CN101833334A - Tractor automatic navigation control system and method thereof - Google Patents
Tractor automatic navigation control system and method thereof Download PDFInfo
- Publication number
- CN101833334A CN101833334A CN201010149934.3A CN201010149934A CN101833334A CN 101833334 A CN101833334 A CN 101833334A CN 201010149934 A CN201010149934 A CN 201010149934A CN 101833334 A CN101833334 A CN 101833334A
- Authority
- CN
- China
- Prior art keywords
- steering
- tractor
- control device
- navigation
- control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Steering Control In Accordance With Driving Conditions (AREA)
- Guiding Agricultural Machines (AREA)
Abstract
本发明提供了一种拖拉机自动导航控制系统,包括:导航控制装置,实时接收GPS定位数据并计算拖拉机当前位置与作业导航目标之间的横向偏差,根据所述横向偏差和实时测量的拖拉机行驶速度值计算当前控制周期内转向轮的目标转角并将其转换为转向控制指令后发送给转向控制装置;转向控制装置,判断拖拉机转向轮的转角测量值是否小于预设极限值,若是,则将所述目标转角值和测量值进行比较,根据转角差值计算PWM占空比并输出驱动电液比例转向执行装置的控制信号;电液比例转向执行装置,响应所述PWM控制信号通过电液比例方向阀的阀芯开度来控制拖拉机转向系统的油液流动方向和流速,使转向液压缸活塞伸出或收回以将转向轮偏转到所述目标转向角。
The present invention provides a tractor automatic navigation control system, comprising: a navigation control device, which receives GPS positioning data in real time and calculates the lateral deviation between the current position of the tractor and the operation navigation target, according to the lateral deviation and the tractor running speed measured in real time Calculate the target angle of the steering wheel in the current control cycle and convert it into a steering control command and send it to the steering control device; the steering control device judges whether the measured value of the steering wheel angle of the tractor is less than the preset limit value, and if so, it will The target rotation angle value is compared with the measured value, and the PWM duty cycle is calculated according to the rotation angle difference and the control signal for driving the electro-hydraulic proportional steering actuator is output; the electro-hydraulic proportional steering actuator responds to the PWM control signal through the electro-hydraulic proportional direction The opening of the spool of the valve is used to control the oil flow direction and flow rate of the steering system of the tractor, so that the steering hydraulic cylinder piston is extended or retracted to deflect the steering wheel to the target steering angle.
Description
技术领域technical field
本发明涉及控制技术领域,特别涉及一种适用于液压转向拖拉机的自动导航控制系统及其方法。The invention relates to the technical field of control, in particular to an automatic navigation control system and method suitable for hydraulic steering tractors.
背景技术Background technique
在拖拉机田间作业过程中,由于作业机组操纵性差,易因重耕、漏耕或多走路程而影响生产率。为了减少相邻作业垄间重作和漏作现象的发生,现有技术多采用划线器划线或者喷洒泡沫的方法在田间进行标记作为驾驶员作业导航的依据。随着近几年国内精准农业技术研究的开展,研究人员开发了农机导航指示系统,采用GPS、PC104计算机和导航指示光棒为农机田间作业提供导航指示。然而,上述两种用于农机作业的导航指示方法均存在一定缺陷。During the field operation of tractors, due to the poor maneuverability of the operation unit, it is easy to affect the productivity due to heavy plowing, missed plowing or extra distance. In order to reduce the occurrence of rework and missed work between adjacent working ridges, the existing technology mostly uses the method of marking with a marker or spraying foam to mark in the field as the basis for the driver's work navigation. With the development of domestic precision agricultural technology research in recent years, researchers have developed an agricultural machinery navigation system, which uses GPS, PC104 computers and navigation light sticks to provide navigation instructions for agricultural machinery field operations. However, there are certain defects in the above two navigation instruction methods for agricultural machinery operations.
传统的采用划线器划线和泡沫喷洒的方法在农田作业环境可见度较低、农田表面没有明显参考物和地表起伏较大的情况下基本不可行或导航指示效果很差,达不到导航和提高作业质量的目的。The traditional method of marking with a liner and spraying foam is basically infeasible or the navigation indication effect is poor when the visibility of the farmland operation environment is low, there is no obvious reference on the farmland surface, and the ground surface is undulating. The purpose of improving the quality of work.
现有的导航指示系统多采用RS232/RS485总线,导致系统接线繁杂、可靠性差,且系统各模块的通用性不强,兼容性差。同时,这类导航指示系统受人为操作因素影响较大,作业导航精度差,不能满足精度要求较高的农田作业如播种等环节的应用需求。此外,现有导航指示系统的操作控制仍需要驾驶人员完成,实际上是一种辅助作业导航系统,驾驶人员劳动强度仍然较大。Most of the existing navigation indication systems use RS232/RS485 bus, which leads to complicated system wiring and poor reliability, and the versatility and compatibility of each module of the system are not strong. At the same time, this type of navigation indication system is greatly affected by human operation factors, and the navigation accuracy of the operation is poor, which cannot meet the application requirements of farmland operations with high precision requirements, such as sowing. In addition, the operation and control of the existing navigation indication system still needs to be completed by the driver. In fact, it is an auxiliary operation navigation system, and the labor intensity of the driver is still relatively high.
发明内容Contents of the invention
本发明的要解决的技术问题是克服现有技术的上述至少一个缺陷,实现液压转向拖拉机的自动导航控制。The technical problem to be solved by the present invention is to overcome at least one of the above-mentioned defects of the prior art, and realize the automatic navigation control of the hydraulic steering tractor.
