时间,则那么平均步长L、平均步速V和步频F的值分别可通过以下公式得出: Wherein L i (i=1,..., n) is the step length value of the i-th gait cycle, and T is the total time of the detection process, then the values of the average step length L, the average pace V and the step frequency F can be obtained by the following formulas, respectively:
平均步长,步速,步频值分别为: The average step length, pace, and stride frequency are:
L=S/n (5) L=S/n (5)
V=S/T (6) V=S/T (6)
F=60/(T/n) (7) F=60/(T/n) (7)
四实验及数据分析 Four experiments and data analysis
分别对10个健康人进行了步态检测实验,并按照步态参数计算原理分别计算出每组数据的平均步长、平均步速和步频值。再和实际的步态参数值进行对比计算出相对误差值。计算结果如表1所示。其中实际步长、步速和步频的数据来源为:实际的步长Lreal:被检测人行走的实际距离与行走的实际步长周期个数的商。实际的步速Vreal:全方向下肢康复机器人的速度。实际的步频Freal:一分钟内行走的步长周期个数,用检测时记录的时间与步数的商求出实际步长周期,再求出一分钟内的步长周期个数。其中EL、EV和EF分别为经过检测计算的步态参数值和实际的步态参数值的相对误差。从表1中可以看出步长的相对误差EL都不超过4%,步速的相对误差EV都不超过3%,步频的相对误差EF不超过2%,说明超声波步态检测系统能够精确的检测受试者的步态参数。 The gait detection experiment was carried out on 10 healthy people respectively, and the average step length, average pace speed and stride frequency value of each group of data were calculated according to the calculation principle of gait parameters. Then compare with the actual gait parameter value to calculate the relative error value. The calculation results are shown in Table 1. The data sources of the actual step length, pace speed and step frequency are: actual step length L real : the quotient of the actual distance traveled by the detected person and the number of actual step length cycles. Actual pace V real : the speed of the lower limb rehabilitation robot in all directions. Actual stride frequency F real : the number of step cycles in one minute. Use the quotient of the time recorded during detection and the number of steps to find the actual step cycle, and then calculate the number of step cycles in one minute. Among them, E L , E V and E F are the relative errors between the measured and calculated gait parameter values and the actual gait parameter values, respectively. It can be seen from Table 1 that the relative error E L of the step length does not exceed 4%, the relative error E V of the pace does not exceed 3%, and the relative error E F of the step frequency does not exceed 2%. The system can accurately detect the gait parameters of the subject.
表1为提取的步态参数与实际参数的数据对比。 Table 1 shows the data comparison between the extracted gait parameters and the actual parameters. the
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201110393351.XA CN102499692B (en) | 2011-11-30 | 2011-11-30 | Ultrasonic gait detection method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201110393351.XA CN102499692B (en) | 2011-11-30 | 2011-11-30 | Ultrasonic gait detection method |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN102499692A CN102499692A (en) | 2012-06-20 |
| CN102499692B true CN102499692B (en) | 2014-04-30 |
Family
ID=46211874
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201110393351.XA Expired - Fee Related CN102499692B (en) | 2011-11-30 | 2011-11-30 | Ultrasonic gait detection method |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN102499692B (en) |
Families Citing this family (22)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104224184B (en) * | 2014-09-02 | 2016-08-17 | 北京智谷技术服务有限公司 | Left and right sides determines method, device and portable equipment |
| TWI570659B (en) * | 2015-11-09 | 2017-02-11 | 真茂科技股份有限公司 | Smart health evaluation system and equipment |
| CN105963055B (en) * | 2016-04-22 | 2018-01-19 | 浙江大学 | A kind of gait corrects Intelligent shoe system and its method |
| CN106166071B (en) * | 2016-07-04 | 2018-11-30 | 中国科学院计算技术研究所 | A kind of acquisition method and equipment of gait parameter |
| CN106344031A (en) * | 2016-08-29 | 2017-01-25 | 常州市钱璟康复股份有限公司 | Sound feedback-based gait training and estimating system |
| CN106980321B (en) * | 2017-05-18 | 2019-04-16 | 中国科学院合肥物质科学研究院 | A kind of six foot carries out the top bar gait planning system and method for formula Unmanned Ground Vehicle |
| CN107961140B (en) * | 2017-12-18 | 2020-07-14 | 沈研 | Walking aid and using method thereof |
| CN108519603A (en) * | 2018-03-08 | 2018-09-11 | 芜湖泰领信息科技有限公司 | Avoidance range-measurement system suitable for robot |
| CN108628306B (en) * | 2018-04-10 | 2021-06-25 | 平安科技(深圳)有限公司 | Robot walking obstacle detection method and device, computer equipment and storage medium |
| CN109124610B (en) * | 2018-09-26 | 2021-07-30 | 深圳星脉医疗仪器有限公司 | Anti-interference method and device for non-invasive blood pressure measurement |
| AU2019411076B2 (en) * | 2018-12-21 | 2023-07-20 | Inventio Ag | Detection of users of a passenger transport system |
| CN110111323B (en) * | 2019-05-13 | 2021-08-10 | 上海交通大学医学院附属上海儿童医学中心 | Hip joint detection method and device |
| CN110558992B (en) * | 2019-07-30 | 2022-04-12 | 福建省万物智联科技有限公司 | Gait detection analysis method and device |
