Skip to content

Commit fe24f23

Browse files
authored
Merge pull request #272 from scijava/docs/improve-build-instructions
Improve docs build instructions + sample image download links
2 parents 809ff44 + 7bc48b2 commit fe24f23

File tree

9 files changed

+84
-19
lines changed

9 files changed

+84
-19
lines changed

docs/README.md

Lines changed: 29 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -1,16 +1,41 @@
1-
# Adding a new ReadTheDocs page for a project in this repository
1+
This directory houses the online docs for core SciJava components. Each subfolder is its own ReadTheDocs site.
2+
3+
## Building the docs
4+
5+
If this is your first time building the docs on this machine, create the needed environment with:
6+
7+
```shell
8+
mamba env create -f environment.yml
9+
```
10+
11+
Subsequently, every time you want to build, run the following commands:
12+
13+
```
14+
mamba activate scijava-docs
15+
make clean html && python -m http.server
16+
```
17+
18+
If all goes well, you'll see output ending like:
19+
```
20+
The HTML pages are in _build/scijava-ops/html.
21+
Serving HTTP on 0.0.0.0 port 8000 (http://0.0.0.0:8000/) ...
22+
```
23+
24+
To view the built site, open the HTTP link in your browser of choice, then navigate to the stated subdirectory.
25+
26+
## Adding a new ReadTheDocs page for a project in this repository
227

328
We use [`sphinx-multiproject`](https://sphinx-multiproject.readthedocs.io/en/latest/index.html) to build multiple RTD sites from within a single repository. To add a new site within this repository, take the following steps:
429

5-
## Create a new subfolder for the site's documents
30+
### Create a new subfolder for the site's documents
631

732
See the existing `ops` folder for a template.
833

9-
## Add relevant sections to this folder's `conf.py`
34+
### Add relevant sections to this folder's `conf.py`
1035

1136
Specifically, you'll want to add an entry to the `multiproject_projects` dictionary. Again, you can copy and edit the `ops` entry.
1237

13-
## Create a new project on `ReadTheDocs`
38+
### Create a new project on `ReadTheDocs`
1439

1540
You'll want to take the following steps:
1641
1. Choose to import a project manually
Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
name: scijava-docs-ops
1+
name: scijava-docs
22
channels:
33
- conda-forge
44
- defaults

docs/ops/doc/examples/deconvolution.rst

Lines changed: 7 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -8,7 +8,12 @@ The SciJava Ops framework currently supports the standard RL algorithm as well a
88
algorithm, which utilizes a regularization factor to limit the noise amplified by the RL algorithm :sup:`1`. Typically,
99
the RLTV algorithm returns improved axial and lateral resolution when compared to RL.
1010

11-
You can download the 3D HeLa cell nuclus dataset `here`_.
11+
You can download the 3D HeLa cell nucleus dataset here:
12+
13+
.. admonition:: Download
14+
:class: note
15+
16+
`hela_nucleus.tif`_
1217

1318
.. figure:: https://media.scijava.org/scijava-ops/1.0.0/rltv_example_1.gif
1419

@@ -145,5 +150,5 @@ SciJava Ops via Fiji's scripting engine with `script parameters`_:
145150
146151
.. _`Dey et. al, Micros Res Tech 2006`: https://pubmed.ncbi.nlm.nih.gov/16586486/
147152
.. _`Gibson & Lanni, JOSA 1992`: https://pubmed.ncbi.nlm.nih.gov/1738047/
148-
.. _`here`: https://media.scijava.org/scijava-ops/1.0.0/hela_nucleus.tif
153+
.. _`hela_nucleus.tif`: https://media.scijava.org/scijava-ops/1.0.0/hela_nucleus.tif
149154
.. _`script parameters`: https://imagej.net/scripting/parameters

docs/ops/doc/examples/flim_analysis.rst

Lines changed: 7 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -13,7 +13,12 @@ We use a sample of `FluoCells™ Prepared Slide #1`_, imaged by `Jenu Chacko`_ u
1313

1414
FluoCells™ Prepared Slide #1 contains bovine pulmonary artery endothelial cells (BPAEC). MitoTracker™ Red CMXRos was used to stain the mitochondria in the live cells, with accumulation dependent upon membrane potential. Following fixation and permeabilization, F-actin was stained with Alexa Fluor™ 488 phalloidin, and the nuclei were counterstained with the blue-fluorescent DNA stain DAPI.
1515