为解决上述技术问题,本发明的技术方案一方面公开了一种拖拉机自动导航控制系统,包括:In order to solve the above technical problems, the technical solution of the present invention discloses a tractor automatic navigation control system on the one hand, including:
导航控制装置,实时接收GPS定位数据并计算拖拉机当前位置与作业导航目标之间的横向偏差,根据所述横向偏差和实时测量的拖拉机行驶速度值计算当前控制周期内转向轮的目标转角并将其转换为转向控制指令后发送给转向控制装置,以及,在接收到转向控制装置的转向指令错误信息时向其发送检测错误指令或停止自动转向指令;The navigation control device receives GPS positioning data in real time and calculates the lateral deviation between the current position of the tractor and the operation navigation target, calculates the target rotation angle of the steering wheel in the current control cycle according to the lateral deviation and the real-time measured tractor driving speed value and calculates it Convert it into a steering control command and send it to the steering control device, and send a detection error command or stop automatic steering command to it when receiving the steering command error information from the steering control device;
转向控制装置,判断拖拉机转向轮的转角测量值是否小于预设极限值,若是,则将所述目标转角值和测量值进行比较,根据转角差值计算PWM占空比并输出驱动电液比例转向装置的PWM控制信号;否则,向所述导航控制装置发送转向指令错误信息;The steering control device judges whether the measured value of the steering wheel angle of the tractor is less than the preset limit value, and if so, compares the target angle value with the measured value, calculates the PWM duty cycle according to the angle difference and outputs the driving electro-hydraulic proportional steering The PWM control signal of the device; otherwise, send a steering instruction error message to the navigation control device;
电液比例转向执行装置,响应所述PWM控制信号通过电液比例方向阀的阀芯开度来控制拖拉机转向系统的油液流动方向和流速,使转向液压缸活塞伸出或收回以将转向轮偏转到所述目标转向角;或者,响应所述停止自动转向指令使电磁开关阀断电。The electro-hydraulic proportional steering actuator controls the oil flow direction and flow rate of the tractor steering system through the spool opening of the electro-hydraulic proportional directional valve in response to the PWM control signal, so that the steering hydraulic cylinder piston extends or retracts to turn the steering wheel deflecting to the target steering angle; or, de-energizing the solenoid switching valve in response to the stop autosteering command.
其中,所述导航控制装置和所述转向控制装置之间通过CAN总线实现信息和指令的传输。Wherein, the transmission of information and instructions is realized between the navigation control device and the steering control device through CAN bus.
其中,所述导航控制装置通过RTK-GPS获取拖拉机当前位置的经纬度坐标值;通过地速雷达测量拖拉机当前的行驶速度值。Wherein, the navigation control device acquires the latitude and longitude coordinates of the current position of the tractor through RTK-GPS; and measures the current driving speed of the tractor through the ground speed radar.
其中,所述转向控制装置通过转向轮转角传感器测量拖拉机当前转向轮的转角值。Wherein, the steering control device measures the current steering wheel angle value of the tractor through the steering wheel angle sensor.
本发明的另一个方面还公开了一种拖拉机自动导航控制方法,包括以下步骤:Another aspect of the present invention also discloses a tractor automatic navigation control method, comprising the following steps:
S101:导航控制装置实时接收GPS定位数据并计算拖拉机当前位置与作业导航目标之间的横向偏差,根据所述横向偏差和实时测量的拖拉机行驶速度值,按照PID控制算法计算当前控制周期内转向轮的目标转角并将其转换为转向控制指令后发送给转向控制装置;S101: The navigation control device receives GPS positioning data in real time and calculates the lateral deviation between the current position of the tractor and the operation navigation target, and calculates the steering wheel in the current control cycle according to the PID control algorithm according to the lateral deviation and the real-time measured driving speed value of the tractor. and convert it into a steering control command and send it to the steering control device;
S102:转向控制装置判断拖拉机转向轮的转角测量值是否小于预设极限值,若是,则读取压力开关发送的电平信号判断当前是否处于自动转向状态,若是,则进入下一步;S102: The steering control device judges whether the measured value of the steering wheel angle of the tractor is less than the preset limit value, if so, reads the level signal sent by the pressure switch to judge whether it is currently in the automatic steering state, and if so, enters the next step;
S103:转向控制装置将所述目标转角值和测量值进行比较,根据转角差值按照PID控制算法计算PWM占空比,并输出驱动电液比例转向装置的PWM控制信号;S103: the steering control device compares the target rotation angle value with the measured value, calculates the PWM duty cycle according to the PID control algorithm according to the rotation angle difference, and outputs a PWM control signal for driving the electro-hydraulic proportional steering device;
S104:电液比例转向执行装置响应所述PWM控制信号通过电液比例方向阀的阀芯开度来控制拖拉机转向系统的油液流动方向和流速,使转向液压缸活塞伸出或收回以将转向轮偏转到期望转向角。S104: The electro-hydraulic proportional steering actuator responds to the PWM control signal to control the oil flow direction and flow rate of the tractor steering system through the spool opening of the electro-hydraulic proportional directional valve, so that the steering hydraulic cylinder piston extends or retracts to turn the steering The wheels are deflected to the desired steering angle.
进一步地,步骤102中,若转向控制装置判断拖拉机转向轮的转角测量值大于所述预设极限值,则向导航控制装置发送转向指令错误信息,导航控制装置接收到所述错误信息后返回停止自动导航指令。Further, in step 102, if the steering control device determines that the measured value of the steering wheel angle of the tractor is greater than the preset limit value, it sends a steering command error message to the navigation control device, and the navigation control device returns to stop after receiving the error message. Autopilot instructions.
进一步地,步骤102中,若压力开关发送的电平信号显示当前处于手动转向状态,转向控制装置向导航控制装置发送停止转向信息,导航控制装置接收到所述信息后返回停止自动导航指令。Further, in step 102, if the level signal sent by the pressure switch indicates that the current state is in the manual steering state, the steering control device sends stop steering information to the navigation control device, and the navigation control device returns an instruction to stop automatic navigation after receiving the information.
其中,通过优先阀使电液比例方向阀或拖拉机的液压转向器与转向油缸油路相连通来实现拖拉机自动转向和手动转向之间的切换。Among them, through the priority valve, the electro-hydraulic proportional directional valve or the tractor's hydraulic steering gear is connected with the oil circuit of the steering cylinder to realize the switching between the tractor's automatic steering and manual steering.
与现有技术相比,本发明技术方案的优势在于:Compared with the prior art, the advantages of the technical solution of the present invention are:
1、以全液压转向拖拉机为基础,构建了一种机电液一体化的拖拉机自动导航系统;从系统构造和设计方法上实现了软硬件一体化的拖拉机导航控制装置和转向控制器,并运用适合农田作业机械的现场总线方法实现导航控制装置与转向控制器之间的实时通信。1. Based on the full hydraulic steering tractor, a mechanical-electrical-hydraulic integrated tractor automatic navigation system is constructed; from the system structure and design method, the tractor navigation control device and steering controller integrated with software and hardware are realized, and the suitable A fieldbus method for farm work machinery enables real-time communication between navigation controls and steering controllers.
