4
$\begingroup$

Let $p\equiv1\bmod 4$ be a prime number and $h$ the class number of real quadratic field $\mathbb Q(\sqrt{p})$, $\epsilon=\frac{t+u\sqrt{p}}{2}$ its fundamental unit. In this paper https://www.pnas.org/doi/abs/10.1073/pnas.47.6.878(Proc. Nat. Acad. Sci. U.S.A. 47 (1961), 878.) Chowla proves the following result $$h\equiv1\bmod 4\Longleftrightarrow\left(\frac{p-1}{2}\right)!\equiv-\frac{t}{2}\bmod p$$ or $$\left(\frac{p-1}{2}\right)!\equiv(-1)^{\frac{h+1}{2}}\cdot\frac{t}{2}\bmod p.$$

In the proof, his first show that $$\sqrt{p}\cdot\epsilon^{h}=\prod\limits_{\left(\frac{n}{p}\right)=-1}(1-\zeta^n)$$ where the product is over all the quadratic non-residue modulo $p$. This identity can be deduced by Dirichlet's class number formula. Let $\zeta=e^{\frac{2\pi i}{p}}$ be the $p$-th primitive root of unit. We know that $$p\mathbb Z[\zeta]=(1-\zeta)^{p-1},\quad \mathbb Z/p\mathbb Z\cong \mathbb Z[\zeta]/(1-\zeta).$$ Then Chowla Claim that in the ring $\mathbb Z[\zeta]$, $$\prod\limits_{\left(\frac{n}{p}\right)=-1}(1-\zeta^n)\equiv \left(\prod\limits_{\left(\frac{n}{p}\right)=-1}n\right)(1-\zeta)^{\frac{p-1}{2}}\equiv(1-\zeta)^{\frac{p-1}{2}}\bmod (1-\zeta)^{\frac{p+1}{2}}$$ and $$\left(\frac{p-1}{2}\right)!(1-\zeta)^{\frac{p-1}{2}}\equiv\epsilon^{-h}\cdot(1-\zeta)^{\frac{p-1}{2}}\bmod(1-\zeta)^{\frac{p+1}{2}}.$$ From this, he can deduce his theorem. I kown how to prove the first congruence identity. In fact we have that $$\frac{1-\zeta^k}{1-\zeta}=1+\zeta+\zeta^2+\cdots+\zeta^{k-1}\equiv k\bmod (1-\zeta)\Longrightarrow 1-\zeta^k\equiv k(1-\zeta)\bmod (1-\zeta)^2.$$ My Question: How to prove the second congruence identity, I mean how to prove $$\sqrt{p}\equiv\left(\frac{p-1}{2}\right)!\cdot(1-\zeta)^{\frac{p-1}{2}}\bmod(1-\zeta)^{\frac{p+1}{2}}.$$

$\endgroup$

1 Answer 1

6
$\begingroup$

Note that $$ \prod_{n=1}^{p-1}(1-\zeta^n)=\Phi_p(1)=p, $$ where $\Phi_p(x)=\frac{x^p-1}{x-1}$ is the cyclotomic polynomial. Next, $1-\zeta^{p-n}=-\zeta^{-n}(1-\zeta^n)$, hence we have $$ p=\prod_{n=1}^{(p-1)/2} (1-\zeta^n)^2(-\zeta^{-n}), $$ therefore $$ \left(\prod_{n=1}^{(p-1)/2}(1-\zeta^n)\right)^2=p\zeta^{(p^2-1)/ 8}, $$ because $1+2+\cdots+(p-1)/2=\frac{p^2-1}{8}$. Also, $1-\zeta^n=-2i \zeta^{n/2}\sin\frac{\pi n}{p}$, hence the product in LHS above is equal to $$ (-i)^{(p-1)/2}\zeta^{(p^2-1)/16}\sqrt{p}. $$ Let $\eta=\sqrt{\zeta}$ be a primitive $2p$-th root of unity. Then $(-i)^{(p-1)/2}=(-1)^{(p-1)/4}=\eta^{p(p-1)/4}$. Note now that $p(p-1)/4+(p^2-1)/8=(p-1)(3p+1)/8$ is an even number, so $$ (-i)^{(p-1)/2}\zeta^{(p^2-1)/16}=\eta^{(p-1)(3p+1)/8}=\zeta^k\equiv 1\pmod {1-\zeta} $$ Hence $$ \prod_{n=1}^{(p-1)/2}(1-\zeta^n)=\zeta^k \sqrt{p}. $$ Dividing both sides by $\zeta^k(1-\zeta)^{(p-1)/2}$ and using the observation $\frac{1-\zeta^n}{1-\zeta}\equiv n\pmod {1-\zeta}$ stated in the question, we see that $$ \frac{\sqrt{p}}{(1-\zeta)^{(p-1)/2}}\equiv \left(\frac{p-1}{2}\right)! \pmod {1-\zeta}, $$ as needed.

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.