CN101691036A - Joint assistance adjusting device - Google Patents
Joint assistance adjusting device Download PDFInfo
- Publication number
- CN101691036A CN101691036A CN200910184810A CN200910184810A CN101691036A CN 101691036 A CN101691036 A CN 101691036A CN 200910184810 A CN200910184810 A CN 200910184810A CN 200910184810 A CN200910184810 A CN 200910184810A CN 101691036 A CN101691036 A CN 101691036A
- Authority
- CN
- China
- Prior art keywords
- joint
- limb
- cam
- torque
- adjustment device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Rehabilitation Tools (AREA)
Abstract
本发明涉及关节助力调节装置,该关节助力调节装置涉及肢体一和肢体二,且肢体一和肢体二通过关节旋转轴铰接,包括用于调节关节旋转力矩的力矩调节装置,该力矩调节装置的两端分别固定连接在肢体一和肢体二上,且该力矩调节装置是基于凸轮和弹性部件组成的旋转型关节助力机构,而凸轮的有效轮廓面曲线是根据辅助力矩函数,应用数值迭代的方法反求而获得,则本发明所述关节助力调节装置通过凸轮,实现变刚度的扭转弹性装置,以调节关节旋转力矩,使得关节旋转力矩峰值降低成为可能,同时还提高关节旋转力矩谷值,从而可以选择功率和最大扭矩更小的电机,减轻关节机构自重,节省能耗;或者使得假肢佩戴者驱动力矩减小,更加省力。
The invention relates to a joint power-assisted adjustment device. The joint power-assisted adjustment device involves the first limb and the second limb, and the first limb and the second limb are hinged through the joint rotation shaft, and includes a torque adjustment device for adjusting the rotational torque of the joint. The two torque adjustment devices The ends are respectively fixedly connected to the first limb and the second limb, and the torque adjustment device is based on a rotary joint assist mechanism composed of a cam and elastic components, and the effective contour surface curve of the cam is based on the auxiliary torque function, and the method of numerical iteration is used to reverse If obtained, the joint power-assisted adjustment device of the present invention realizes a torsional elastic device with variable stiffness through the cam to adjust the joint rotational torque, so that it is possible to reduce the peak value of the joint rotational torque, and at the same time increase the valley value of the joint rotational torque, so that Choose a motor with lower power and maximum torque to reduce the weight of the joint mechanism and save energy; or reduce the driving torque of the prosthetic wearer and save more effort.
Description
技术领域technical field
本发明涉及关节助力调节装置,用于降低关节驱动的峰值力矩,属于机构设计、机器人技术领域和和人体康复机构,可应用于步行机器人和智能假肢膝关节。The invention relates to a joint assist adjustment device, which is used for reducing the peak moment of joint drive, belongs to the field of mechanism design, robot technology and human body rehabilitation mechanism, and can be applied to walking robots and intelligent prosthetic knee joints.
背景技术Background technique
目前,低功耗步行机构设计是研究人类步行机理和开发合理步行机构的基础,其中步行机器人膝关节的设计是关键。At present, the design of walking mechanism with low power consumption is the basis for studying human walking mechanism and developing reasonable walking mechanism, among which the design of walking robot knee joint is the key.
现有技术中,机器人膝关节的驱动主要是直接利用电机等驱动设备进行主动驱动,即:在机器人行走过程中,膝关节的角度完全由电机等驱动设备控制,而在膝关节的一个步行周期内,膝关节的旋转力矩存在峰值和谷值,而选用驱动电机时,显然是根据峰值来确定,因此,这种驱动方法存在的问题是选择驱动电机偏于保守,而电机的重量是步行机构重量的主要组成部分之一,间接地造成机构运行耗能大,不适宜当前步行机构的研究以及应用。In the prior art, the driving of the robot knee joint is mainly directly driven by motors and other driving equipment, that is, during the walking process of the robot, the angle of the knee joint is completely controlled by the driving equipment such as the motor, and in one walking cycle of the knee joint Inside, there are peaks and valleys in the rotational torque of the knee joint, and when the drive motor is selected, it is obviously determined according to the peak value. Therefore, the problem with this drive method is that the selection of the drive motor is conservative, and the weight of the motor is the walking mechanism. One of the main components of the weight indirectly causes large energy consumption in the operation of the mechanism, which is not suitable for the research and application of the current walking mechanism.