2、运用电液比例控制技术,提出一种在全液压转向拖拉机转向系统基础上并接电液比例转向控制系统的方法,设计实现电液比例转向液压机构和装置,使得拖拉机转向的数字化控制成为可能。2. Using the electro-hydraulic proportional control technology, a method of connecting the electro-hydraulic proportional steering control system on the basis of the full hydraulic steering tractor steering system is proposed, and the hydraulic mechanism and device of the electro-hydraulic proportional steering are designed and realized, so that the digital control of tractor steering becomes possible.
3、提出并实现基于实时检测拖拉机转向轮转角作为反馈量的拖拉机自动转向PID控制方法,并支持人工转向操作屏蔽自动转向控制和基于转向系统压力检测的导航控制装置与转向控制器同步操作功能。3. Propose and implement the tractor automatic steering PID control method based on real-time detection of tractor steering wheel angle as feedback, and support manual steering operation shielding automatic steering control and synchronous operation function of navigation control device and steering controller based on steering system pressure detection.
4、提出并实现基于软件的导航控制装置设计方法,设计基于横向偏差的导航PID控制方法并实现拖拉机按照预设的路径精确作业。同时,导航控制装置支持拖拉机自动导航系统关键部件状态自检和状态监测功能,并能依据系统状态进行拖拉机转向的手动、自动操作间的平稳切换。4. Propose and implement a software-based navigation control device design method, design a navigation PID control method based on lateral deviation, and realize the precise operation of the tractor according to the preset path. At the same time, the navigation control device supports the status self-inspection and status monitoring functions of key components of the tractor automatic navigation system, and can smoothly switch between manual and automatic steering operations of the tractor according to the system status.
附图说明Description of drawings
图1为本发明的适用于全液压转向拖拉机的自动导航控制系统的一个实施例的结构图;Fig. 1 is the structural diagram of an embodiment of the automatic navigation control system applicable to the full hydraulic steering tractor of the present invention;
图2为本发明的拖拉机自动导航控制系统的自动液压转向部分的结构图;Fig. 2 is the structural diagram of the automatic hydraulic steering part of the tractor automatic navigation control system of the present invention;
图3为本发明的拖拉机自动导航控制系统的转向控制装置执行转向指令的流程图;Fig. 3 is the flow chart of the steering control device of the tractor automatic navigation control system of the present invention executing the steering command;
图4为本发明的拖拉机自动导航控制系统的导航控制装置执行导航控制的流程图。Fig. 4 is a flow chart of the navigation control performed by the navigation control device of the tractor automatic navigation control system of the present invention.
1、数传电台天线 2、RTK-GPS天线 3、车载控制计算机 4、接线盒 5、转向控制器 6、转向器 7、压力开关 8、优先阀 9、转向系油源系统 10、转向油缸 11、蓄电池 12、转角传感器13、电子压力传感器 14、电磁开关阀 15、电液比例方向阀 16、阀块总成 17、地速雷达 18、RTK-GPS接收机 19、数传电台1. Digital radio antenna 2. RTK-GPS antenna 3. On-board control computer 4. Junction box 5.
具体实施方式Detailed ways
下面结合附图和实施例,对本发明的系统及方法作进一步详细描述。以下实施例用于说明本发明的目的,但不用来限定本发明的范围。The system and method of the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. The following examples are for the purpose of illustrating the present invention, but are not intended to limit the scope of the present invention.
如图1所示为本发明的适用于全液压转向拖拉机的自动导航控制系统的一个实施例的结构图,其由导航控制装置、转向控制装置和电液比例转向执行装置三个部分构成。Figure 1 is a structural diagram of an embodiment of an automatic navigation control system suitable for fully hydraulic steering tractors of the present invention, which consists of three parts: a navigation control device, a steering control device and an electro-hydraulic proportional steering actuator.
导航控制装置主要包括:车载控制计算机3、RTK-GPS接收机18、RTK-GPS接收机天线2、数传电台19、数传电台天线1、地速雷达17。车载控制计算机3中存储有拖拉机导航作业底图并运行有导航控制程序,导航控制程序可以根据作业底图上的作业地块及设定的作业方向及作业幅宽自动生成覆盖整个作业地块的作业导航线,也可以将在其他软件中规划或创建的作业导航线矢量数据导入软件中作为作业导航线。导航控制程序计算实时接收到的RTK-GPS的定位数据与存储或生成的作业导航线(作业导航目标)之间的偏差距离(简称横向偏差),地速雷达17测量获得拖拉机的实时行驶速度值,将当前控制周期内计算得到的横向偏差作为导航控制程序的输入量,按照PID控制算法实时计算拖拉机转向轮的转向角,将其作为当前控制周期内的控制目标,并按定制的通讯协议,将控制目标转换为控制指令发送给转向控制器,完成一个控制周期的导航控制过程。The navigation control device mainly includes: vehicle control computer 3 , RTK-GPS receiver 18 , RTK-GPS receiver antenna 2 , digital radio station 19 , digital
转向控制装置主要包括:基于微处理器的转向控制器5,(其内运行有转向PID控制程序)、拖拉机转向轮转角传感器12、以及和车载控制计算机3、电液比例方向阀15等部分构成。转向控制器5在接收到车载控制计算机3发送的转向控制指令后,运行转向控制程序中的转角PID控制程序,将转向轮的目标转角和通过转角传感器12实时检测到的前轮实际转角进行比较,并按照PID控制算法,输出能直接驱动电液比例阀15的PWM控制信号,控制电液比例方向阀15的流量和方向,进而驱动液压转向机构按照预定方向转动。The steering control device mainly includes: a microprocessor-based steering controller 5 (with a steering PID control program running therein), a tractor steering
电液比例转向执行装置主要包括:拖拉机转向器油源系统9、电液比例方向阀15、电磁开关阀14、优先阀8、压力开关7、闭式液压转向器6和转向油缸10。其中,电液比例方向阀15、电磁开关阀14、压力开关7等液压元件通过阀块连接,并通过液压管路与拖拉机液压转向器6的油路并联。所述电液比例转向执行装置响应所述PWM控制信号,通过电液比例方向阀15的阀芯开度来控制拖拉机转向系统的油液流动方向和流速,使转向液压缸活塞伸出或收回以将转向轮偏转到所述目标转向角,从而实现拖拉机自动转向功能。此外,通过优先阀8以及电磁开关阀14使所述电液比例方向阀15或液压转向器6与转向油缸10的油路相连通来实现自动转向和手动转向之间的自由切换,并保证任何时刻手动转向功能的优先权。同时,在拖拉机自动转向控制功能失效时,支持人工转动方向盘实现人工驾驶。The electro-hydraulic proportional steering actuator mainly includes: tractor steering gear
图2所示为由上述车载计算机3、转向控制器5、优先阀8、电液比例方向阀15、电磁开关阀14、液压转向器6、转向油缸10、转向角度传感器12、转向系油源系统9和压力开关7构成的本系统的自动液压转向部分的结构图。本发明在全液压转向拖拉机的转向系统上并接电液比例方向阀系统,当通过优先阀8控制转向系统的液压油路由电液比例方向阀15进入转向油缸10时,就可以通过转向控制器5实现对拖拉机转向系统和转向轮期望转角的数字化控制。Fig. 2 shows that by above-mentioned on-board computer 3, steering controller 5,
