@@ -82,8 +82,6 @@ In addition to the result tables, the label imdage (also known as an *index imag
8282
8383 The output label image with "3-3-2 RGB" LUTs applied in Fiji.
8484
85- **Please note that this script can take upwards of 2-3 minutes to run! **
86-
8785.. tabs ::
8886
8987 .. code-tab :: python
@@ -110,7 +108,8 @@ In addition to the result tables, the label imdage (also known as an *index imag
110108
111109 from org.scijava.table import DefaultGenericTable
112110
113-
111+ from jarray import array
112+
114113 def extract_channel(image, ch):
115114 """Extract a channel from the input image.
116115
@@ -214,10 +213,17 @@ In addition to the result tables, the label imdage (also known as an *index imag
214213
215214 return out
216215
216+ # crop the input data to a 450 x 450 patch
217+ min_arr = array([370, 136, 0, 0], "l")
218+ max_arr = array([819, 585, 2, 59], "l")
219+ img_crop = ops.op("transform.intervalView").input(img, min_arr, max_arr).apply()
220+ img_crop = Views.dropSingletonDimensions(img_crop)
221+ img_crop = ops.op("transform.offsetView").input(img_crop, array([370, 136, 0, 0], "l")).apply()
222+
217223 # extract channels
218- ch_a_img = extract_channel(img , ch_a)
219- ch_b_img = extract_channel(img , ch_b)
220-
224+ ch_a_img = extract_channel(img_crop , ch_a)
225+ ch_b_img = extract_channel(img_crop , ch_b)
226+
221227 # customize the following sections below for your own data
222228 # clean up channel "A" and create a mask
223229 ch_a_img = gaussian_subtraction(ch_a_img, 8.0)
0 commit comments