发明内容Contents of the invention
本发明针对现有技术的不足,提供关节助力调节装置,以调节关节驱动的力矩,使得峰值降低,而谷值提高,从而可以选择功率和最大扭矩更小的电机,减轻关节机构自重,节省能耗,或者使得假肢佩戴者驱动力矩减小,更加省力。Aiming at the deficiencies of the prior art, the present invention provides a joint power-assisted adjustment device to adjust the torque driven by the joint, so that the peak value is reduced and the valley value is increased, so that a motor with smaller power and maximum torque can be selected, the weight of the joint mechanism is reduced, and energy is saved. Consumption, or reduce the driving torque of the prosthetic wearer, more labor-saving.
为实现以上的技术目的,本发明将采取以下的技术方案:For realizing above technical purpose, the present invention will take following technical scheme:
一种关节助力调节装置,涉及肢体一和肢体二,且肢体一和肢体二通过关节旋转轴铰接,包括用于降低关节旋转力矩峰值的力矩调节装置,该力矩调节装置的两端分别固定连接在肢体一和肢体二上。A joint power-assisted adjustment device, involving the first limb and the second limb, and the first limb and the second limb are hinged through the joint rotation shaft, including a torque adjustment device for reducing the peak value of the joint rotation torque, and the two ends of the torque adjustment device are respectively fixedly connected to the Upper limb one and limb two.
所述力矩调节装置包括凸轮、弹性部件以及刚性部件,所述凸轮固定安装在肢体一上,刚性部件的两端分别与肢体一和弹性部件固定连接,而弹性部件的另一端则与肢体二固定连接,且刚性部件的部分表体绕在凸轮轮廓面上。The torque adjusting device includes a cam, an elastic component and a rigid component, the cam is fixedly installed on the first limb, the two ends of the rigid component are respectively fixedly connected with the first limb and the elastic component, and the other end of the elastic component is fixed with the second limb connected, and part of the body of the rigid part is wound around the cam profile.
所述弹性部件和第二固定部件之间还连接有刚性连接件。A rigid connecting piece is also connected between the elastic component and the second fixing component.
力矩调节装置还包括有安装定位架,该安装定位架由相互铰接的第一固定部件和第二固定部件组成,所述凸轮通过第一固定部件安装在肢体一上,而弹性部件则通过第二固定部件安装在肢体二上,刚性部件则通过第一固定部件安装在肢体一上。The torque adjustment device also includes a mounting positioning frame, which is composed of a first fixed part and a second fixed part hinged to each other, the cam is installed on the first limb through the first fixed part, and the elastic part passes through the second fixed part. The fixed part is installed on the second limb, and the rigid part is installed on the first limb through the first fixed part.
所述弹性部件和第二固定部件之间还连接有刚性连接件。A rigid connecting piece is also connected between the elastic component and the second fixing component.
所述刚性部件呈绳状或者片状。The rigid part is in the shape of a rope or a sheet.
刚性部件为钢丝绳。The rigid part is a steel wire rope.
所述弹性部件为拉簧。The elastic component is a tension spring.
所述第一固定部件和第二固定部件都为钣金架。Both the first fixing part and the second fixing part are sheet metal frames.
根据以上的技术方案,可以实现以下的有益效果:According to the above technical scheme, the following beneficial effects can be achieved:
1.本发明在组成关节的肢体一和肢体二上连接一力矩调节装置,该力矩调节装置可以对关节旋转力矩峰值降低,同时还提高关节旋转力矩谷值,从而可以选择功率和最大扭矩较小的电机,减轻关节机构自重,节省能耗,或者使得假肢佩戴者驱动力矩减小,更加省力;1. In the present invention, a torque adjustment device is connected to the limbs 1 and 2 that make up the joints. The torque adjustment device can reduce the peak value of the joint rotation torque, and at the same time increase the valley value of the joint rotation torque, so that the power and the maximum torque can be selected to be smaller. The motor reduces the weight of the joint mechanism, saves energy consumption, or reduces the driving torque of the prosthetic wearer, saving more effort;
2.本发明所述的力矩调节装置包括凸轮、弹性部件以及刚性部件,凸轮固定在肢体一上,而弹性部件与刚性部件连接后,两端分别与肢体一和肢体而固定连接,且刚性部件的部分表体绕在凸轮的轮廓面上,当关节旋转,即肢体二绕肢体一旋转时,弹性部件与刚性部件连成的直线将沿凸轮轮廓面滚动,使得弹性力的力臂发生变化,同时该弹力的力值也会产生变化,即该力矩调节装置对关节旋转提供一期望的辅助力矩,可以降低关节旋转的力矩峰值,由此可选择功率和最大扭矩较小的电机,节约能耗;2. The torque adjusting device of the present invention comprises a cam, an elastic part and a rigid part, the cam is fixed on the first limb, and after the elastic part is connected with the rigid part, the two ends are fixedly connected with the first limb and the limb respectively, and the rigid part Part of the watch body is wound around the contour surface of the cam. When the joint rotates, that is, when the second limb rotates around the first limb, the straight line formed by the elastic part and the rigid part will roll along the contour surface of the cam, so that the moment arm of the elastic force changes. At the same time, the force value of the elastic force will also change, that is, the torque adjustment device provides a desired auxiliary torque for the joint rotation, which can reduce the torque peak value of the joint rotation, so that a motor with lower power and maximum torque can be selected to save energy consumption ;
3.力矩调节装置还包括安装定位架,其包括相互铰接的第一固定部件和第二固定部件,且凸轮通过第一固定部件固定安装在肢体一上,而弹性部件则通过第二固定部件安装在肢体二上,刚性部件则通过第一固定部件安装在肢体一上,因此,这种方式更方便该力矩调节装置在肢体上的安装,易于推广实行;3. The torque adjustment device also includes an installation positioning frame, which includes a first fixed part and a second fixed part hinged to each other, and the cam is fixedly installed on the first limb through the first fixed part, while the elastic part is installed through the second fixed part On the second limb, the rigid component is installed on the first limb through the first fixed component. Therefore, this method is more convenient for the installation of the torque adjusting device on the limb, and is easy to popularize and implement;
所述凸轮有效轮廓面曲线的设计方法,主要步骤是:首先设定弹性部件的弹力初值,以求出一组凸轮包络线,然后用过凸轮中心的一组射线来扫描凸轮包络线,从而得到一系列待验证凸轮轮廓曲线点坐标值,接着求出这些待验证凸轮轮廓曲线点坐标值所对应的弹性部件弹性形变量,即可求得各待验证的凸轮轮廓曲线点坐标值所对应的弹性部件弹力,最后检验所求弹性部件弹力是否满足迭代条件:若满足则将本次迭代所求出的待验证凸轮轮廓曲线点坐标值作为实际的凸轮轮廓曲线点坐标值;若不满足则用本次迭代所求得的一组弹性部件弹力作为弹力初值,以求出一组新的凸轮包络线,如此循环迭代下去,直到满足迭代条件为止。The main steps of the design method of the effective contour surface curve of the cam are: first set the initial value of the elastic force of the elastic member to obtain a set of cam envelopes, and then use a set of rays passing through the center of the cam to scan the cam envelope , so as to obtain a series of coordinate values of the cam contour curve points to be verified, and then calculate the elastic deformation of the elastic parts corresponding to the coordinate values of the cam contour curve points to be verified, and then obtain the coordinate values of the cam contour curve points to be verified The elastic force of the corresponding elastic part, and finally check whether the elastic force of the elastic part meets the iteration condition: if it is satisfied, the coordinate value of the cam contour curve point to be verified obtained in this iteration is used as the actual coordinate value of the cam contour curve point; if it is not satisfied Then use the elastic force of a group of elastic parts obtained in this iteration as the initial value of elastic force to obtain a new group of cam envelopes, and iterate in this way until the iteration condition is satisfied.
由此可知,本发明所述的有效凸轮轮廓面曲线可根据机器人膝关节在不同相位所需转矩进行相应设计,对于同一机器人可根据所设计的不同的膝关节转矩函数曲线设计不同的相应凸轮轮廓线;对于不同机器人的不同的膝关节转矩函数曲线也可进行相应凸轮廓线的设计,从而增加了本专利的灵活性和通用性。It can be seen that the effective cam profile surface curve of the present invention can be designed according to the torque required by the knee joint of the robot in different phases. For the same robot, different corresponding curves can be designed according to the different knee joint torque function curves designed. Cam contours; for different knee joint torque function curves of different robots, corresponding cam contours can also be designed, thereby increasing the flexibility and versatility of this patent.
