0
$\begingroup$

Let $I_\nu$ be the modified Bessel function of first kind. I wonder if there is some formulas for the integrals:

  1. $\int_0^\infty e^{-cx} I_\nu(a \sqrt{x})I_\nu(b \sqrt{x})dx$,

  2. $\int_0^\infty x e^{-cx} I_\nu(a \sqrt{x})I_\nu(b \sqrt{x})dx$,

where $a, b, c > 0$. Or is there any possible simplification?

$\endgroup$
3
  • 3
    $\begingroup$ If you have $(1)$, then $(2) = -d/dc\ (1)$. $\endgroup$ Commented Apr 9 at 4:02
  • 2
    $\begingroup$ Variable transformation to $t=x^{1/2}$ and dlmf.nist.gov/10.43.E28 might help for the first integral. $\endgroup$ Commented Apr 9 at 7:24
  • 1
    $\begingroup$ @JohannesTrost - looks like we've combined to settle this question. Should one of us write an answer? Ich lass' Dir den Vortritt. If you don't feel like doing it, I'll write one ... $\endgroup$ Commented Apr 11 at 1:56

1 Answer 1

6
$\begingroup$

After transforming the integration variable to $t=x^{1/2}$ and using http://dlmf.nist.gov/10.43.E28 one gets for the first integral ($\nu>-1$, $c>0$) $$ \int_0^\infty e^{-cx} I_\nu(a \sqrt{x}) \ I_\nu(b \sqrt{x}) \ dx = 2 \int_0^\infty t \ e^{-c t^2} I_\nu(a t) \ I_\nu(b t) \ dt = \frac{1}{c} \ \exp\left( \frac{a^2+b^2}{ 4 \ c} \right)\ I_{\nu}\left(\frac{a\ b}{2\ c}\right). $$ As @Michael Engelhardt commented, the second integral is just $-\frac{d}{dc}$ of the first one, hence $$ \int_0^\infty x \ e^{-cx} I_\nu(a \sqrt{x}) \ I_\nu(b \sqrt{x}) \ dx = -\frac{d}{d c} \int_0^\infty e^{-cx} I_\nu(a \sqrt{x}) \ I_\nu(b \sqrt{x}) \ dx = $$ $$\frac{1}{c^2} \ \exp\left( \frac{a^2+b^2}{ 4 \ c} \right) \ \left[ \left( 1+\frac{a^2+b^2}{4\ c}\right) \ \ I_{\nu}\left(\frac{a\ b}{2 \ c}\right) + \frac{a\ b}{2 \ c}\ I^{\prime}_{\nu}\left(\frac{a\ b}{2\ c}\right)\right]. $$

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.