|
| 1 | +======================================== |
| 2 | +Parameter Conversion for Developers |
| 3 | +======================================== |
| 4 | + |
| 5 | +In this example, we explain parameter conversion to a developer audience. This page provides an overview of what parameter conversion involves, how it works, and how you can enable conversion for your own data types. |
| 6 | + |
| 7 | +Basics |
| 8 | +====== |
| 9 | + |
| 10 | +A :ref:`value <driving-values>` of SciJava Ops is flexibility, and flexibility is (in part) achieved through **parameter conversion**. At its core, parameter conversion allows *translation* of data stored in one data structure (e.g. an ImgLib2 ``RandomAccessibleInterval``) into a different data structure (e.g. an OpenCV ``Mat``) **on the fly**. This allows SciJava Ops to execute Ops backed by OpenCV code **on ImgLib2 data structures**. |
| 11 | + |
| 12 | +.. figure:: https://media.scijava.org/scijava-ops/1.0.1/parameter-conversion-opencv.svg |
| 13 | + |
| 14 | +At matching time, parameter conversion is invoked when an Op matches a user request in name and in Op type, but differing in individual parameter types. In these situations, it looks for ``engine.convert`` Ops that could potentially convert the user's provided inputs into the required Op inputs, and the same, in the other direction, for the output. |
| 15 | + |
| 16 | +.. _original-op: |
| 17 | + |
| 18 | +An example ``Function`` |
| 19 | +======================= |
| 20 | + |
| 21 | +Suppose we have a ``Function`` Op that inherently operates on ``RandomAccessibleInterval<DoubleType>``\ s: |
| 22 | + |
| 23 | +.. code-block:: java |
| 24 | +
|
| 25 | + /** |
| 26 | + * Convolves an image with a kernel, returning the output in a new object |
| 27 | + * |
| 28 | + * @param input the input data |
| 29 | + * @param kernel the kernel |
| 30 | + * @return the convolution of {@code input} and {@code kernel} |
| 31 | + * @implNote op names="filter.convolve" |
| 32 | + */ |
| 33 | + public static RandomAccessibleInterval<DoubleType> convolveNaive( |
| 34 | + final RandomAccessibleInterval<DoubleType> input, |
| 35 | + final RandomAccessibleInterval<DoubleType> kernel |
| 36 | + ) { |
| 37 | + // convolve convolve convolve // |
| 38 | + } |
| 39 | +
|
| 40 | +Suppose a user wants to use this Op with a small, fixed kernel, which for ease is written as a ``double[][]``. Without additional aid, they'd have to manually convert their ``double[][]`` into a ``RandomAccessibleInterval<DoubleType>``, requiring knowledge of how to do that and baking extra boilerplate into their workflow: |
| 41 | + |
| 42 | + |
| 43 | +.. code-block:: java |
| 44 | +
|
| 45 | + Img<DoubleType> in = ... |
| 46 | + // 3x3 averaging kernel |
| 47 | + double[][] kernel = { // |
| 48 | + { 1/9d, 1/9d, 1/9d}, // |
| 49 | + { 1/9d, 1/9d, 1/9d}, // |
| 50 | + { 1/9d, 1/9d, 1/9d} // |
| 51 | + }; |
| 52 | + // transform double[][] into a RandomAccessibleInterval |
| 53 | + Img<DoubleType> kernel = ArrayImgs.doubles(data, 3, 3); |
| 54 | + var cursor = kernel.cursor(); |
| 55 | + while(cursor.hasNext()) |
| 56 | + cursor.next().set(kernel[cursor.getIntPosition(0)][cursor.getIntPosition(1)]); |
| 57 | +
|
| 58 | + var result = ops.op("filter.convolve") // |
| 59 | + .input(in, kernel) // |
| 60 | + .outType(new Nil<RandomAccessibleInterval<DoubleType>>() {}) // |
| 61 | + .apply(); |
| 62 | +
|
| 63 | +Ideally, the user could just pass their ``double[][]`` to their Op matching call directly. Parameter conversion enables this, through the use of ``engine.convert`` Ops written by developers. |
| 64 | + |
| 65 | +An ``engine.convert`` Op |
| 66 | +============================== |
| 67 | + |
| 68 | +All ``engine.convert`` Ops are ``Function``\ s that are given user arguments and return a *translation* of that data into the type expected by the Op. For our example ``Function``, we want to convert *from* the user's ``double[][]`` into a ``RandomAccessibleInterval<DoubleType>``: |
| 69 | + |
| 70 | +.. code-block:: java |
| 71 | +
|
