Skip to content

Some code for the semantic segmentation Data Hub workshop

License

Notifications You must be signed in to change notification settings

sheneman/segmentation

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Semantic Segmentation of Aerial Drone Imagery in TensorFlow/Keras

Some code for the Semantic Segmentation in TensorFlow/Keras Data Hub TechTalk, March 7 2023

Installation Instructions

  1. clone this repo
  2. download the data (see below) and structure like this:

data
├── class_dict_seg.csv
├── RGB_color_image_masks
├── test_data
├── test_labels
├── train_data
├── train_labels
├── val_data
└── val_labels

The program assumes all images are *.png files that have been resized and cropped to 512x512

  1. Create virtual environment (python3 -m venv venv)
  2. source ./venv/bin/activate
  3. pip install -U pip
  4. pip install tensorflow opencv-python scikit-image
  5. mkdir raw_output final_output

Training

  1. source ./venv/bin/activate
  2. python unet.py

Inference

  1. source ./venv/bin/activate
  2. python ./unet_inference.py (inferred output will be in "raw_output")

Create RGB-encoded visible results from inferences

  1. source ./venv/bin/activate
  2. python ./convert.py (files will be in "final_output")

Data Availability

https://www.kaggle.com/datasets/bulentsiyah/semantic-drone-dataset

More information on the dataset can be found here: http://dronedataset.icg.tugraz.at/

About

Some code for the semantic segmentation Data Hub workshop

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages