Skip to content

Commit 4caaa03

Browse files
Add files via upload
Progress bar in Jupyter notebook for tracking the progress as your machine learning model is training
1 parent 4b3d32b commit 4caaa03

File tree

1 file changed

+208
-0
lines changed

1 file changed

+208
-0
lines changed
Lines changed: 208 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,208 @@
1+
{
2+
"cells": [
3+
{
4+
"cell_type": "markdown",
5+
"metadata": {
6+
"id": "zzD4-HxqXBmt"
7+
},
8+
"source": [
9+
"# **Progress Bar in Jupyter Notebook**\n",
10+
"\n",
11+
"Chanin Nantasenamat\n",
12+
"\n",
13+
"**Data Professor YouTube channel**, http://youtube.com/dataprofessor"
14+
]
15+
},
16+
{
17+
"cell_type": "markdown",
18+
"metadata": {
19+
"id": "An7XU557Y5ci"
20+
},
21+
"source": [
22+
"# **Progress Bar with the tqdm library**"
23+
]
24+
},
25+
{
26+
"cell_type": "code",
27+
"execution_count": null,
28+
"metadata": {
29+
"id": "3yc04janmetd"
30+
},
31+
"outputs": [],
32+
"source": [
33+
"# ! pip install tqdm"
34+
]
35+
},
36+
{
37+
"cell_type": "code",
38+
"execution_count": 1,
39+
"metadata": {
40+
"id": "gxa8jup1DNjt"
41+
},
42+
"outputs": [],
43+
"source": [
44+
"from tqdm.notebook import tqdm\n",
45+
"from time import sleep"
46+
]
47+
},
48+
{
49+
"cell_type": "code",
50+
"execution_count": 2,
51+
"metadata": {
52+
"id": "009bdoXCE74q"
53+
},
54+
"outputs": [
55+
{
56+
"data": {
57+
"application/vnd.jupyter.widget-view+json": {
58+
"model_id": "93cc2d7933af4faf96fda14e55f24e23",
59+
"version_major": 2,
60+
"version_minor": 0
61+
},
62+
"text/plain": [
63+
" 0%| | 0/100 [00:00<?, ?it/s]"
64+
]
65+
},
66+
"metadata": {},
67+
"output_type": "display_data"
68+
}
69+
],
70+
"source": [
71+
"number_list = list(range(100))\n",
72+
"for x in tqdm(number_list):\n",
73+
" sleep(0.05)\n",
74+
"#print('Completed!')"
75+
]
76+
},
77+
{
78+
"cell_type": "markdown",
79+
"metadata": {
80+
"id": "4tFGw2QFMz6N"
81+
},
82+
"source": [
83+
"# **Model Building**"
84+
]
85+
},
86+
{
87+
"cell_type": "markdown",
88+
"metadata": {
89+
"id": "zKKr9EoSVbOV"
90+
},
91+
"source": [
92+
"### Reading in the Delaney Solubility Dataset"
93+
]
94+
},
95+
{
96+
"cell_type": "code",
97+
"execution_count": 3,
98+
"metadata": {
99+
"id": "FHR0FBHEMyyL"
100+
},
101+
"outputs": [],
102+
"source": [
103+
"import pandas as pd\n",
104+
"\n",
105+
"dataset = pd.read_csv('https://raw.githubusercontent.com/dataprofessor/data/master/delaney_solubility_with_descriptors.csv')\n",
106+
"\n",
107+
"X = dataset.drop(['logS'], axis=1)\n",
108+
"Y = dataset.iloc[:,-1]\n"
109+
]
110+
},
111+
{
112+
"cell_type": "markdown",
113+
"metadata": {
114+
"id": "BqqRRTtUVi7v"
115+
},
116+
"source": [
117+
"### Model Building with Progress Bar"
118+
]
119+
},
120+
{
121+
"cell_type": "code",
122+
"execution_count": 4,
123+
"metadata": {
124+
"id": "cpa2tS3kInAx",
125+
"scrolled": true
126+
},
127+
"outputs": [
128+
{
129+
"data": {
130+
"application/vnd.jupyter.widget-view+json": {
131+
"model_id": "a1b762495ff545468e8b801795c6b708",
132+
"version_major": 2,
133+
"version_minor": 0
134+
},
135+
"text/plain": [
136+
" 0%| | 0/10 [00:00<?, ?it/s]"
137+
]
138+
},
139+
"metadata": {},
140+
"output_type": "display_data"
141+
},
142+
{
143+
"name": "stdout",
144+
"output_type": "stream",
145+
"text": [
146+
"Tree: 100, R2: 0.9796508266364179, MSE: 0.08936295274735467\n",
147+
"Tree: 200, R2: 0.9805478792326812, MSE: 0.08542356575902461\n",
148+
"Tree: 300, R2: 0.9801470956638436, MSE: 0.08718359809468906\n",
149+
"Tree: 400, R2: 0.9803760482277171, MSE: 0.08617815788435489\n",
150+
"Tree: 500, R2: 0.9804686074892891, MSE: 0.08577168589797951\n",
151+
"Tree: 600, R2: 0.9804079256830844, MSE: 0.08603816873163578\n",
152+
"Tree: 700, R2: 0.9802975717717071, MSE: 0.0865227855360484\n",
153+
"Tree: 800, R2: 0.9803651322114956, MSE: 0.08622609533244484\n",
154+
"Tree: 900, R2: 0.98037907466393, MSE: 0.08616486735547396\n",
155+
"Tree: 1000, R2: 0.9804349669126423, MSE: 0.08591941775949379\n"
156+
]
157+
}
158+
],
159+
"source": [
160+
"from sklearn.ensemble import RandomForestRegressor\n",
161+
"from sklearn.metrics import mean_squared_error, r2_score\n",
162+
"\n",
163+
"parameter_n_estimators = [100,200,300,400,500,600,700,800,900,1000]\n",
164+
"\n",
165+
"for i in tqdm(parameter_n_estimators):\n",
166+
" model = RandomForestRegressor(n_estimators=i)\n",
167+
" model.fit(X,Y)\n",
168+
" Y_pred = model.predict(X)\n",
169+
" r2 = r2_score(Y, Y_pred)\n",
170+
" mse = mean_squared_error(Y, Y_pred)\n",
171+
" print('Tree: %s, R2: %s, MSE: %s' % (i, r2, mse))"
172+
]
173+
},
174+
{
175+
"cell_type": "code",
176+
"execution_count": null,
177+
"metadata": {},
178+
"outputs": [],
179+
"source": []
180+
}
181+
],
182+
"metadata": {
183+
"colab": {
184+
"collapsed_sections": [],
185+
"name": "Model-building-with-progress-bar.ipynb",
186+
"provenance": []
187+
},
188+
"kernelspec": {
189+
"display_name": "Python 3",
190+
"language": "python",
191+
"name": "python3"
192+
},
193+
"language_info": {
194+
"codemirror_mode": {
195+
"name": "ipython",
196+
"version": 3
197+
},
198+
"file_extension": ".py",
199+
"mimetype": "text/x-python",
200+
"name": "python",
201+
"nbconvert_exporter": "python",
202+
"pygments_lexer": "ipython3",
203+
"version": "3.7.9"
204+
}
205+
},
206+
"nbformat": 4,
207+
"nbformat_minor": 1
208+
}

0 commit comments

Comments
 (0)