Let $(X,\leq)$ be a poset, $X=\{x_1,x_2,\dots,x_n\}$. Preference matrix $\textbf{P}=[p_{ij}]$ (which is known and fixed), satisfies $p_{ij}=1-p_{ji},p_{ii}=\frac{1}{2}$, and
$$\forall i \neq j, x_i \leq x_j \iff p_{ij} < \frac{1}{2},$$
$$ \forall i \neq j, x_i \| x_j \;(x_i \text{ can't compare with } x_j) \Longleftrightarrow p_{ij}=\frac{1}{2}.$$
Define sigmod function $f(x)=\frac{1}{1+e^{-x}}$, and
$$ g(a_1,a_2,\dots,a_n) = \sum_{i,j}|f(a_i-a_j)-p_{ij}|. $$
I'd like to know a good lower bound for the function $g$. I'm sure this lower bound is greater than $0$. Can anyone give me some hint?