Let $I_\nu$ be the modified Bessel function of first kind. I wonder if there is some formulas for the integrals:
$\int_0^\infty e^{-cx} I_\nu(a \sqrt{x})I_\nu(b \sqrt{x})dx$,
$\int_0^\infty x e^{-cx} I_\nu(a \sqrt{x})I_\nu(b \sqrt{x})dx$,
where $a, b, c > 0$. Or is there any possible simplification?