Let $M \in \mathbb{R}^{m \times n}$. Let $S \in \mathbb{R}^{m \times N_t}, U \in \mathbb{R}^{n \times N_t}$, with $ N_t \gg m,n$. Moreover, $\epsilon = S - M U$, with $\epsilon$ zero mean white noise with covariance $C_e$.
How to estimate $M$ using a least squares and using the knowledge of $S,M, Ce$ ? Is there a closed-form expression ?
N_t\gg m,n. $\endgroup$