附图说明Description of drawings
图1是本发明在关节旋转角度为θi时的结构示意图;Fig. 1 is the structure schematic diagram when the joint rotation angle of the present invention is θ i ;
图2是本发明在关节旋转角度为θj时的结构示意图;Fig. 2 is a schematic structural view of the present invention when the joint rotation angle is θ j ;
图3是本发明凸轮轮廓面曲线获取的流程图;Fig. 3 is the flow chart that the cam profile surface curve of the present invention obtains;
其中,肢体一1 固定连接件2 刚性部件3 凸轮4 关节旋转轴5 弹性部件 6刚性连接件7 肢体二8。Among them, limb one 1 fixed connector 2 rigid component 3 cam 4
具体实施方式Detailed ways
以下将结合附图详细地说明本实用新型的技术方案。The technical solution of the utility model will be described in detail below in conjunction with the accompanying drawings.
如图1所示,本发明所述的关节助力调节装置,涉及肢体一1和肢体二8,且肢体一1和肢体二8通过关节旋转轴5铰接,包括用于降低关节旋转力矩峰值的力矩调节装置,该力矩调节装置的两端分别固定连接在肢体一1和肢体二8上,本实施例中所述的关节助力调节装置主要应用于膝关节,则力矩调节装置的两端分别固定连接在大腿和小腿上,其包括凸轮4、弹性部件6以及刚性部件3,所述凸轮4固定安装在肢体一1上,刚性部件3的两端分别与肢体一1和弹性部件6固定连接,且其是通过固定连接件2连接在肢体一1上的,而弹性部件6的另一端则与肢体二8固定连接,且刚性部件3的部分表体绕在凸轮4轮廓面上,另所述弹性部件6为拉簧。As shown in Figure 1, the joint power-assisted adjustment device according to the present invention involves limb one 1 and limb two 8, and limb one 1 and limb two 8 are hinged through the
为方便本发明在肢体一1和肢体二8上的安装,则力矩调节装置还包括有安装定位架,该安装定位架由相互铰接的第一固定部件和第二固定部件组成,且第一固定部件和第二固定部件都为钣金架,所述凸轮4通过第一固定部件安装在肢体一1上,而弹性部件6则通过第二固定部件安装在肢体二8上,刚性部件3则通过第一固定部件安装在肢体一1上,即先将凸轮4固定安装在第一固定部件上,而弹性部件6与刚性部件3所形成的连接体两端则分别固定连接在第一固定部件和第二固定部件上,且将刚性部件3的部分表体绕在凸轮4的轮廓面,所述刚性部件3呈绳状或者片状,本发明选用钢丝绳,另弹性部件6和第二固定部件之间还连接有刚性连接件7。In order to facilitate the installation of the present invention on the first limb 1 and the
使用时,将第一固定部件安装在大腿上,而将第二固定部件安装在小腿上,当人体或者机器人步行过程中,安装定位架将随着膝关节的旋转运动而发生旋转,而弹性部件6则会绕着凸轮4发生不同的弹性形变,且每一个旋转瞬间弹性部件6所产生的弹力都对应有相应的力臂,从而本装置可以提供一个力矩值,以对膝关节的旋转力矩进行调整,即:使得膝关节的旋转力矩峰值降低,而谷值提高,从而可以选择功率和最大扭矩更小的电机,减轻膝关节机构自重,节省步行能耗,或者使得假肢佩戴者驱动力矩减小,步行更加省力。When in use, the first fixing part is installed on the thigh, and the second fixing part is installed on the calf. When the human body or the robot walks, the installation positioning frame will rotate with the rotation of the knee joint, and the
本发明所述凸轮4有效轮廓面曲线的获取方法,流程图如图3所示,其根据辅助力矩函数,应用数值迭代的方法反求凸轮4有效轮廓面曲线,该有效轮廓面曲线即指关节旋转过程中弹性部件6所在直线与凸轮4切点的集合,主要步骤是:首先设定弹性部件6的弹力初值,以求出一组凸轮4包络线,然后用过凸轮4中心的一组射线来扫描凸轮4包络线,从而得到一系列待验证凸轮4轮廓曲线点坐标值,接着求出这些待验证凸轮4轮廓曲线点坐标值所对应的弹性部件6弹性形变量,即可求得各待验证的凸轮4轮廓曲线点坐标值所对应的弹性部件6弹力计算值,最后检验弹性部件6弹力计算值是否满足迭代条件:若满足则将本次迭代所求出的待验证凸轮4轮廓曲线点坐标值作为实际的凸轮4轮廓曲线点坐标值;若不满足则用本次迭代所求得的一组弹性部件6弹力计算值作为弹力初值,以求出一组新的凸轮4包络线,如此循环迭代下去,直到满足迭代条件为止。The acquisition method of the effective contour surface curve of the cam 4 of the present invention, the flow chart is as shown in Figure 3, it uses the method of numerical iteration to invert the effective contour surface curve of the cam 4 according to the auxiliary torque function, and the effective contour surface curve is the knuckle During the rotation process, the line where the
具体地说,结合图1至3,该凸轮4有效轮廓面曲线获取包括以下步骤:Specifically, in conjunction with Figures 1 to 3, the acquisition of the effective contour surface curve of the cam 4 includes the following steps:
(1)设定弹性部件6的弹力初值为f0,建立凸轮4连体坐标系,同时选取n个离散转角位置θi(i=1,2,3,Ln)作为数据拟合目标值,然后将初值f0分别赋给与转角θi相对应的弹力f(i,1)(i=1,2,3,L j,L,n),f(i,1)表示第1次迭代中转角θi对应的弹力,图中a(i,k)表示第k次迭代中转角θi对应的弹性部件6所在直线与凸轮4的切点;(1) Set the initial value of the elastic force of the