具体地,如图2所示,将优先阀8的压力感应口LS和拖拉机转向器6的控制口连接,CF口与转向器进油口和压力开关7连接,EF口与电液比例方向阀15的进油口连接。当系统压力建立且当转向器6不工作时,优先阀8的CF口处于封闭状态,此时LS口的压力为零,阀芯右端进油,液压力作用在阀芯右端,克服阀芯弹簧的预压力,使阀芯向左移动,此时P口与EF口连通,拖拉机转向器油源系统9泵出的压力油流向电液比例方向阀15,使得电液比例方向阀15与转向油缸10的油路连通,此时拖拉机自动转向功能有效,可以通过对电磁开关阀14加电和对电液比例方向阀15的数字化控制实现对转向轮的转动方向和角度的实时控制。当转向器6工作时,也就是处于手动操作状态时,优先阀8的压力感应口LS在压力油的作用下使得P口与CF口连通,这时,转向器6与转向油缸10的油路连通,转向系统油泵9泵出的压力油通过优先阀8和转向器6进入转向油缸10,使拖拉机转向。Specifically, as shown in Figure 2, the pressure sensing port LS of the
图3所示为转向控制器5执行车载计算机3的转向控制指令的流程图,如图中所示,首先对转向控制器5的CAN总线、各个与转向控制相关的状态参数和转向控制PID参数进行初始化;然后对转向闭环控制系统中的转向角度传感器12的状态进行检测,读取其当前测量值,判断该值是否超过系统设定的极限值(该极限值根据拖拉机转向轮从直行位置到左转死点和右转死点的最大偏转角而定),如果超过极限值,则向CAN总线发送转向指令错误消息,导航控制装置接受并解析到该错误消息后,立即停止发送转向控制消息,并通过人机交互界面显示角度传感器检测值错误信息,提醒用户检测转角传感器12的状态;如果转向角度传感器12当前的检测值在正常范围内(小于该极限值),则将该检测值按照ISO11783协议转换为消息发送到CAN总线上,导航控制装置接收到该消息后将该值通过人机界面进行显示;同时,转向控制器5实时接收导航控制装置发往总线的转向控制消息,并读取标示驾驶人员手动转向操作的压力开关7的状态信息,若压力开关7标示当前系统处于自动转向控制状态,转向控制器5给电磁开关阀14加电使其处于关闭状态,电液比例转向执行装置开始建立压力;同时,转向控制器5调用转向PID控制程序,PID控制程序在比较当前检测的转角值和转向控制消息中的期望转角值后,将转角差值进行PID线性调整,计算出PWM占空比,控制电液比例方向阀15的阀芯开度来控制系统油液流动方向和流速,使转向液压缸10的活塞伸出或收回来控制转向轮偏转到期望位置实现拖拉机自动转向,从而完成一个周期的控制动作;当转向控制器5接收到导航控制装置发送的停止转向消息时,控制电磁开关阀14断电使其导通,电液比例自动转向系统卸荷,同时控制电液比例方向阀15断电,停止自动转向;若当转向控制器5处于自动转向状态时需要人工转动方向盘,则由优先阀8将压力油路切换到转向器6,电液比例方向阀15的油路被截止,压力油液供给到转向器油路,实现手动转向;与此同时,压力开关7产生低电平,转向控制器5接收到压力开关7的电平信号后给电磁开关阀14断电,使得电磁开关阀处于导通状态,并控制电液比例方向阀15断电,同时发送停止自动转向控制消息给导航控制装置。Fig. 3 shows that steering controller 5 executes the flow chart of the steering control instruction of vehicle-mounted computer 3, as shown in the figure, at first to the CAN bus of steering controller 5, each state parameter and steering control PID parameter relevant to steering control Initialize; then detect the state of the steering angle sensor 12 in the steering closed-loop control system, read its current measured value, and judge whether the value exceeds the limit value set by the system (the limit value is from the straight position to the left-turn dead point and right-turn dead point, depending on the maximum deflection angle), if the limit value is exceeded, a steering command error message will be sent to the CAN bus, and the navigation control device will immediately stop sending the steering control message after receiving and parsing the error message , and display the error message of the angle sensor detection value through the human-computer interaction interface, reminding the user to detect the state of the rotation angle sensor 12; if the current detection value of the steering angle sensor 12 is within the normal range (less than the limit value), then the detection value according The ISO11783 protocol is converted into a message and sent to the CAN bus, and the navigation control device displays the value through the man-machine interface after receiving the message; at the same time, the steering controller 5 receives the steering control message sent to the bus by the navigation control device in real time, and reads Get the state information of the pressure switch 7 indicating the driver’s manual steering operation. If the
图4所示为导航控制装置执行导航控制的流程图,如图中所示,导航控制装置启动后,首先进行初始化过程,主要完成初始化CAN总线并建立CAN通讯连接、建立RTK-GPS通讯连接、初始化导航控制装置控制周期、PID参数等相关状态参数等工作;在初始化过程完成后,导航控制装置开始检测整个自动导航控制系统的关键传感器(包括转角传感器12和RTK-GPS18)和转向控制器5的工作状态,若任一部件无法正常工作,导航控制装置都将记录其状态参数,并根据不同部件及非正常状态的类别将相关信息以文字和声音报警的方式反映在车载控制计算机3的人机交互界面中,直到相关非正常状态得到处理并正常工作,否则,导航控制装置不执行自动导航操作;若系统自检通过,用户可以交互操作开始拖拉机自动导航作业,首先通过拾取导航控制装置软件作业底图上一个有效的导航目标或者通过定义作业方向的方式等方式生成一个作业导航目标,然后导航控制装置按照初始化设定的控制周期和相应的PID参数运行自动导航过程:读取GPS当前位置的经纬度坐标值并转换为平面坐标,计算以平面坐标表示的当前位置和导航目标之间的距离,即横向偏差值;启动横向偏差PID控制程序,计算当前控制周期内拖拉机转向轮的转角控制量,并将转角控制量转换为转向控制消息,发往转向控制器5,由转向控制器5执行如图3流程所示的转向控制过程,从而完成一次导航控制过程,同时记录该控制周期内的GPS经度、纬度、UTC时间、航向、转角、控制量等相关数据。导航控制装置在系统自检且状态正常后,会同时启动一个转向控制器5的状态监测过程,用来实时监测手动转向传感器(压力开关7)的状态和转角传感器12的工作状态,当在任意时刻监测到压力开关7的有信号状态,也就是驾驶员手动操作方向盘的时候,导航控制装置马上停止自动导航过程,停止向转向控制器发送转向控制消息,转向控制器控制电磁开关阀断电,电磁开关阀处于导通状态,自动转向系统处于卸荷状态,同时转向控制器控制电液比例方向阀断电,液压控制自动转向系统停止工作,拖拉机处于手动转向操作状态。当转向控制器监测过程监测到转角传感器测量的转角值异常后,同样停止向转向控制器发送转向控制消息,使得拖拉机液压控制自动转向系统停止工作,处于手动转向操作状态。Figure 4 shows the flow chart of navigation control performed by the navigation control device. As shown in the figure, after the navigation control device is started, it first performs the initialization process, which mainly completes the initialization of the CAN bus and the establishment of CAN communication connections, the establishment of RTK-GPS communication connections, Initialize the control cycle of the navigation control device, PID parameters and other related state parameters; after the initialization process is completed, the navigation control device begins to detect the key sensors of the entire automatic navigation control system (including the
本发明将拖拉机作业导航控制、自动转向控制结合为一个完整的系统,实现拖拉机按照设定的作业路线精确作业,并在人工转向操作干预的情况下屏蔽自动转向控制功能,保证系统能安全作业。本发明的全液压转向拖拉机自动导航系统能保证拖拉机按照预设路径精准稳定作业,有效降低农田往复直线作业过程中的作业垄间重叠和遗漏,显著提高作业质量和效率,并能减轻作业驾驶人员的劳动强度。拖拉机自动导航系统依靠能全天候工作的GPS作为主要定位导航传感器,因此也能有效延长拖拉机作业机组的作业时间。The invention combines the tractor operation navigation control and automatic steering control into a complete system, realizes the precise operation of the tractor according to the set operation route, and shields the automatic steering control function under the condition of manual steering operation intervention, so as to ensure the safe operation of the system. The full-hydraulic steering tractor automatic navigation system of the present invention can ensure that the tractor operates accurately and stably according to the preset path, effectively reduces the overlap and omission between the working ridges during the reciprocating straight-line operation of the farmland, significantly improves the quality and efficiency of the work, and can reduce the burden on the operator. labor intensity. The tractor automatic navigation system relies on the GPS that can work around the clock as the main positioning and navigation sensor, so it can also effectively extend the working time of the tractor operating group.
