|
| 1 | +import pkg_resources |
| 2 | +import unittest |
| 3 | +from tempfile import NamedTemporaryFile |
| 4 | +from unittest import mock |
| 5 | + |
| 6 | +import numpy as np |
| 7 | + |
| 8 | +from wikipedia2vec.dictionary import Dictionary, Word, Entity |
| 9 | +from wikipedia2vec.dump_db import DumpDB |
| 10 | +from wikipedia2vec.utils.tokenizer import get_tokenizer |
| 11 | +from wikipedia2vec.utils.wiki_dump_reader import WikiDumpReader |
| 12 | +from wikipedia2vec.wikipedia2vec import Wikipedia2Vec, ItemWithScore |
| 13 | + |
| 14 | + |
| 15 | +db = None |
| 16 | +db_file = None |
| 17 | +dictionary = None |
| 18 | +wiki2vec = None |
| 19 | + |
| 20 | + |
| 21 | +class TestWikipedia2Vec(unittest.TestCase): |
| 22 | + @classmethod |
| 23 | + def setUpClass(cls): |
| 24 | + global db, db_file, tokenizer, dictionary, wiki2vec |
| 25 | + dump_file = pkg_resources.resource_filename("tests", "test_data/enwiki-pages-articles-sample.xml.bz2") |
| 26 | + dump_reader = WikiDumpReader(dump_file) |
| 27 | + db_file = NamedTemporaryFile() |
| 28 | + |
| 29 | + DumpDB.build(dump_reader, db_file.name, 1, 1) |
| 30 | + db = DumpDB(db_file.name) |
| 31 | + |
| 32 | + tokenizer = get_tokenizer("regexp") |
| 33 | + dictionary = Dictionary.build( |
| 34 | + db, |
| 35 | + tokenizer=tokenizer, |
| 36 | + lowercase=True, |
| 37 | + min_word_count=2, |
| 38 | + min_entity_count=1, |
| 39 | + min_paragraph_len=5, |
| 40 | + category=True, |
| 41 | + disambi=True, |
| 42 | + pool_size=1, |
| 43 | + chunk_size=1, |
| 44 | + progressbar=False, |
| 45 | + ) |
| 46 | + wiki2vec = Wikipedia2Vec(dictionary) |
| 47 | + wiki2vec.syn0 = np.random.rand(len(dictionary), 100).astype(np.float32) |
| 48 | + wiki2vec.syn1 = np.random.rand(len(dictionary), 100).astype(np.float32) |
| 49 | + |
| 50 | + @classmethod |
| 51 | + def tearDownClass(cls): |
| 52 | + db_file.close() |
| 53 | + |
| 54 | + def test_dictionary_property(self): |
| 55 | + self.assertEqual(wiki2vec.dictionary, dictionary) |
| 56 | + |
| 57 | + def test_get_word(self): |
| 58 | + word = wiki2vec.get_word("the") |
| 59 | + self.assertIsInstance(word, Word) |
| 60 | + |
| 61 | + def test_get_word_not_exist(self): |
| 62 | + self.assertEqual(None, wiki2vec.get_word("foobar")) |
| 63 | + |
| 64 | + def test_get_entity(self): |
| 65 | + entity = wiki2vec.get_entity("Computer system") |
| 66 | + self.assertIsInstance(entity, Entity) |
| 67 | + |
| 68 | + def test_get_entity_not_exist(self): |
| 69 | + self.assertIsNone(wiki2vec.get_entity("Foo")) |
| 70 | + |
| 71 | + def test_get_word_vector(self): |
| 72 | + vector = wiki2vec.get_word_vector("the") |
| 73 | + self.assertEqual((100,), vector.shape) |
| 74 | + self.assertTrue((vector == wiki2vec.syn0[dictionary.get_word("the").index]).all()) |
| 75 | + |
| 76 | + def test_get_word_vector_not_exist(self): |
| 77 | + self.assertRaises(KeyError, wiki2vec.get_word_vector, "foobar") |
| 78 | + |
| 79 | + def test_get_entity_vector(self): |
| 80 | + vector = wiki2vec.get_entity_vector("Computer system") |
| 81 | + self.assertEqual((100,), vector.shape) |
| 82 | + self.assertTrue((wiki2vec.syn0[dictionary.get_entity("Computer system").index] == vector).all()) |
| 83 | + |
| 84 | + def test_get_entity_vector_not_exist(self): |
| 85 | + self.assertRaises(KeyError, wiki2vec.get_entity_vector, "Foo") |
| 86 | + |
| 87 | + def test_get_vector(self): |
| 88 | + word = dictionary.get_word("the") |
| 89 | + vector = wiki2vec.get_vector(word) |
| 90 | + self.assertEqual((100,), vector.shape) |
| 91 | + self.assertTrue((vector == wiki2vec.syn0[dictionary.get_word("the").index]).all()) |
| 92 | + |
| 93 | + def test_most_similar(self): |
| 94 | + word = dictionary.get_word("the") |
| 95 | + vector = wiki2vec.syn0[word.index] |
| 96 | + all_scores = np.dot(wiki2vec.syn0, vector) / np.linalg.norm(wiki2vec.syn0, axis=1) / np.linalg.norm(vector) |