(2)按照降低驱动力矩峰值的目标,选取期望辅助力矩值τi,在本发明中,经过研究凸轮4有效轮廓面曲线的可实现性,采用线性辅助力矩τi=τ0+kaθi,根据(1)中得到的弹性力值,求取与转角θi相对应的弹力力臂d(i,1)=τi/f(i,1),其中d(i,1)表示第1次迭代中转角θi对应的弹力力臂;(2) According to the goal of reducing the peak value of the driving torque, select the desired auxiliary torque value τ i , in the present invention, after studying the feasibility of the effective contour surface curve of the cam 4, adopt the linear auxiliary torque τ i =τ 0 +k a θ i , according to the elastic force value obtained in (1), obtain the elastic force arm d (i, 1) = τ i /f (i, 1) corresponding to the rotation angle θ i , where d (i, 1) means The elastic force arm corresponding to the rotation angle θ i in the first iteration;
利用Simmulink中的SimMechanics模块建立了摆动腿的动力学仿真模型,得到周期稳定步行摆动相阶段膝关节运动角度随时间变化的曲线及相应的膝关节驱动扭矩随时间变化的曲线,同时满足膝关节期望辅助力矩设计原则:(1)由于线性函数相对简单,所以将辅助力矩设计为线性,即τi=τ0+kaθi;(2)随着膝关节运动角度的增大,辅助力矩逐渐减小;(3)保证膝关节正向最大驱动扭矩有明显的减小,且限制膝关节负向最大驱动扭矩增大量;(4)加入辅助力矩后,膝关节驱动扭矩的峰值扭矩有明显减小;(5)在不同时间点,膝关节运动角度相同时,提供相同的辅助力矩;(6)辅助力矩均为正,大于零,即为逆时针方向,则可以获得辅助力矩与膝关节运动角度的关系函数为:Using the SimMechanics module in Simmulink, the dynamics simulation model of the swinging leg was established, and the curve of the knee joint motion angle changing with time in the period stable walking swing phase and the corresponding curve of the knee joint driving torque changing with time were obtained, while meeting the expectations of the knee joint Design principles of auxiliary torque: (1) Since the linear function is relatively simple, the auxiliary torque is designed to be linear, that is, τ i =τ 0 +k a θ i ; (2) As the knee joint motion angle increases, the auxiliary torque gradually (3) Ensure that the maximum positive driving torque of the knee joint is significantly reduced, and limit the increase in the maximum negative driving torque of the knee joint; (4) After adding the auxiliary torque, the peak torque of the knee joint driving torque is significantly reduced (5) At different time points, when the motion angle of the knee joint is the same, the same auxiliary torque is provided; (6) the auxiliary torque is all positive, greater than zero, that is, it is in the counterclockwise direction, and the auxiliary torque and the knee joint motion can be obtained The relationship function of the angle is:
τi(θ)=-0.147θknee+18.6298,15°≤θknee≤72°τ i (θ)=-0.147θ knee +18.6298,15°≤θ knee ≤72°
而膝关节运动随时间变化的函数如下:The function of knee joint motion with time is as follows:
θknee(t)=19648t3-4864t2-13t-25,0≤t≤Tθ knee (t)=19648t 3 -4864t 2 -13t-25, 0≤t≤T
因此,周期稳定步行摆动相阶段辅助力矩随时间变化的关系函数:Therefore, the relationship function of the auxiliary torque changing with time in the period stable walking swing phase:
τi(t)=2847.4t3-710.2t2-2.3t+15,0≤t≤Tτ i (t) = 2847.4t 3 -710.2t 2 -2.3t+15, 0≤t≤T
其中τi(t)为辅助力矩,单位为Nm;θknee(t)为膝关节运动角度,单位为度;t为时间,单位为s;T=0.26s,为摆动相周期;Among them, τ i (t) is the auxiliary torque, the unit is Nm; θ knee (t) is the knee joint motion angle, the unit is degree; t is time, the unit is s; T=0.26s, is the swing phase period;
(3)根据d(i,1)求出与其对应的力臂点A(i,1)在凸轮4连体坐标系中的坐标[x(i,1),y(i,1)],同时求出相应的弹性部件6与第二固定部件之间的固定连接点B(i,1)相对于凸轮4连体坐标系的坐标[x′(i,1),y′(i,1)],则可以按照以下公式求出一系列包络线:(3) Find the coordinates [x ( i, 1) of the corresponding arm point A (i, 1) in the cam 4 conjoined coordinate system [x (i, 1) , y (i, 1) ] according to d (i, 1), Simultaneously find the coordinates [x' (i, 1) of the fixed connection point B (i, 1 ) between the corresponding