16-
The sample data can be downloaded `here <https://media.scijava.org/scijava-ops/1.0.0/flim_example_data.sdt>`_ and can be loaded into Fiji with `SCIFIO`_ using ``File → Open...`` or ``File → Import → Image...``. The data may take a minute to load.
16+
The sample data can be downloaded here and can be loaded into Fiji with `SCIFIO`_ using ``File → Open...`` or ``File → Import → Image...``. The data may take a minute to load.
17+
18+
.. admonition:: Download
19+
:class: note
20+
21+
`flim_example_data.sdt`_
1722

1823
Within the script, the `Levenberg-Marquardt algorithm`_ fitting Op of SciJava Ops FLIM is used to fit the data.
1924

@@ -222,6 +227,7 @@ In the panels below, we show the results of executing both scripts with computat
222227
:width: 49%
223228

224229

230+
.. _`flim_example_data.sdt`: https://media.scijava.org/scijava-ops/1.0.0/flim_example_data.sdt
225231
.. _`SCIFIO` : https://scif.io
226232
.. _`FLIM` : https://en.wikipedia.org/wiki/Fluorescence-lifetime_imaging_microscopy
227233
.. _`FluoCells™ Prepared Slide #1` : https://www.thermofisher.com/order/catalog/product/F36924

docs/ops/doc/examples/mesh_viz.rst

Lines changed: 7 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,12 @@
22
3D Analysis and Visualization
33
=============================
44

5-
In this example, we will use SciJava Ops to construct a 3D mesh from a binary dataset, passing the result into `3D Viewer`_ for visualization. We use the `bat cochlea volume`_ dataset (more information `here <https://imagej.net/images/bat-cochlea-volume.txt>`_) from the ImageJ sample images, which users can either download using the link or open from the ``File → Open Samples → Bat Cochlea Volume`` menu selection within Fiji.
5+
In this example, we will use SciJava Ops to construct a 3D mesh from a binary dataset, passing the result into `3D Viewer`_ for visualization. We use the bat cochlea volume dataset (more information `here <https://imagej.net/images/bat-cochlea-volume.txt>`_) from the ImageJ sample images. The dataset can either be downloaded here, or opened directly in Fiji via ``File → Open Samples → Bat Cochlea Volume``
6+
7+
.. admonition:: Download
8+
:class: note
9+
10+
`bat-cochlea-volume.zip`_
611

712
.. figure:: https://media.scijava.org/scijava-ops/1.1.0/mesh-visualization.png
813

@@ -109,6 +114,6 @@ The following script accepts the binary dataset as its sole input, and creates t
109114
toggleFrame.setVisible(true)
110115

111116
.. _3D Viewer: https://imagej.net/plugins/3d-viewer/
112-
.. _bat cochlea volume: https://imagej.net/images/bat-cochlea-volume.zip
117+
.. _`bat-cochlea-volume.zip`: https://imagej.net/images/bat-cochlea-volume.zip
113118
.. _bat cochlea info: https://imagej.net/images/bat-cochlea-volume.txt
114119
.. _marching cubes: https://en.wikipedia.org/wiki/Marching_cubes

docs/ops/doc/examples/opencv_denoise.rst

Lines changed: 7 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,12 @@ a pixel of interest (*e.g.* a 5x5 patch) with patches from other pixels from the
99
patches are then averaged to eliminate gaussian noise, without the requirement of additional
1010
images for comparison.
1111

12-
The sample data for this example can be downloaded `here`_.
12+
The sample data for this example can be downloaded here:
13+
14+
.. admonition:: Download
15+
:class: note
16+
17+
`opencv_denoise_16bit.tif`_
1318

1419
.. figure:: https://media.scijava.org/scijava-ops/1.0.0/opencv_denoise_example_1.png
1520

@@ -121,4 +126,4 @@ SciJava Ops via Fiji's scripting engine with `script parameters`_:
121126

122127
.. _`script parameters`: https://imagej.net/scripting/parameters
123128
.. _`OpenCV library`: https://docs.opencv.org/4.x/d5/d69/tutorial_py_non_local_means.html
124-
.. _`here`: https://media.scijava.org/scijava-ops/1.0.0/opencv_denoise_16bit.tif
129+
.. _`opencv_denoise_16bit.tif`: https://media.scijava.org/scijava-ops/1.0.0/opencv_denoise_16bit.tif

docs/ops/doc/examples/saca.rst

Lines changed: 7 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -17,7 +17,12 @@ can be computed easily by using the *Z*-score heatmap with the ``stats.pnorm`` O
1717
significantly colocalized. This example script takes advantage of this feature of the SACA framework and utilizes the significant pixel
1818
mask as a region of interest to compute Pearson's :sup:`4` and Li's :sup:`5` colocalization coefficients.
1919

