Let $\mathcal{E}$ be a torsion free coherent sheaf on $\mathbb{P}_2$. Then sub-sheaves $\mathcal{E}_1$ and $\mathcal{E}_2$ of $\mathcal{E}$ are saturated if $\mathcal{E}/\mathcal{E}_i$ are torsion free for $i=1,2$. Then is $\mathcal{E}_1+\mathcal{E}_2$ also saturated ie $\frac{\mathcal{E}}{\mathcal{E}_1+\mathcal{E}_2}$ is torsion free? (we take $\mathcal{E}_i$ to be torsion free themselves for $i=1,2$.)
In further assumption if we are given $\mathcal{E}_1\cap \mathcal{E}_2 = 0$ then does it play a roll in the saturation of $\mathcal{E}_1+\mathcal{E}_2 \simeq \mathcal{E}_1 \oplus \mathcal{E}_2$?
I came across a similar claim in the following ref pg-39.