图1中的B(i,k)表示第k次迭代中转角θi对应的弹性部件6与第二固定部件之间的固定连接点在凸轮4连体坐标系中的坐标;而图2中的B(j,k)表示第k次迭代中转角θj对应的弹性部件6与第二固定部件之间的固定连接点在凸轮4连体坐标系中的坐标;B (i, k) in Fig. 1 represents the coordinates of the fixed connection point between the
(4)用过凸轮4连体坐标系原点的射线对上述步骤求出的包络线进行扫描,以得到相对应的待验证凸轮4轮廓线的点坐标值;(4) scan the envelope obtained in the above steps with the ray of the cam 4 conjoined coordinate system origin, to obtain the point coordinate value of the corresponding cam 4 contour line to be verified;
(5)根据第(4)步骤获得的待验证凸轮4轮廓线点坐标值求出其所对应的弹性部件6弹性形变量,进而求出相应的弹力f(i,1)′=ε[l(i,1)-l0],(i=1,2,3,L n),其中,ε为弹性刚度系数,l(i,1)为第1次迭代中转角θi对应的弹性形变量,l0则为弹簧原长;(5) obtain the corresponding
(6)检验所求出的f′(i,1)是否满足迭代条件,即max{|f′(i,1)-f0|}<Δ,其中,Δ为迭代条件值,若满足迭代条件,则步骤(4)中待验证凸轮4轮廓线对应点坐标即为实际的凸轮4轮廓线点坐标,若不满足迭代条件,则返回第(2)步骤,且以f′(i,1)作为弹性部件6初值,求出新的凸轮4包络线,如此循环迭代下去,直到f′(i,k)满足迭代条件为止,f′(i,k)表示所求出的第k次迭代中转角θi对应的弹力,k=1,2,3,L n。(6) Check whether the calculated f′ (i, 1) satisfies the iteration condition, that is, max{|f′ (i, 1) -f 0 |}<Δ, where Δ is the value of the iteration condition. condition, then the coordinates of the corresponding points of the cam 4 contour line to be verified in step (4) are the actual coordinates of the cam 4 contour line point coordinates, if the iteration condition is not satisfied, then return to step (2), and use f′ (i, 1 ) as the initial value of the
(7)将第(6)步骤获取的实际凸轮4轮廓线点拟合得到该有效轮廓面曲线方程是:(7) Fitting the actual cam 4 contour line points obtained in (6) step to obtain the effective contour surface curve equation is:
y=6.2563x2-0.0475x-0.0161,(0.013299≤x≤0.03232)y= 6.2563x2-0.0475x -0.0161, (0.013299≤x≤0.03232)
所求出的这段有效凸轮4轮廓曲线,即在关节旋转过程中,膝关节运动角度范围内钢丝绳所贴合的那一段凸轮4轮廓线。The calculated section of the effective cam 4 contour curve is the section of the cam 4 contour line that the steel wire rope fits within the range of motion angle of the knee joint during the joint rotation process.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2009101848106A CN101691036B (en) | 2009-10-13 | 2009-10-13 | Joint assistance adjusting device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2009101848106A CN101691036B (en) | 2009-10-13 | 2009-10-13 | Joint assistance adjusting device |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN101691036A true CN101691036A (en) | 2010-04-07 |
| CN101691036B CN101691036B (en) | 2012-01-04 |
Family
ID=42079780
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN2009101848106A Expired - Fee Related CN101691036B (en) | 2009-10-13 | 2009-10-13 | Joint assistance adjusting device |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN101691036B (en) |
Cited By (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103029135A (en) * | 2012-12-13 | 2013-04-10 | 东北大学 | Muscle driving simulation robot joint |
| CN106826763A (en) * | 2017-01-23 | 2017-06-13 | 哈尔滨工业大学 | For the flexible exoskeleton robot of climbing knee joint power-assisted |
| CN107998646A (en) * | 2017-09-22 | 2018-05-08 | 深圳市御嘉鑫五金制品有限公司 | A kind of intelligent switch joint variable force protector |
| CN108145743A (en) * | 2017-12-05 | 2018-06-12 | 常州大学 | A kind of dedicated double freedom flexibility knee joint of anthropomorphic robot |
| CN108161981A (en) * | 2018-02-24 | 2018-06-15 | 山东赢创机械有限公司 | A kind of ectoskeleton accumulation of energy telescopic joint device |
| CN108381528A (en) * | 2018-05-21 | 2018-08-10 | 深圳市丞辉威世智能科技有限公司 | Energy storage type ectoskeleton and robot |
| CN108420574A (en) * | 2017-11-27 | 2018-08-21 | 华中科技大学 | A kind of variation rigidity stored energy mechanism applied to type ankle-foot prosthesis |
| CN110944804A (en) * | 2017-07-18 | 2020-03-31 | Iuvo公司 | A system to assist the operator in applying force |
| CN111015727A (en) * | 2019-12-10 | 2020-04-17 | 长春工业大学 | Tension Bionic Artificial Knee |
| CN114654449A (en) * | 2022-03-29 | 2022-06-24 | 上海微电机研究所(中国电子科技集团公司第二十一研究所) | Active-passive combined wearable knee joint assistance exoskeleton |
| CN116236329A (en) * | 2023-01-12 | 2023-06-09 | 西南交通大学 | variable stiffness ankle prosthesis |
| WO2024109774A1 (en) * | 2022-11-24 | 2024-05-30 | 中国科学院深圳先进技术研究院 | Powered knee joint prosthesis based on multi-cam parallel elastic driver |
-
2009
- 2009-10-13 CN CN2009101848106A patent/CN101691036B/en not_active Expired - Fee Related
Cited By (22)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103029135B (en) * | 2012-12-13 | 2015-08-26 | 东北大学 | The joint of robot that a kind of imitative muscle drives |
| CN103029135A (en) * | 2012-12-13 | 2013-04-10 | 东北大学 | Muscle driving simulation robot joint |
| CN106826763A (en) * | 2017-01-23 | 2017-06-13 | 哈尔滨工业大学 | For the flexible exoskeleton robot of climbing knee joint power-assisted |
| US12318923B2 (en) | 2017-07-18 | 2025-06-03 | Iuvo S.R.L. | System for assisting an operator in exerting efforts |
| US11801596B2 (en) | 2017-07-18 | 2023-10-31 | Iuvo S.R.L | System for assisting an operator in exerting efforts |
| CN110944804A (en) * | 2017-07-18 | 2020-03-31 | Iuvo公司 | A system to assist the operator in applying force |
| CN107998646B (en) * | 2017-09-22 | 2023-01-06 | 深圳市御嘉鑫科技股份有限公司 | Intelligent joint variable force protective tool |
| CN107998646A (en) * | 2017-09-22 | 2018-05-08 | 深圳市御嘉鑫五金制品有限公司 | A kind of intelligent switch joint variable force protector |
| CN108420574A (en) * | 2017-11-27 | 2018-08-21 | 华中科技大学 | A kind of variation rigidity stored energy mechanism applied to type ankle-foot prosthesis |
| CN108420574B (en) * | 2017-11-27 | 2019-12-20 | 华中科技大学 | Variable-stiffness energy storage mechanism applied to ankle foot prosthesis |
| CN108145743A (en) * | 2017-12-05 | 2018-06-12 | 常州大学 | A kind of dedicated double freedom flexibility knee joint of anthropomorphic robot |
| CN108145743B (en) * | 2017-12-05 | 2020-09-08 | 常州大学 | Dedicated two degree of freedom flexible knee joints of humanoid robot |
| CN108161981B (en) * | 2018-02-24 | 2023-08-29 | 山东赢创机械有限公司 | Energy storage telescopic joint device for exoskeleton |
| CN108161981A (en) * | 2018-02-24 | 2018-06-15 | 山东赢创机械有限公司 | A kind of ectoskeleton accumulation of energy telescopic joint device |
| CN108381528A (en) * | 2018-05-21 | 2018-08-10 | 深圳市丞辉威世智能科技有限公司 | Energy storage type ectoskeleton and robot |
| CN108381528B (en) * | 2018-05-21 | 2024-05-07 | 深圳市丞辉威世智能科技有限公司 | Energy-storage exoskeleton and robot |
