This is a comment on Noah Schweber's answer but won't fit into a comment box. It's a reference for the fact that every uncountable linearly ordered set embeds either $\omega_1$ or $\omega_1^*$ or $\eta$. Quoting from p. 446 of P. Erdős and R. Rado, A partition calculus in set theory, Bull. Amer. Math. Soc. 62 (1956), 427–489 (pdf):
Lemma 1. Let $S$ be an ordered set, and $|S|^\prime=\aleph_n$; $\omega_n,\omega_n^*\not\leqq\overline S$. Then, corresponding to every rational number $t$, there is $S_t\subset S$ such that $|S_t|=|S|$; $S_t\subset L(S_u)$ for $t\lt u$.
Sierpiński, in a letter to one of us, had already noted the weaker result that, if $|S|=\aleph_1$; $\omega_1,\omega_1^*\not\leqq\overline S$, then $\eta\leqq\overline S$.
Here $n$ is an ordinal number (finite or infinite); $|S|^\prime$ is the cofinality cardinal of the cardinal $|S|$; $\overline S$ is the order type of the linearly ordered set $S$; $S_t\subset L(S_u)$ means that every element of $S_t$ is less than every element of $S_u$; and $\eta=\overline{\mathbb Q}$.
I will paraphrase Lemma 1 and sketch a proof. If $A$ and $B$ are subsets of an ordered set, the notation $A\lt B$ means that $a\lt b$ for all $a\in A$ and $b\in B$.
Lemma. Let $S$ be a linearly ordered set of cardinality $|S|=\kappa$ where $\operatorname{cf}\kappa=\omega_\alpha$. If $S$ embeds neither $\omega_\alpha$ nor $\omega_\alpha^*$, then there are sets $S_t\subset S$ ($t\in\mathbb Q$) with $|S_t|=\kappa$ and $S_t\lt S_u$ whenever $t\lt u$.
Proof. Let $\kappa$ be a fixed cardinal with $\operatorname{cf}\kappa=\omega_\alpha$.
Sublemma 1. If $S$ is a linearly ordered set, $|S|=\kappa$, and if $|\{x\in S:x\lt a\}|\lt\kappa$ for all $a\in S$, then $S$ embeds $\omega_\alpha$.
Sublemma 2. If $S$ is a linearly ordered set, $|S|=\kappa$, and if $|\{x\in S:x\gt a\}|\lt\kappa$ for all $a\in S$, then $S$ embeds $\omega_\alpha^*$.
To save typing, a "blob" is a linearly ordered set of cardinality $\kappa$ embedding neither $\omega_\alpha$ nor $\omega_\alpha^*$.
Sublemma 3. If $S$ is a blob, then for some $a\in S
$ we have $|\{x\in S:x\lt a\}|=|\{x\in S:x\gt a\}|=\kappa$; that is, $\{x\in S:x\lt a\}$ and $\{x\in S:x\gt a\}$ are both blobs.
Sublemma 4. If $S$ is a blob, then there are blobs $X,Y,Z\subset S$ with $X\lt Y\lt Z$.
Let $S$ be a blob. We construct blobs $S_t\subset S$ ($t\in\mathbb Q$) by applying Sublemma 4 repeatedly as follows.
Step 1. Find blobs $A_1,S_0,A_2\subset S$ with
$$A_1\lt S_0\lt A_2.$$
Step 2. Find blobs $A_3,S_{-1},A_4\subset A_1$ and $A_5,S_1,A_6\subset A_2$ with
$$A_3\lt S_{-1}\lt A_4\lt S_0\lt A_5\lt S_1\lt A_6.$$
Step 3. Find blobs $A_7,S_{-2},A_8\subset A_3$ and $A_9,S_{-\frac12},A_{10}\subset A_4$ and $A_{11},S_{\frac12},A_{12}\subset A_5$ and $A_{13},S_2,A_{14}\subset A_6$ with
$$A_7\lt S_{-2}\lt A_8\lt S_{-1}\lt A_9\lt S_{-\frac12}\lt A_{10}\lt S_0\lt A_{11}\lt S_{\frac12}\lt A_{12}\lt S_1\lt A_{13}\lt S_2\lt A_{14}$$.
And so on.