20-
You can download the colocalization dataset `here`_.
20+
You can download the colocalization dataset here:
21+
22+
.. admonition:: Download
23+
:class: note
24+
25+
`hela_hiv_gag_ms2_mcherry.tif`_
2126

2227
.. figure:: https://media.scijava.org/scijava-ops/1.0.0/saca_input.png
2328

@@ -169,5 +174,5 @@ To apply the ``phase`` LUT and a colorbar use the following script and select th
169174
.. _`Becker and Sherer, JVI 2017`: https://pubmed.ncbi.nlm.nih.gov/28053097/
170175
.. _`Wang et. al, IEEE 2019`: https://ieeexplore.ieee.org/abstract/document/8681436
171176
.. _`Stockley et. al, Bacteriophage 2016`: https://pubmed.ncbi.nlm.nih.gov/27144089/
172-
.. _`here`: https://media.scijava.org/scijava-ops/1.0.0/hela_hiv_gag_ms2_mcherry.tif
177+
.. _`hela_hiv_gag_ms2_mcherry.tif`: https://media.scijava.org/scijava-ops/1.0.0/hela_hiv_gag_ms2_mcherry.tif
173178
.. _`script parameters`: https://imagej.net/scripting/parameters

docs/ops/doc/examples/scyjava.rst

Lines changed: 10 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -3,11 +3,18 @@ SciJava Ops from Python
33
=======================
44

55
This example demonstrates how to use SciJava Ops with Python. Using SciJava Ops framework with Python depends on ``scyjava`` to provide robust
6-
Java code access and ``imglyb`` to bridge the ImgLib2 and NumPy data structures. The Python script in this example downloads a `3D 3T3 cell`_
7-
nucleus dataset (with shape: ``37, 300, 300``), performes image processing with to improve the nucleus signal, segments the nucleus and measures
6+
Java code access and ``imglyb`` to bridge the ImgLib2 and NumPy data structures. The Python script in this example downloads a 3T3
7+
nucleus dataset (with shape: ``37, 300, 300``), performs image processing with to improve the nucleus signal, segments the nucleus and measures
88
the 3D volume of the nucleus by creating a mesh. Finally the input image, processed image and the segmented label images are displayed in
99
``matplotlib``, and the volume (μm\ :sup:`3`) is printed to the console.
1010

11+
You can download the 3D 3T3 cell dataset here:
12+
13+
.. admonition:: Download
14+
:class: note
15+
16+
`3t3_nucleus.tif`_
17+
1118
.. figure:: https://media.scijava.org/scijava-ops/1.0.0/scyjava_example_1.png
1219

1320
.. code-block:: bash
@@ -167,4 +174,4 @@ Activate the ``scijava-ops`` conda/mamba environment and run the following Pytho
167174
plt.tight_layout()
168175
plt.show()
169176
170-
.. _`3D 3T3 cell`: https://media.scijava.org/scijava-ops/1.0.0/3t3_nucleus.tif
177+
.. _`3t3_nucleus.tif`: https://media.scijava.org/scijava-ops/1.0.0/3t3_nucleus.tif

docs/ops/doc/examples/volume_labeling.rst

Lines changed: 9 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -21,7 +21,14 @@ to accomplish this analysis goal the script utilizes SciJava Ops to:
2121
5. Measure the 3D geometry of the puncta and nuclear regions.
2222
6. Display results in two tables (puncta and nuclear).
2323

24-
To use the script in the example first download the sample dataset `here`_. Next, open Fiji, the sample image and this scipt. Click **Run** to create the script parameter GUI,
24+
To use the script in the example, first download the sample dataset:
25+
26+
.. admonition:: Download
27+
:class: note
28+
29+
`hela_hiv_vif.tif`_
30+
31+
Next, open Fiji, the sample image and this script. Click **Run** to create the script parameter GUI,
2532
where you can customize some values to your own data, such as the channel names, channel position and image calibration values.
2633

2734
.. figure:: https://media.scijava.org/scijava-ops/1.1.0/labeling_mesh_example_dialog.png
@@ -295,4 +302,4 @@ In addition to the result tables, the label imdage (also known as an *index imag
295302
ui.show("{} results table".format(ch_a_name), ab_table)
296303
ui.show("{} results table".format(ch_b_name), b_table)
297304

298-
.. _`here`: https://media.scijava.org/scijava-ops/1.0.0/hela_hiv_vif.tif
305+
.. _`hela_hiv_vif.tif`: https://media.scijava.org/scijava-ops/1.0.0/hela_hiv_vif.tif

0 commit comments

Comments
 (0)