Let $A$ be a $0/1$ matrix in $\mathbb Z^{n\times n}$ such that $I+A$ is invertible $\bmod 3$. Consider $Q=(I-A)(I+A)^{-1}$.
Let $Det(M)$ and $Per(M)$ be determinant and permanent respectively of matrix $M$.
If $Det(Q)\bmod 3$ and $Per(Q)\bmod 3$ are known can we compute $Det(A)\bmod3$ and $Per(A)\bmod3$ directly faster without computing the determinant and permanent values using the usual techniques?