| CN111015727A (en) * | 2019-12-10 | 2020-04-17 | 长春工业大学 | Tension Bionic Artificial Knee |
| CN114654449A (en) * | 2022-03-29 | 2022-06-24 | 上海微电机研究所(中国电子科技集团公司第二十一研究所) | Active-passive combined wearable knee joint assistance exoskeleton |
| CN114654449B (en) * | 2022-03-29 | 2024-04-12 | 上海微电机研究所(中国电子科技集团公司第二十一研究所) | Active and passive combined wearable knee joint power assisting exoskeleton |
| WO2024109774A1 (en) * | 2022-11-24 | 2024-05-30 | 中国科学院深圳先进技术研究院 | Powered knee joint prosthesis based on multi-cam parallel elastic driver |
| CN116236329A (en) * | 2023-01-12 | 2023-06-09 | 西南交通大学 | variable stiffness ankle prosthesis |
| CN116236329B (en) * | 2023-01-12 | 2025-11-28 | 西南交通大学 | Variable stiffness ankle joint artificial limb |
Also Published As
| Publication number | Publication date |
|---|---|
| CN101691036B (en) | 2012-01-04 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN101691036B (en) | Joint assistance adjusting device | |
| CN108555890B (en) | A wearable body weight support walking aid device | |
| CN110251898B (en) | A closed-loop control system for wrist rehabilitation exoskeleton based on force feedback | |
| CN110262510B (en) | A humanoid robot mass center trajectory planning method to reduce walking energy consumption | |
| CN106826763A (en) | For the flexible exoskeleton robot of climbing knee joint power-assisted | |
| CN110303479B (en) | A wearable flexible knee exoskeleton and its control method | |
| CN108175639B (en) | A wearable single-source bionic powered knee joint system and its control method | |
| CN109464264A (en) | A human lower limb assist device | |
| CN107693304A (en) | A kind of lower limb rehabilitation robot | |
| CN110303478B (en) | Walking-assisting flexible exoskeleton and control method thereof | |
| CN109276415B (en) | Control method of lower limb exoskeleton robot | |
| CN103707951A (en) | Two-leg robot leg mechanism based on driving of artificial muscles | |
| CN209454891U (en) | Humanoid robot walking device | |
| CN204723350U (en) | A kind of lower limb power assisting device based on pneumatic muscles | |
| He et al. | Review of power-assisted lower limb exoskeleton robot | |
| CN201564637U (en) | Joint assist adjustment device | |
| CN115256340B (en) | A dual-assist flexible lower limb exoskeleton system and control method | |
| CN115533881A (en) | Ankle-assisted exoskeleton and its control method based on adaptive nonlinear parallel elastic actuator | |
| CN107703762A (en) | The man-machine interreaction force identification of rehabilitation ambulation training robot and control method | |
| CN207104904U (en) | A kind of assistant power apparatus for aiding in human body lower limbs to climb building | |
| WO2023070863A1 (en) | Walking-assistive exoskeleton apparatus | |
| CN209548334U (en) | A lower limb exoskeleton robot | |
| CN216168691U (en) | Manipulator for upper limb rehabilitation training of hemiplegic patient | |
| CN205652233U (en) | Humanoid robot leg mechanism and be connected with robot of this mechanism | |
| CN217513874U (en) | A customizable rigid knee joint for exoskeletons |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120104 Termination date: 20141013 |
|
| EXPY | Termination of patent right or utility model |
