Let $\newcommand{\ome}{\omega_+}\ome=\omega\setminus\{0\}$ denote the set of positive integers. For $a,b\in \ome$ we let $$||a-b|| = |(a\setminus b)\cup(b\setminus a)|$$ be the absolute difference of $a,b$.
If $\varphi:\ome\to\ome$ is a bijection, we let the absolute derivative of $\varphi$, denoted by $\varphi':\ome\to\ome$, be defined by $\varphi'(n)=||\varphi(n)-\varphi(n+1)||$ for all $n\in\ome$.
We also write $\varphi^{(1)}=\varphi'$, and inductively for $n\in\ome$ we let $\varphi^{(n+1)} =\big(\varphi^{(n)}\big)'$.
Question. Is there a bijection $\varphi:\ome\to\ome$ such that $\varphi':\ome\to\ome$ is a bijection again? And if yes, can we continue this to higher absolute derivatives $\varphi^{(k)}$ for $k>1$?