Consider the triple-indexed sequence of integers defined by \begin{align} \label{coefficientsV} \nonumber f(\alpha,\beta,\gamma) &:=(2\alpha+8\beta+12\gamma-1)\cdot f(\alpha-1,\beta,\gamma) - 2(\alpha+1)\cdot f(\alpha+1,\beta-1,\gamma) \\ &\qquad \ \ \ \ \ - {\color{red}8}(\beta+1)\cdot f(\alpha,\beta+1,\gamma-1)- 12(\gamma+1)\cdot f(\alpha,\beta-2,\gamma+1), \end{align} where $\alpha, \beta, \gamma\geq0$. To list them as triangular arrays, choose $(\alpha,\beta,\gamma)$ such that $\alpha+2\beta+3\gamma=t$ for a given $t\geq0$.
To seed the recursion, we let $f(0, 0, 0):=1,$ and we let $f(\alpha,\beta,\gamma):=0$ if any of the arguments are negative. Here we list the ``first few'' values: \begin{align*} f(1,0,0)=1, \ f(0,1,0)=-2,\ f(0,0,1)=16, \ f(1,1,0)=-30, \ f(1,0,1)=448,\dots. \end{align*}
QUESTION. Is it possible to give some closed formula or a generating function representation of the above sequence?