Let $A$ be an abelian variety over a finite field $k$ and $\ell$ a prime number. Fix a natural number $n\in \mathbb{N}$ and denote by $k_{n}$ the field $k(A[\ell^{n}](\overline k))$. Let $Q\in A[\ell^{\infty}](\overline k):=\bigcup_{m\in \mathbb{N}}A[\ell^{m}](\overline k)$ be an arbitrary point.
My question is the following:
Suppose $Q\notin A(k_{n})$. Is there an element $\sigma \in \operatorname{Gal}(\overline k/k_{n})$ such that $Q^{\sigma}-Q \in A(k_{n})\setminus \{0\}$?