| 72 | + /** |
| 73 | + * @param input the input data |
| 74 | + * @return an image ({@link RandomAccessibleInterval}) whose values are equivalent to {@code input}s |
| 75 | + * values but converted to {@link DoubleType}s. |
| 76 | + * @implNote op names='engine.convert', type=Function |
| 77 | + */ |
| 78 | + public static RandomAccessibleInterval<DoubleType> arrayToRAI(final double[][] input) |
| 79 | + { |
| 80 | + // Creates an empty image of doubles |
| 81 | + var img = ArrayImgs.doubles(input.length, input[0].length); |
| 82 | + var ra = img.randomAccess(); |
| 83 | + // Deep copies the double[][] into the RAI |
| 84 | + for(int i = 0; i < input.length; i++) { |
| 85 | + for(int j = 0; j < input[0].length; j++) { |
| 86 | + ra.setPositionAndGet(i, j).set(input[i][j]); |
| 87 | + } |
| 88 | + } |
| 89 | + return img; |
| 90 | + } |
| 91 | +
|
| 92 | +Using this ``engine.convert`` Op, SciJava Ops can match our ``filter.convolve`` Op to the user's data, **without explicit translation**. |
| 93 | + |
| 94 | +.. code-block:: java |
| 95 | +
|
| 96 | + Img<DoubleType> in = ... |
| 97 | + // 3x3 averaging kernel |
| 98 | + double[][] kernel = { // |
| 99 | + { 1/9d, 1/9d, 1/9d}, // |
| 100 | + { 1/9d, 1/9d, 1/9d}, // |
| 101 | + { 1/9d, 1/9d, 1/9d} // |
| 102 | + }; |
| 103 | +
|
| 104 | + // Ideal case - no need to wrap to Img |
| 105 | + var result = ops.op("filter.convolve") // |
| 106 | + .input(in, kernel) // |
| 107 | + .outType(new Nil<RandomAccessibleInterval<DoubleType>>() {}) // |
| 108 | + .apply(); |
| 109 | +
|
| 110 | +At runtime, the Op matcher will invoke the following steps: |
| 111 | + |
| 112 | +* The ``Img<DoubleType> input`` is left alone, as it is already of the type expected by the Op. |
| 113 | +* The ``double[][] kernel`` is converted to a ``RandomAccessibleInterval<DoubleType> kernel1`` using our ``engine.convert`` Op. |
| 114 | +* The Op convolves ``input1`` with ``kernel1``, returning an ``Img<DoubleType> output1`` |
| 115 | +* The ``Img<DoubleType> input1`` is left alone and returned to the user, as it is already of the type expected by the user. |
| 116 | + |
| 117 | + |
| 118 | +Adding efficiency |
| 119 | +================= |
| 120 | + |
| 121 | +While the above ``engine.convert`` Op is *functional*, it may not be *fast* as the data size increases. This is due to the **copy** inherent in its execution, as the ``ArrayImg`` contains new data structures. |
| 122 | + |
| 123 | +In such cases, devising methods to instead *wrap* user arguments will maximize performance and wow your users. In our case, we can refine our ``engine.convert`` Op to wrap user data, using the ``DoubleAccess`` interface of ImgLib2: |
| 124 | + |
| 125 | +.. code-block:: java |
| 126 | +
|
| 127 | + /** |
| 128 | + * @param input the input data |
| 129 | + * @return an image ({@link RandomAccessibleInterval}) backed by the input {@code double[][]} |
| 130 | + * @implNote op names='engine.convert', type=Function |
| 131 | + */ |
| 132 | + public static RandomAccessibleInterval<DoubleType> arrayToRAIWrap(final double[][] input) |
| 133 | + { |
| 134 | + // Wrap 2D array into DoubleAccess usable by ArrayImg |
| 135 | + var access = new DoubleAccess() { |
| 136 | +
|
| 137 | + private final int rowSize = input[0].length; |
| 138 | +
|
| 139 | + @Override |
| 140 | + public double getValue(int index) { |
| 141 | + var row = index / rowSize; |
| 142 | + var col = index % rowSize; |
| 143 | + return input[row][col]; |
| 144 | + } |
| 145 | +
|
| 146 | + @Override |
| 147 | + public void setValue(int index, double value) { |
| 148 | + var row = index / rowSize; |
| 149 | + var col = index % rowSize; |
| 150 | + input[row][col] = value; |
| 151 | + } |
| 152 | + }; |
| 153 | + return ArrayImgs.doubles(access, input.length, input[0].length); |
| 154 | + } |
| 155 | +
|
| 156 | +.. _function-output: |
| 157 | + |
| 158 | +Converting ``Function`` outputs |
| 159 | +=============================== |
| 160 | + |
