Let
- $T(n,k)$ be A259192, whose ordinary generating function is $$A(x,y) = \frac{1 + xA(xy,y)}{1 - xA(xy,y)}. $$
- Start with vector $\nu$ of fixed length $m$ with elements $\nu_i := \delta_{1,i}$, reserve $A$ and for $i$ from $1$ to $m-1$, for $j$ from $i+1$ to $m$ apply $A := 0$ (at the beginning of each cycle for $i$) and also apply $$ A := A + \nu_{j-1}, \nu_j := \nu_j y^{j-i} + A. $$
I conjecture that after the whole transform for $n>0$ we have $$ 2\nu_{n+1} = \sum\limits_{k=0}^{n} T(n,k) y^k. $$ Here is the PARI/GP program to check it numerically:
upto1(n) = {my(x = 'x, y = 'y, A=1+2*x);
for(i=1, n,
A = (1 + x*subst(A, x, x*y))/(1 - x*subst(A, x, x*y + x*O(x^n))));
Vec(A-1)}
upto2(n) = {my(y = 'y, A, v1); v1 = vector(n, i, i==1);
for(i=1, n-1, A = 0;
for(j=i+1, n, A += v1[j-1]; v1[j] = v1[j]*y^(j-i) + A));
v1}
test(n) = {my(y = 'y, v1); v1 = upto2(n+2);
2*vector(n+1, i, v1[i+1]) == upto1(n)}
Note that upto2 is much more efficient than upto1.
Is there a way to prove it?