以上实施方式仅用于说明本发明,而并非对本发明的限制,有关技术领域的普通技术人员,在不脱离本发明的精神和范围的情况下,还可以做出各种变化和变型,因此所有等同的技术方案也属于本发明的范畴,本发明的专利保护范围应由权利要求限定。The above embodiments are only used to illustrate the present invention, but not to limit the present invention. Those of ordinary skill in the relevant technical field can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, all Equivalent technical solutions also belong to the category of the present invention, and the scope of patent protection of the present invention should be defined by the claims.
Claims (7)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2010101499343A CN101833334B (en) | 2010-02-09 | 2010-04-19 | Tractor automatic navigation control system and method thereof |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201010110685 | 2010-02-09 | ||
| CN201010110685.7 | 2010-02-09 | ||
| CN2010101499343A CN101833334B (en) | 2010-02-09 | 2010-04-19 | Tractor automatic navigation control system and method thereof |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN101833334A true CN101833334A (en) | 2010-09-15 |
| CN101833334B CN101833334B (en) | 2011-09-21 |
Family
ID=42717428
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN2010101499343A Active CN101833334B (en) | 2010-02-09 | 2010-04-19 | Tractor automatic navigation control system and method thereof |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN101833334B (en) |
Cited By (45)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102094855A (en) * | 2010-12-28 | 2011-06-15 | 徐州重型机械有限公司 | Wheel type engineering machinery hydraulic control system and wheeled crane applying same |
| CN102323824A (en) * | 2011-07-06 | 2012-01-18 | 李华 | Satellite navigation agricultural machinery self-propelled control system and its control method |
| CN102368158A (en) * | 2011-09-15 | 2012-03-07 | 西北农林科技大学 | Navigation positioning method of orchard machine |
| CN102393742A (en) * | 2011-08-31 | 2012-03-28 | 中国农业大学 | Wheel-type intelligent transport vehicle applied to protected agriculture |
| CN103196441A (en) * | 2013-03-19 | 2013-07-10 | 江苏大学 | Spraying machine integrated navigation method and system of |
| CN103247213A (en) * | 2013-03-13 | 2013-08-14 | 北京农业智能装备技术研究中心 | Tractor automatic navigation experiment table |
| CN103404379A (en) * | 2013-07-30 | 2013-11-27 | 西北农林科技大学 | Self-propelled intelligent flower thinning machine for orchard |
| CN103425131A (en) * | 2013-08-15 | 2013-12-04 | 江苏大学 | Navigation control method on basis of non-smooth control and disturbance observation for agricultural tractor |
| CN103914066A (en) * | 2012-12-28 | 2014-07-09 | 中国科学院沈阳自动化研究所 | Agricultural machine automatic navigation controller and control method |
| CN103914071A (en) * | 2014-04-02 | 2014-07-09 | 中国农业大学 | Visual navigation path recognition system of grain combine harvester |
| CN104192203A (en) * | 2014-08-04 | 2014-12-10 | 北京农业信息技术研究中心 | Automatic steering method and device |
| CN104603708A (en) * | 2012-09-10 | 2015-05-06 | 天宝导航有限公司 | Agricultural autopilot steering compensation |
| CN104678999A (en) * | 2014-12-15 | 2015-06-03 | 刘丙炎 | Intelligent tractor |
| CN104731105A (en) * | 2015-01-21 | 2015-06-24 | 广州中海达定位技术有限公司 | Navigation device and method for enabling agricultural machine to enter preset path based on Smart Heading |
| CN104777841A (en) * | 2015-05-06 | 2015-07-15 | 聊城大学 | Tractor automatic navigation lower computer control system and method |
| CN104781633A (en) * | 2014-03-06 | 2015-07-15 | 日本集奥瑟甫有限公司 | Agricultural field navigation system and agricultural field navigation method, software and software storage equipment |
| CN103895698B (en) * | 2012-12-27 | 2015-12-23 | 中国科学院沈阳自动化研究所 | Fluid pressure type agricultural machinery automatic steering control device and control method |
| CN105523083A (en) * | 2015-12-23 | 2016-04-27 | 广州中海达卫星导航技术股份有限公司 | Automatic calibration method and system of agricultural machinery automatic driving system |
| CN105980949A (en) * | 2014-02-06 | 2016-09-28 | 洋马株式会社 | parallel operating system |
| CN106502252A (en) * | 2016-12-05 | 2017-03-15 | 聊城大学 | Multi-sensor fusion tractor navigation control system and its positioning and control method |
| CN106585533A (en) * | 2016-11-30 | 2017-04-26 | 广西壮族自治区都安瑶族自治县科学技术情报研究所 | Distance control system of agricultural tractor |
| CN106647770A (en) * | 2017-01-22 | 2017-05-10 | 无锡卡尔曼导航技术有限公司 | Field turning path planning and control method used for farm machinery driverless driving |
| CN106647748A (en) * | 2016-11-30 | 2017-05-10 | 山东省农业机械科学研究院 | Maize harvesting machine mechanical contact navigation control system and navigation method thereof |
| CN107087257A (en) * | 2017-04-11 | 2017-08-22 | 武汉光谷西铂科技有限公司 | A kind of travel direction control method based on RTK |