| CN110908382A (en) * | 2019-12-04 | 2020-03-24 | 严寒冰 | Sweep sign indicating number and seek mark thing flow box |
| CN111685978B (en) * | 2020-05-11 | 2022-04-05 | 五邑大学 | Intelligent walker control method, device and storage medium based on gait recognition |
| CN111643098A (en) * | 2020-06-09 | 2020-09-11 | 深圳大学 | Gait recognition and emotion perception method and system based on intelligent acoustic equipment |
| CN111753678B (en) * | 2020-06-10 | 2023-02-07 | 西北工业大学 | Multi-device cooperative gait perception and identification method based on ultrasound |
| CN112656402B (en) * | 2020-11-30 | 2023-01-13 | 重庆优乃特医疗器械有限责任公司 | Acquisition robot linkage control system applied to 3D posture detection and analysis |
| CN112381048B (en) * | 2020-11-30 | 2024-05-10 | 重庆优乃特医疗器械有限责任公司 | 3D body posture detection and analysis system and method based on multi-user synchronous detection |
| CN114176578A (en) * | 2022-02-17 | 2022-03-15 | 杭州拜伦医疗科技有限公司 | Gait analysis appearance |
| CN115265579A (en) * | 2022-08-16 | 2022-11-01 | 维沃移动通信有限公司 | Step frequency measuring method, step frequency measuring device, electronic apparatus, and medium |
| CN117158950A (en) * | 2023-07-24 | 2023-12-05 | 华中科技大学同济医学院附属同济医院 | Movement balance assessment methods and related equipment |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101803988B (en) * | 2010-04-14 | 2011-06-29 | 华中科技大学 | Multifunctional intelligent rehabilitation robot for assisting stand and walk |
| CN201936324U (en) * | 2010-12-24 | 2011-08-17 | 天津职业技术师范大学 | Ultrasonic micro-Doppler human gait feature extraction device |
| CN202433524U (en) * | 2011-11-30 | 2012-09-12 | 沈阳工业大学 | Ultrasonic gait detector |
-
2011
- 2011-11-30 CN CN201110393351.XA patent/CN102499692B/en not_active Expired - Fee Related
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101803988B (en) * | 2010-04-14 | 2011-06-29 | 华中科技大学 | Multifunctional intelligent rehabilitation robot for assisting stand and walk |
| CN201936324U (en) * | 2010-12-24 | 2011-08-17 | 天津职业技术师范大学 | Ultrasonic micro-Doppler human gait feature extraction device |
| CN202433524U (en) * | 2011-11-30 | 2012-09-12 | 沈阳工业大学 | Ultrasonic gait detector |
Also Published As
| Publication number | Publication date |
|---|---|
| CN102499692A (en) | 2012-06-20 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN102499692B (en) | Ultrasonic gait detection method | |
| JP4615512B2 (en) | Method and system for deriving human walking characteristics and passively detecting falls from floor vibrations | |
| CN105249941B (en) | A kind of pulse signal acquisition device and method of imitative pulse wave spectrum gimmick | |
| CN101694499A (en) | Pedestrian gait detection-based system and method of walking speed measurement and transmission | |
| CN103886215B (en) | Walking ability analyzing method and device based on muscle collaboration | |
| CN102824177B (en) | Three-dimensional human body gait quantitative analysis system and method | |
| Czech et al. | GaitPy: An open-source python package for gait analysis using an accelerometer on the lower back | |
| CN102654405B (en) | Gait counting method and device based on acceleration sensor | |
| CN103584919B (en) | Multi-modal bio signal synchronous detecting system and method | |
| CN106539587A (en) | A kind of fall risk assessment and monitoring system and appraisal procedure based on sensor of doing more physical exercises | |
| CN109480857B (en) | Device and method for detecting frozen gait of Parkinson disease patient | |
| CN111568436B (en) | A Gait Symmetry Evaluation Method Based on Regression Rotation Angle | |
| CN102988036A (en) | Method for measuring pulse rate | |
| CN103148864A (en) | Universal micro electromechanical system (MEMS) pedometer and step counting method | |
| Zhu et al. | A real-time on-chip algorithm for IMU-Based gait measurement | |
| CN105286842B (en) | A kind of method and device based on acceleration transducer predicted motion process heart rate | |
| CN119157528A (en) | A quantitative lower limb rehabilitation assessment system and method | |
| CN202433524U (en) | Ultrasonic gait detector | |
| CN103445792A (en) | Step metering method | |
| CN205120130U (en) | FFT calculates equipment of step number and human motion consumption calorie based on improve | |
| CN103549959B (en) | Gait training correcting instrument is measured the gait data of system and is analyzed method | |
| CN104434118A (en) | Novel gait analysis detector | |
| CN109331406A (en) | A method and system for quantitative evaluation of lower extremity exercise ability based on treadmill force table | |
| CN104656094A (en) | Portable gait information acquisition device | |
| CN203274756U (en) | Wireless step counting device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140430 |
|
| CF01 | Termination of patent right due to non-payment of annual fee |

