|
| 1 | +<h1 style="text-align: center;"> <span style="color: #FFB822;">102. 二叉树的层序遍历</span> </h1> |
| 2 | + |
| 3 | +### 🚀 LeetCode |
| 4 | + |
| 5 | +<base target="_blank"> |
| 6 | + |
| 7 | +<span style="color: #FFB822;">**Medium**</span> [**https://leetcode.cn/problems/binary-tree-level-order-traversal/**](https://leetcode.cn/problems/binary-tree-level-order-traversal/) |
| 8 | + |
| 9 | +--- |
| 10 | + |
| 11 | +### ❓ Description |
| 12 | + |
| 13 | +<br/> |
| 14 | + |
| 15 | +给你二叉树的根节点 `root`,返回其节点值的 **层序遍历**。(即逐层地,从左到右访问所有节点)。 |
| 16 | + |
| 17 | +<br/> |
| 18 | + |
| 19 | +**示例 1:** |
| 20 | + |
| 21 | +<img src="../../public/0102/tree-1.jpg" alt="tree-1.jpg"/> |
| 22 | + |
| 23 | +``` |
| 24 | +输入:root = [3, 9, 20, null, null, 15, 7] |
| 25 | +输出:[[3], [9, 20], [15, 7]] |
| 26 | +``` |
| 27 | + |
| 28 | +**示例 2:** |
| 29 | + |
| 30 | +``` |
| 31 | +输入: root = [1] |
| 32 | +输出: [[1]] |
| 33 | +``` |
| 34 | + |
| 35 | +**示例 3:** |
| 36 | + |
| 37 | +``` |
| 38 | +输入: root = [] |
| 39 | +输出: [] |
| 40 | +``` |
| 41 | + |
| 42 | +<br/> |
| 43 | + |
| 44 | +**提示:** |
| 45 | + |
| 46 | +* 树中节点数目在范围 `[0, 2000]` 内 |
| 47 | +* `-1000 <= Node.val <= 1000` |
| 48 | + |
| 49 | +--- |
| 50 | + |
| 51 | +### ❗ Solution |
| 52 | + |
| 53 | +<br/> |
| 54 | + |
| 55 | +#### Java |
| 56 | + |
| 57 | +``` |
| 58 | +/** |
| 59 | + * Definition for a binary tree node. |
| 60 | + * public class TreeNode { |
| 61 | + * int val; |
| 62 | + * TreeNode left; |
| 63 | + * TreeNode right; |
| 64 | + * TreeNode() {} |
| 65 | + * TreeNode(int val) { this.val = val; } |
| 66 | + * TreeNode(int val, TreeNode left, TreeNode right) { |
| 67 | + * this.val = val; |
| 68 | + * this.left = left; |
| 69 | + * this.right = right; |
| 70 | + * } |
| 71 | + * } |
| 72 | + */ |
| 73 | +class Solution { |
| 74 | + public List<List<Integer>> levelOrder(TreeNode root) { |
| 75 | + if (root == null) { |
| 76 | + return new ArrayList<>(); |
| 77 | + } |
| 78 | +
|
| 79 | + List<List<Integer>> result = new ArrayList<>(); |
| 80 | + List<Integer> item = new ArrayList<>(); |
| 81 | +
|
| 82 | + // 利用队列先进先出的特点, 存储下一层树节点 |
| 83 | + // 当遍历完当前层的树节点, 将下一层的树节点依次取出进行操作 |
| 84 | + Queue<TreeNode> queue = new LinkedList<>(); |
| 85 | + queue.add(root); |
| 86 | +
|
| 87 | + // 当前层级的最大节点数 |
| 88 | + int maxNum = 1; |
| 89 | + // 下一层级的最大节点数需要扣减的数量 |
| 90 | + int subNum = 0; |
| 91 | + // 当前层级已添加的节点数 |
| 92 | + int curNum = 0; |
| 93 | +
|
| 94 | + while (!queue.isEmpty()) { |
| 95 | + TreeNode node = queue.poll(); |
| 96 | + if (node != null) { |
| 97 | + item.add(node.val); |
| 98 | + queue.add(node.left); |
| 99 | + queue.add(node.right); |
| 100 | + } else { |
| 101 | + // 当前层级每有 1 个节点为 null, 下一层级的最大节点数就需要 - 2 |
| 102 | + subNum += 2; |
| 103 | + } |
| 104 | + // 当前层级已添加的节点数 + 1 |
| 105 | + curNum++; |
| 106 | + // 如果当前层级已添加的节点数 = 当前层级的最大节点数, 切换到下一层级 |
| 107 | + if (curNum == maxNum) { |
| 108 | + // 如果当前层级有节点, 添加到结果中 |
| 109 | + if (item.size() > 0) { |
| 110 | + result.add(item); |
| 111 | + } |
| 112 | + // 重置各项标志 |
| 113 | + item = new ArrayList<>(); |
| 114 | + maxNum = maxNum * 2 - subNum; |
| 115 | + subNum = 0; |
| 116 | + curNum = 0; |
| 117 | + } |
| 118 | + } |
| 119 | +
|
| 120 | + return result; |
| 121 | + } |
| 122 | +} |
| 123 | +``` |
0 commit comments