| CN107329424A (en) * | 2017-06-29 | 2017-11-07 | 华南农业大学 | The automatic and hand pattern switching device and its control method and agricultural machinery of a kind of agricultural machinery |
| CN107651007A (en) * | 2017-11-09 | 2018-02-02 | 山东农业大学 | The electromechanical liquid control system and method for a kind of mulberry field fluid-link steering mini-tiller |
| CN107662639A (en) * | 2017-08-24 | 2018-02-06 | 芜湖中意液压科技股份有限责任公司 | Tractor hydraulic steering |
| CN107918388A (en) * | 2017-11-08 | 2018-04-17 | 深圳市招科智控科技有限公司 | Harbour container carries unmanned vehicle method for controlling trajectory and device |
| CN107972732A (en) * | 2017-12-04 | 2018-05-01 | 安徽农业大学 | A kind of unmanned rice transplanter automatic steering control system and its control method |
| CN109082977A (en) * | 2018-09-27 | 2018-12-25 | 湖南中大机械制造有限责任公司 | A kind of autosteerer for unmanned road roller |
| CN109656257A (en) * | 2019-02-22 | 2019-04-19 | 山东交通学院 | Close garden automatic driving vehicle control system and method |
| CN110745176A (en) * | 2019-10-28 | 2020-02-04 | 徐工集团工程机械股份有限公司科技分公司 | Safety type handle steering control system and control method for loader |
| CN111208832A (en) * | 2020-02-25 | 2020-05-29 | 深圳冰河导航科技有限公司 | Implementation method for optimizing control effect of automatic pilot through speed coefficient |
| CN111674221A (en) * | 2020-06-23 | 2020-09-18 | 山东交通学院 | A walking control method of a tractor-tracted solar cleaning machine |
| CN111943091A (en) * | 2020-09-18 | 2020-11-17 | 安徽合力股份有限公司 | Control method for hydraulic steering of forklift and hydraulic steering system |
| CN112214014A (en) * | 2020-09-04 | 2021-01-12 | 东北石油大学 | Agricultural machinery automatic driving control method and system |
| CN112298347A (en) * | 2020-11-09 | 2021-02-02 | 江苏悦达集团有限公司 | Automatic steering system |
| CN112298348A (en) * | 2020-11-09 | 2021-02-02 | 江苏悦达集团有限公司 | Automatic steering system and control method thereof |
| CN112384432A (en) * | 2018-07-11 | 2021-02-19 | 株式会社久保田 | Working vehicle |
| CN112526986A (en) * | 2020-10-28 | 2021-03-19 | 苏州极目机器人科技有限公司 | Ridge-following operation method and device |
| CN113589815A (en) * | 2021-08-02 | 2021-11-02 | 华中农业大学 | Straw rotary burying and returning navigation system based on variable-gain single neuron PID |
| CN114051781A (en) * | 2021-12-07 | 2022-02-18 | 清博(昆山)智能科技有限公司 | Intelligent navigation system for cooperative operation agricultural mechanical equipment |
| CN114485680A (en) * | 2021-08-10 | 2022-05-13 | 华中农业大学 | Design and test method of a navigation system for straw rotary burial and returning to the field |
| US11429114B2 (en) * | 2020-02-14 | 2022-08-30 | Deere & Company | Implement control of vehicle and implement combination |
| WO2024089987A1 (en) * | 2022-10-25 | 2024-05-02 | 株式会社小松製作所 | Work machine and method for controlling work machine |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP6476077B2 (en) * | 2015-06-18 | 2019-02-27 | シャープ株式会社 | Self-propelled electronic device and traveling method of the self-propelled electronic device |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20050165546A1 (en) * | 2004-01-22 | 2005-07-28 | Trimble Navigation Ltd. | Method and apparatus for steering movable object by using control algorithm that takes into account the difference between the nominal and optimum positions of navigation antenna |
| CN1825061A (en) * | 2006-03-27 | 2006-08-30 | 北京瑞图万方科技有限公司 | Navigation steering signal indicating method and apparatus |
| CN101093396A (en) * | 2007-07-04 | 2007-12-26 | 华南农业大学 | Navigation control method for agricultural machinery |
| CN101221447A (en) * | 2008-01-18 | 2008-07-16 | 中国农业大学 | A kind of mechanical automatic steering control method |
| US20080208461A1 (en) * | 2007-02-28 | 2008-08-28 | Imed Gharsalli | Machine with automated steering system |
| JP2009245002A (en) * | 2008-03-28 | 2009-10-22 | Kubota Corp | Travel controller for working vehicle |
| CN101592957A (en) * | 2009-06-23 | 2009-12-02 | 北京市农林科学院 | A Distributed Agricultural Machinery Operation Auxiliary Linear Tracking Control System |
-
2010
- 2010-04-19 CN CN2010101499343A patent/CN101833334B/en active Active
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20050165546A1 (en) * | 2004-01-22 | 2005-07-28 | Trimble Navigation Ltd. | Method and apparatus for steering movable object by using control algorithm that takes into account the difference between the nominal and optimum positions of navigation antenna |
| CN1825061A (en) * | 2006-03-27 | 2006-08-30 | 北京瑞图万方科技有限公司 | Navigation steering signal indicating method and apparatus |
| US20080208461A1 (en) * | 2007-02-28 | 2008-08-28 | Imed Gharsalli | Machine with automated steering system |
| CN101093396A (en) * | 2007-07-04 | 2007-12-26 | 华南农业大学 | Navigation control method for agricultural machinery |
| CN101221447A (en) * | 2008-01-18 | 2008-07-16 | 中国农业大学 | A kind of mechanical automatic steering control method |
| JP2009245002A (en) * | 2008-03-28 | 2009-10-22 | Kubota Corp | Travel controller for working vehicle |
| CN101592957A (en) * | 2009-06-23 | 2009-12-02 | 北京市农林科学院 | A Distributed Agricultural Machinery Operation Auxiliary Linear Tracking Control System |
Non-Patent Citations (1)
| Title |
|---|
| 《自动控制与检测》 20071231 马军等 汽车驾驶员自适应模糊PID控制模型 全文 1-7 第2007卷, 第02期 2 * |