| 161 | +Now, imagine that the user wished to execute the Op using **only** ``double[][]``\ s. In other words, they have a ``double[][] input``, a ``double[][] kernel``, and want back a ``double[][]`` containing the result: |
| 162 | + |
| 163 | +.. code-block:: java |
| 164 | +
|
| 165 | + double[][] in = ... |
| 166 | + // 3x3 averaging kernel |
| 167 | + double[][] kernel = { // |
| 168 | + { 1/9d, 1/9d, 1/9d}, // |
| 169 | + { 1/9d, 1/9d, 1/9d}, // |
| 170 | + { 1/9d, 1/9d, 1/9d} // |
| 171 | + }; |
| 172 | +
|
| 173 | + double[][] result = ops.op("filter.convolve") // |
| 174 | + .input(in, kernel) // |
| 175 | + .outType(double[][].class) // |
| 176 | + .apply(); |
| 177 | +
|
| 178 | +Looking back at our :ref:`original Op<original-op>`, we would have to write an *additional* converter to turn the output ``RandomAccessibleInterval<DoubleType>`` back into a ``double[][]``: |
| 179 | + |
| 180 | +.. code-block:: java |
| 181 | +
|
| 182 | + /** |
| 183 | + * @param input the input data |
| 184 | + * @return a {@code double[][]} representation of the input image ({@link RandomAccessibleInterval}) |
| 185 | + * @implNote op names='engine.convert', type=Function |
| 186 | + */ |
| 187 | + public static double[][] raiToArray(final RandomAccessibleInterval<DoubleType> input) |
| 188 | + { |
| 189 | + // Create the array |
| 190 | + var width = input.dimension(0); |
| 191 | + var height = input.dimension(1); |
| 192 | + var result = new double[(int) width][(int) height]; |
| 193 | +
|
| 194 | + // Unfortunately, we have to deep copy here |
| 195 | + var ra = input.randomAccess(); |
| 196 | + for(int i = 0; i < width; i++) { |
| 197 | + for(int j = 0; j < height; j++) { |
| 198 | + result[i][j] = ra.setPositionAndGet(i, j).get(); |
| 199 | + } |
| 200 | + } |
| 201 | + return result; |
| 202 | + } |
| 203 | +
|
| 204 | +When the user tries to invoke our ``filter.convolve`` ``Function`` Op on all ``double[][]``\ s, the following happens: |
| 205 | + |
| 206 | +#. Each ``double[][]`` is converted into a ``RandomAccessibleInterval<DoubleType>`` using our ``arrayToRAIWrap`` ``engine.convert`` Op. |
| 207 | +#. The ``filter.convolve`` Op is invoked on the ``RandomAccessibleInterval<DoubleType>``\ s, returning a ``RandomAccessibleInterval<DoubleType>`` as output. |
| 208 | +#. This output ``RandomAccessibleInterval<DoubleType>`` is converted into a ``double[][]`` using our ``raiToArray`` ``engine.convert`` Op. |
| 209 | +#. The **converted** ``double[][]`` output is returned to the user. |
| 210 | + |
| 211 | +The result is offering to the user a ``filter.convolve(input: double[][], kernel: double[][]) -> double[][]`` Op, even though we never wrote one! |
| 212 | + |
| 213 | +Converting ``Computer`` and ``Inplace`` outputs |
| 214 | +=============================================== |
| 215 | + |
| 216 | +Finally, consider our ``filter.convolve`` Op example, instead written as a ``Computer``. |
| 217 | + |
| 218 | +.. code-block:: java |
| 219 | +
|
| 220 | + /** |
| 221 | + * Convolves an image with a kernel, placing the result in the output buffer |
| 222 | + * |
| 223 | + * @param input the input data |
| 224 | + * @param kernel the kernel |
| 225 | + * @param output the result buffer |
| 226 | + * @implNote op names="filter.convolve" |
| 227 | + */ |
| 228 | + public static void convolveNaive( |
| 229 | + final RandomAccessibleInterval<DoubleType> input, |
| 230 | + final RandomAccessibleInterval<DoubleType> kernel, |
| 231 | + final RandomAccessibleInterval<DoubleType> output |
| 232 | + ) { |
| 233 | + // convolve convolve convolve // |
| 234 | + } |
| 235 | +
|
| 236 | +Suppose that again the user wants to call this Op using *only* ``double[][]``\ s: |
| 237 | + |
| 238 | +.. code-block:: java |
| 239 | +
|
| 240 | + double[][] in = ... |
| 241 | + // 3x3 averaging kernel |
| 242 | + double[][] kernel = { // |
| 243 | + { 1/9d, 1/9d, 1/9d}, // |
| 244 | + { 1/9d, 1/9d, 1/9d}, // |
| 245 | + { 1/9d, 1/9d, 1/9d} // |
| 246 | + }; |
| 247 | + double[][] result = new double[in.length][in[0].length]; |
| 248 | +
|
| 249 | + ops.op("filter.convolve").input(in, kernel).output(result).apply(); |
