Skip to content

Commit 676e30c

Browse files
authored
Merge pull request #275 from scijava/docs/volume_labeling_fixes
Resolve compile errors in volume labeling
2 parents fc39f1b + be9ba15 commit 676e30c

File tree

1 file changed

+29
-26
lines changed

1 file changed

+29
-26
lines changed

docs/ops/doc/examples/volume_labeling.rst

Lines changed: 29 additions & 26 deletions
Original file line numberDiff line numberDiff line change
@@ -112,20 +112,24 @@ In addition to the result tables, the label imdage (also known as an *index imag
112112
from net.imglib2.roi.labeling import LabelRegions
113113
from net.imglib2.type.logic import BitType
114114
from net.imglib2.type.numeric.real import FloatType
115-
115+
116116
from org.scijava.table import DefaultGenericTable
117117

118118
from jarray import array
119119

120-
def extract_channel(image, ch):
120+
def extract_channel(image, axis, ch):
121121
"""Extract a channel from the input image.
122122

123123
Extract the given channel from the input image.
124124

125125
:param image:
126-
127-
Input Img.
128-
126+
127+
Input image.
128+
129+
:param axis:
130+
131+
Integer corresponding to the Channel axis.
132+
129133
:param ch:
130134

131135
Channel number to extract.
@@ -134,12 +138,10 @@ In addition to the result tables, the label imdage (also known as an *index imag
134138

135139
A view of the extracted channel.
136140
"""
137-
# find C and Z axis indicies
138-
c_idx = find_axis_index(image, "Channel")
139-
140-
return ops.op("transform.hyperSliceView").input(image, c_idx, ch - 1).apply()
141-
142-
141+
142+
return ops.op("transform.hyperSliceView").input(image, axis, ch - 1).apply()
143+
144+
143145
def extract_inside_mask(mask_a, mask_b):
144146
"""Extract the mask "A" data from regions inside mask "B".
145147

@@ -193,43 +195,44 @@ In addition to the result tables, the label imdage (also known as an *index imag
193195
return i
194196
else:
195197
continue
196-
198+
197199
return None
198-
199-
200+
201+
200202
def gaussian_subtraction(image, sigma):
201203
"""Perform a Gaussian subtraction on an image.
202-
204+
203205
Apply a Gaussian blur and subtract from input image.
204-
206+
205207
:param image:
206-
208+
207209
Input Img.
208-
210+
209211
:param sigma:
210-
212+
211213
Sigma value.
212-
214+
213215
:return:
214-
216+
215217
Gaussian blur subtracted image.
216218
"""
217219
blur = ops.op("filter.gauss").input(image, sigma).apply()
218220
out = ops.op("create.img").input(image, FloatType()).apply()
219221
ops.op("math.sub").input(image, blur).output(out).compute()
220-
222+
221223
return out
222-
224+
223225
# crop the input data to a 450 x 450 patch
224226
min_arr = array([370, 136, 0, 0], "l")
225227
max_arr = array([819, 585, 2, 59], "l")
226228
img_crop = ops.op("transform.intervalView").input(img, min_arr, max_arr).apply()
227-
img_crop = Views.dropSingletonDimensions(img_crop)
229+
img_crop = ops.op("transform.dropSingletonDimensionsView").input(img_crop).apply()
228230
img_crop = ops.op("transform.offsetView").input(img_crop, array([370, 136, 0, 0], "l")).apply()
229231

230232
# extract channels
231-
ch_a_img = extract_channel(img_crop, ch_a)
232-
ch_b_img = extract_channel(img_crop, ch_b)
233+
c_idx = find_axis_index(img, "Channel")
234+
ch_a_img = extract_channel(img_crop, c_idx, ch_a)
235+
ch_b_img = extract_channel(img_crop, c_idx, ch_b)
233236

234237
# customize the following sections below for your own data
235238
# clean up channel "A" and create a mask

0 commit comments

Comments
 (0)