Cited By (55)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102094855B (en) * | 2010-12-28 | 2013-07-24 | 徐州重型机械有限公司 | Wheel type engineering machinery hydraulic control system and wheeled crane applying same |
| CN102094855A (en) * | 2010-12-28 | 2011-06-15 | 徐州重型机械有限公司 | Wheel type engineering machinery hydraulic control system and wheeled crane applying same |
| CN102323824A (en) * | 2011-07-06 | 2012-01-18 | 李华 | Satellite navigation agricultural machinery self-propelled control system and its control method |
| CN102323824B (en) * | 2011-07-06 | 2013-10-16 | 李华 | Satellite navigated self-walking control system of agricultural machinery and control method thereof |
| CN102393742A (en) * | 2011-08-31 | 2012-03-28 | 中国农业大学 | Wheel-type intelligent transport vehicle applied to protected agriculture |
| CN102393742B (en) * | 2011-08-31 | 2014-05-28 | 中国农业大学 | A wheeled intelligent transport vehicle for facility agriculture |
| CN102368158A (en) * | 2011-09-15 | 2012-03-07 | 西北农林科技大学 | Navigation positioning method of orchard machine |
| CN104603708A (en) * | 2012-09-10 | 2015-05-06 | 天宝导航有限公司 | Agricultural autopilot steering compensation |
| CN103895698B (en) * | 2012-12-27 | 2015-12-23 | 中国科学院沈阳自动化研究所 | Fluid pressure type agricultural machinery automatic steering control device and control method |
| CN103914066A (en) * | 2012-12-28 | 2014-07-09 | 中国科学院沈阳自动化研究所 | Agricultural machine automatic navigation controller and control method |
| CN103247213A (en) * | 2013-03-13 | 2013-08-14 | 北京农业智能装备技术研究中心 | Tractor automatic navigation experiment table |
| CN103196441A (en) * | 2013-03-19 | 2013-07-10 | 江苏大学 | Spraying machine integrated navigation method and system of |
| CN103404379A (en) * | 2013-07-30 | 2013-11-27 | 西北农林科技大学 | Self-propelled intelligent flower thinning machine for orchard |
| CN103425131A (en) * | 2013-08-15 | 2013-12-04 | 江苏大学 | Navigation control method on basis of non-smooth control and disturbance observation for agricultural tractor |
| CN103425131B (en) * | 2013-08-15 | 2015-12-23 | 江苏大学 | Based on the farm tractor navigation control method of nonsmooth control and disturbance observation |
| CN105980949B (en) * | 2014-02-06 | 2019-12-24 | 洋马株式会社 | parallel operating system |
| CN105980949A (en) * | 2014-02-06 | 2016-09-28 | 洋马株式会社 | parallel operating system |
| CN104781633A (en) * | 2014-03-06 | 2015-07-15 | 日本集奥瑟甫有限公司 | Agricultural field navigation system and agricultural field navigation method, software and software storage equipment |
| CN103914071A (en) * | 2014-04-02 | 2014-07-09 | 中国农业大学 | Visual navigation path recognition system of grain combine harvester |
| CN104192203B (en) * | 2014-08-04 | 2017-04-26 | 北京农业信息技术研究中心 | Automatic steering method and device |
| CN104192203A (en) * | 2014-08-04 | 2014-12-10 | 北京农业信息技术研究中心 | Automatic steering method and device |
| CN104678999A (en) * | 2014-12-15 | 2015-06-03 | 刘丙炎 | Intelligent tractor |
| CN104731105A (en) * | 2015-01-21 | 2015-06-24 | 广州中海达定位技术有限公司 | Navigation device and method for enabling agricultural machine to enter preset path based on Smart Heading |
| CN104777841A (en) * | 2015-05-06 | 2015-07-15 | 聊城大学 | Tractor automatic navigation lower computer control system and method |
| CN105523083A (en) * | 2015-12-23 | 2016-04-27 | 广州中海达卫星导航技术股份有限公司 | Automatic calibration method and system of agricultural machinery automatic driving system |
| CN106647748A (en) * | 2016-11-30 | 2017-05-10 | 山东省农业机械科学研究院 | Maize harvesting machine mechanical contact navigation control system and navigation method thereof |
| CN106585533A (en) * | 2016-11-30 | 2017-04-26 | 广西壮族自治区都安瑶族自治县科学技术情报研究所 | Distance control system of agricultural tractor |
| CN106502252A (en) * | 2016-12-05 | 2017-03-15 | 聊城大学 | Multi-sensor fusion tractor navigation control system and its positioning and control method |
| CN106502252B (en) * | 2016-12-05 | 2024-02-02 | 山东双力现代农业装备有限公司 | Control method of multi-sensor fusion tractor navigation control system |
| CN106647770A (en) * | 2017-01-22 | 2017-05-10 | 无锡卡尔曼导航技术有限公司 | Field turning path planning and control method used for farm machinery driverless driving |
| CN107087257A (en) * | 2017-04-11 | 2017-08-22 | 武汉光谷西铂科技有限公司 | A kind of travel direction control method based on RTK |
| CN107329424A (en) * | 2017-06-29 | 2017-11-07 | 华南农业大学 | The automatic and hand pattern switching device and its control method and agricultural machinery of a kind of agricultural machinery |
| CN107329424B (en) * | 2017-06-29 | 2020-10-09 | 华南农业大学 | Automatic and manual mode switching device of agricultural machine, control method of automatic and manual mode switching device and agricultural machine |
| CN107662639A (en) * | 2017-08-24 | 2018-02-06 | 芜湖中意液压科技股份有限责任公司 | Tractor hydraulic steering |
| CN107918388A (en) * | 2017-11-08 | 2018-04-17 | 深圳市招科智控科技有限公司 | Harbour container carries unmanned vehicle method for controlling trajectory and device |
| CN107651007A (en) * | 2017-11-09 | 2018-02-02 | 山东农业大学 | The electromechanical liquid control system and method for a kind of mulberry field fluid-link steering mini-tiller |
| CN107972732A (en) * | 2017-12-04 | 2018-05-01 | 安徽农业大学 | A kind of unmanned rice transplanter automatic steering control system and its control method |