| 250 | +
|
| 251 | +We will certainly need the ``engine.convert(in: double[][]) -> RandomAccessibleInterval<DoubleType>`` Op and the ``engine.convert(in: RandomAccessibleInterval<DoubleType>) -> double[][]`` Op we wrote above, however if we follow the same procedure with :ref:`Functions <function-output>`, the ``result`` array they provided will be empty/unmodified. This is because our ``raiToArray` ``engine.convert`` Op we wrote above *creates a new ``double[][]``*. Writing ``engine.convert`` Ops as wrappers is ideal, but in cases like this may not be possible (i.e. we can't create a custom ``double[][]`` implementation). |
| 252 | + |
| 253 | +Because SciJava Ops cannot guarantee that ``engine.convert`` Ops wrap user arguments, an additional step is required for parameter conversion with ``Computer`` Ops. This is done by calling an ``engine.copy`` Op to copy the converted output *back into the user's object*. **If you want to enable parameter conversion** on ``Computer``\ s or ``Inplace``\ s, **you must implement** an ``engine.copy`` identity Op for your data type in addition to any ``engine.convert`` Ops. Because there is no way to know how Ops will be implemented (and ``Computer``\s do make a large portion of current Ops) **this is highly recommended**. |
| 254 | + |
| 255 | +Below is an ``engine.copy`` Op that would store the converted Op's output ``double[][]`` back into the user's Object: |
| 256 | + |
| 257 | +.. code-block:: java |
| 258 | +
|
| 259 | + /** |
| 260 | + * Copy one {@code double[][]} to another. |
| 261 | + * |
| 262 | + * @param opOutput the {@code double[][]} converted from the Op output |
| 263 | + * @param userBuffer the original {@code double[][]} provided by the user |
| 264 | + * @implNote op names="engine.copy" type=Computer |
| 265 | + */ |
| 266 | + public static void copyDoubleMatrix( |
| 267 | + final double[][] opOutput, |
| 268 | + final double[][] userBuffer |
| 269 | + ) { |
| 270 | + for(int i = 0; i < opOutput.length; i++) { |
| 271 | + System.arraycopy(opOutput[i], 0, userBuffer[i], 0, opOutput[i].length); |
| 272 | + } |
| 273 | + } |
| 274 | +
|
| 275 | +When the user tries to invoke our ``filter.convolve`` ``Computer`` Op on all ``double[][]``\ s, the following happens: |
| 276 | + |
| 277 | +#. Each ``double[][]`` is converted into a ``RandomAccessibleInterval<DoubleType>`` using our ``arrayToRAIWrap`` ``engine.convert`` Op. |
| 278 | +#. The ``filter.convolve`` Op is invoked on the ``RandomAccessibleInterval<DoubleType>``\ s, returning a ``RandomAccessibleInterval<DoubleType>`` as an output. |
| 279 | +#. The output ``RandomAccessibleInterval<DoubleType>`` is converted into a ``double[][]`` using our ``raiToArray`` ``engine.convert`` Op. |
| 280 | +#. The **converted** output ``double[][]`` is *copied* back into the user's ``double[][]`` buffer using our ``copyDoubleMatrix`` ``engine.copy`` Op. |
| 281 | + |
| 282 | +Summary |
| 283 | +======= |
| 284 | + |
| 285 | +All in all, you can enable parameter conversion from type ``A`` to type ``B`` by providing the following Ops: |
| 286 | + |
| 287 | +* An ``engine.convert(input: A) -> B`` for input conversion |
| 288 | +* An ``engine.convert(input: B) -> A`` for output conversion |
| 289 | +* An ``engine.copy(converted_output: B, user_buffer: B)`` for ``Computer``\ s and ``Inplace``\ s, to move the converted output into the user's buffer object. |
| 290 | + |
| 291 | +Note that, in the process of creating your ``engine.convert`` ``Function`` Ops, you'll likely want to write some ``engine.create`` Ops that could produce objects of type ``B``. In addition to making your ``engine.convert`` Ops more granular by using them as Op dependencies, but they'll additionally help enable features like Op adaptation. |
| 292 | + |
| 293 | +Beyond this, it would also be helpful to ensure that an ``engine.copy(converted_output: A, user_buffer: A)`` Op exists, such that users can also call *your* ``Computer`` and ``Inplace`` Ops using objects of type ``A``. |
0 commit comments