| 97 | + indexes = np.argsort(-all_scores)[:10].tolist() |
| 98 | + scores = [float(all_scores[index]) for index in indexes] |
| 99 | + |
| 100 | + ret = wiki2vec.most_similar(word, 10) |
| 101 | + for entry in ret: |
| 102 | + self.assertIsInstance(entry, ItemWithScore) |
| 103 | + self.assertEqual(indexes, [o.item.index for o in ret]) |
| 104 | + self.assertEqual(scores, [o.score for o in ret]) |
| 105 | + |
| 106 | + def test_most_similar_by_vector(self): |
| 107 | + word = dictionary.get_word("the") |
| 108 | + vector = wiki2vec.syn0[word.index] |
| 109 | + all_scores = np.dot(wiki2vec.syn0, vector) / np.linalg.norm(wiki2vec.syn0, axis=1) / np.linalg.norm(vector) |
| 110 | + indexes = np.argsort(-all_scores)[:10].tolist() |
| 111 | + scores = [float(all_scores[index]) for index in indexes] |
| 112 | + |
| 113 | + ret = wiki2vec.most_similar_by_vector(vector, 10) |
| 114 | + for entry in ret: |
| 115 | + self.assertIsInstance(entry, ItemWithScore) |
| 116 | + self.assertEqual(indexes, [o.item.index for o in ret]) |
| 117 | + self.assertEqual(scores, [o.score for o in ret]) |
| 118 | + |
| 119 | + def test_save_load(self): |
| 120 | + with NamedTemporaryFile() as f: |
| 121 | + wiki2vec.save(f.name) |
| 122 | + wiki2vec2 = Wikipedia2Vec.load(f.name) |
| 123 | + self.assertTrue(np.array_equal(wiki2vec.syn0, wiki2vec2.syn0)) |
| 124 | + self.assertTrue(np.array_equal(wiki2vec.syn1, wiki2vec2.syn1)) |
| 125 | + |
| 126 | + serialized_dictionary = dictionary.serialize() |
| 127 | + serialized_dictionary2 = wiki2vec2.dictionary.serialize() |
| 128 | + for key in serialized_dictionary.keys(): |
| 129 | + if isinstance(serialized_dictionary[key], np.ndarray): |
| 130 | + self.assertTrue(np.array_equal(serialized_dictionary[key], serialized_dictionary2[key])) |
| 131 | + else: |
| 132 | + self.assertEqual(serialized_dictionary[key], serialized_dictionary2[key]) |
| 133 | + |
| 134 | + def test_save_load_text(self): |
| 135 | + for out_format in ("word2vec", "glove", "default"): |
| 136 | + with NamedTemporaryFile() as f: |
| 137 | + wiki2vec.save_text(f.name, out_format=out_format) |
| 138 | + with open(f.name) as f: |
| 139 | + if out_format == "word2vec": |
| 140 | + first_line = next(f) |
| 141 | + self.assertEqual(str(len(dictionary)) + " " + "100", first_line.rstrip()) |
| 142 | + |
| 143 | + num_items = 0 |
| 144 | + for line in f: |
| 145 | + if out_format in ("word2vec", "glove"): |
| 146 | + name, *vec_str = line.rstrip().split(" ") |
| 147 | + name = name.replace("_", " ") |
| 148 | + else: |
| 149 | + name, vec_str = line.rstrip().split("\t") |
| 150 | + vec_str = vec_str.split(" ") |
| 151 | + |
| 152 | + vector = np.array([float(s) for s in vec_str], dtype=np.float32) |
| 153 | + |
| 154 | + if name.startswith("ENTITY/"): |
| 155 | + name = name[7:] |
| 156 | + orig_vector = wiki2vec.get_entity_vector(name) |
| 157 | + else: |
| 158 | + orig_vector = wiki2vec.get_word_vector(name) |
| 159 | + self.assertTrue(np.allclose(orig_vector, vector, atol=1e-3)) |
| 160 | + |
| 161 | + num_items += 1 |
| 162 | + |
| 163 | + self.assertEqual(len(dictionary), num_items) |
| 164 | + |
| 165 | + wiki2vec2 = Wikipedia2Vec.load_text(f.name) |
| 166 | + for word in dictionary.words(): |
| 167 | + self.assertTrue( |
| 168 | + np.allclose( |
| 169 | + wiki2vec.get_word_vector(word.text), wiki2vec2.get_word_vector(word.text), atol=1e-3 |
| 170 | + ) |
| 171 | + ) |
| 172 | + for entity in dictionary.entities(): |
| 173 | + self.assertTrue( |
| 174 | + np.allclose( |
| 175 | + wiki2vec.get_entity_vector(entity.title), |
| 176 | + wiki2vec2.get_entity_vector(entity.title), |
| 177 | + atol=1e-3, |
| 178 | + ) |
| 179 | + ) |
| 180 | + self.assertEqual(len(dictionary), len(wiki2vec2.dictionary)) |
| 181 | + |
| 182 | + |
| 183 | +if __name__ == "__main__": |
| 184 | + unittest.main() |
0 commit comments