| CN112384432A (en) * | 2018-07-11 | 2021-02-19 | 株式会社久保田 | Working vehicle |
| CN109082977A (en) * | 2018-09-27 | 2018-12-25 | 湖南中大机械制造有限责任公司 | A kind of autosteerer for unmanned road roller |
| CN109656257A (en) * | 2019-02-22 | 2019-04-19 | 山东交通学院 | Close garden automatic driving vehicle control system and method |
| CN109656257B (en) * | 2019-02-22 | 2024-01-05 | 山东交通学院 | Unmanned vehicle control system and method for closed park |
| CN110745176A (en) * | 2019-10-28 | 2020-02-04 | 徐工集团工程机械股份有限公司科技分公司 | Safety type handle steering control system and control method for loader |
| US11429114B2 (en) * | 2020-02-14 | 2022-08-30 | Deere & Company | Implement control of vehicle and implement combination |
| CN111208832A (en) * | 2020-02-25 | 2020-05-29 | 深圳冰河导航科技有限公司 | Implementation method for optimizing control effect of automatic pilot through speed coefficient |
| CN111674221A (en) * | 2020-06-23 | 2020-09-18 | 山东交通学院 | A walking control method of a tractor-tracted solar cleaning machine |
| CN112214014A (en) * | 2020-09-04 | 2021-01-12 | 东北石油大学 | Agricultural machinery automatic driving control method and system |
| CN111943091A (en) * | 2020-09-18 | 2020-11-17 | 安徽合力股份有限公司 | Control method for hydraulic steering of forklift and hydraulic steering system |
| CN111943091B (en) * | 2020-09-18 | 2023-12-22 | 安徽合力股份有限公司 | Control method for hydraulic steering of forklift and hydraulic steering system |
| CN112526986A (en) * | 2020-10-28 | 2021-03-19 | 苏州极目机器人科技有限公司 | Ridge-following operation method and device |
| CN112298348A (en) * | 2020-11-09 | 2021-02-02 | 江苏悦达集团有限公司 | Automatic steering system and control method thereof |
| CN112298347A (en) * | 2020-11-09 | 2021-02-02 | 江苏悦达集团有限公司 | Automatic steering system |
| CN113589815A (en) * | 2021-08-02 | 2021-11-02 | 华中农业大学 | Straw rotary burying and returning navigation system based on variable-gain single neuron PID |
| CN114485680A (en) * | 2021-08-10 | 2022-05-13 | 华中农业大学 | Design and test method of a navigation system for straw rotary burial and returning to the field |
| CN114051781A (en) * | 2021-12-07 | 2022-02-18 | 清博(昆山)智能科技有限公司 | Intelligent navigation system for cooperative operation agricultural mechanical equipment |
| WO2024089987A1 (en) * | 2022-10-25 | 2024-05-02 | 株式会社小松製作所 | Work machine and method for controlling work machine |
Also Published As
| Publication number | Publication date |
|---|---|
| CN101833334B (en) | 2011-09-21 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN101833334B (en) | Tractor automatic navigation control system and method thereof | |
| CN110168466B (en) | Intelligent mowing system | |
| US12104353B2 (en) | Excavator and control apparatus for excavator | |
| CN108797669B (en) | An autonomous 3D excavation and construction robot | |
| US10539958B2 (en) | Hydraulic interrupter safety system and method | |
| CN106502252B (en) | Control method of multi-sensor fusion tractor navigation control system | |
| JP6749256B2 (en) | Work vehicle position measuring device | |
| US12486648B2 (en) | Shovel and shovel management apparatus | |
| KR20160139019A (en) | Autonomously traveling work vehicle | |
| US11937526B2 (en) | Control device for work vehicle configured to travel autonomously | |
| CN103155758B (en) | The Laser navigation system of unmanned united reaper | |
| CN106737693B (en) | Transplanting robot control system and control method based on GPS and inertial navigation | |
| CN112558607A (en) | Method, device and equipment for automatically calibrating single-steering-wheel AGV (automatic guided vehicle) | |
| JP6689126B2 (en) | Work vehicle control system | |
| CN105137997A (en) | Automatic driving system and method of water conservancy construction vibration roller | |
| CN105700533A (en) | Agricultural machinery automatic driving control system based on Beidou navigation and method thereof | |
| EP3900507A1 (en) | Travel working machine | |
| CN108958260A (en) | A kind of agricultural machinery automated driving system based on farm implements position | |
| JP7561642B2 (en) | Farm Work Vehicle | |
| CN110597272A (en) | An intelligent unmanned forklift system and method based on vision navigation | |
| CN104192203A (en) | Automatic steering method and device | |
| CN105700406A (en) | Wireless network based large field agricultural machine remote operation and control platform | |
| CN105676849A (en) | Intelligent agriculture and forestry machinery full-autonomous working detection and control system | |
| CN103955219A (en) | Opposite-type laser tractor aided navigation control system | |
| CN103901833A (en) | Vehicle-mounted computer used for managing and monitoring field work of agricultural machine and method thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CP03 | Change of name, title or address |
Address after: 1107, block a, Nongke building, No. 11, Shuguang garden middle road, Haidian District, Beijing, 100097 Patentee after: Information technology research center of Beijing Academy of agricultural and Forestry Sciences Country or region after: China Address before: 100097, Haidian District, Beijing West plate wells village Patentee before: BEIJING RESEARCH CENTER FOR INFORMATION TECHNOLOGY IN AGRICULTURE Country or region before: China |
