1
$\begingroup$

We have the following term: $$ (e^{-a h}+e^{-b h})^n / 2^n$$

Now we take the limit:

$$ h\to 0, n\to \infty $$

What relation of $h$ and $n$ must be satisfied for the following limit to hold?

$$\lim_{h\to 0, n \to \infty}(\frac{e^{-a h}+e^{-b h}}{2})^n$$ $$=\lim_{h\to 0, n \to \infty}(1-\frac{1}{2}ah-\frac{1}{2}bh)^n $$ $$=\lim_{h\to 0, n \to \infty}e^{-\frac{a+b}{2}h n} $$

For example, if we let $\frac{e^{-h n}}{h^2}$ keep fixed, can the above hold?

$\endgroup$
0

1 Answer 1

1
$\begingroup$

For $h\to0$, we have $$\frac{e^{-ah}+e^{-bh}}2=1-\frac{a+b}2\,h+O(h^2) =\exp\Big(-\frac{a+b}2\,h+O(h^2)\Big)$$ and hence $$\Big(\frac{e^{-ah}+e^{-bh}}2\Big)^n =\exp\Big(-\frac{a+b}2\,nh+O(nh^2)\Big).$$

So, if $h\to0$ and $nh\to c\in\mathbb R$, then $nh^2\to0$ and hence $$\lim\Big(\frac{e^{-ah}+e^{-bh}}2\Big)^n =\lim\exp\Big(-\frac{a+b}2\,nh\Big) \\ =\exp\Big(-\frac{a+b}2\,c\Big).$$


Also, if $a>0$, $b>0$, $h\to0$ and $nh\to\infty$, then $$-\frac{a+b}2\,nh+O(nh^2)=nh\Big(-\frac{a+b}2\,+O(h)\Big)\sim-nh \frac{a+b}2\to-\infty$$ and hence $$\lim\Big(\frac{e^{-ah}+e^{-bh}}2\Big)^n =\lim\exp\Big(-\frac{a+b}2\,nh\Big)=0.$$


If $a>0$, $b>0$, $h\to0$ and $nh\to-\infty$, then similarly $$\lim\Big(\frac{e^{-ah}+e^{-bh}}2\Big)^n =\lim\exp\Big(-\frac{a+b}2\,nh\Big)=\infty.$$


If $a>0$, $b>0$, $h\to0$, $n\to\infty$, but $nh$ does not converge to a limit, then $$\lim\exp\Big(-\frac{a+b}2\,nh\Big)$$ does not exist.

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.