|
| 1 | +class Graph: |
| 2 | + def __init__(self, vertices): |
| 3 | + self.V = vertices |
| 4 | + self.edges = [] |
| 5 | + |
| 6 | + def add_edge(self, u, v, w): |
| 7 | + self.edges.append((w, u, v)) |
| 8 | + |
| 9 | + def find(self, parent, i): |
| 10 | + if parent[i] != i: |
| 11 | + parent[i] = self.find(parent, parent[i]) |
| 12 | + return parent[i] |
| 13 | + |
| 14 | + def union(self, parent, rank, x, y): |
| 15 | + root_x = self.find(parent, x) |
| 16 | + root_y = self.find(parent, y) |
| 17 | + |
| 18 | + if root_x != root_y: |
| 19 | + if rank[root_x] > rank[root_y]: |
| 20 | + parent[root_y] = root_x |
| 21 | + elif rank[root_x] < rank[root_y]: |
| 22 | + parent[root_x] = root_y |
| 23 | + else: |
| 24 | + parent[root_y] = root_x |
| 25 | + rank[root_x] += 1 |
| 26 | + |
| 27 | + def kruskal_mst(self): |
| 28 | + self.edges.sort() |
| 29 | + parent = [] |
| 30 | + rank = [] |
| 31 | + mst = [] |
| 32 | + |
| 33 | + for node in range(self.V): |
| 34 | + parent.append(node) |
| 35 | + rank.append(0) |
| 36 | + |
| 37 | + for edge in self.edges: |
| 38 | + w, u, v = edge |
| 39 | + root_u = self.find(parent, u) |
| 40 | + root_v = self.find(parent, v) |
| 41 | + |
| 42 | + if root_u != root_v: |
| 43 | + mst.append(edge) |
| 44 | + self.union(parent, rank, root_u, root_v) |
| 45 | + |
| 46 | + if len(mst) == self.V - 1: |
| 47 | + break |
| 48 | + |
| 49 | + print("Edges in the Minimum Spanning Tree:") |
| 50 | + for weight, u, v in mst: |
| 51 | + print(f"{u} -- {v} == {weight}") |
| 52 | + |
| 53 | +g = Graph(4) |
| 54 | +g.add_edge(0, 1, 10) |
| 55 | +g.add_edge(0, 2, 6) |
| 56 | +g.add_edge(0, 3, 5) |
| 57 | +g.add_edge(1, 3, 15) |
| 58 | +g.add_edge(2, 3, 4) |
| 59 | + |
| 60 | +g.kruskal_mst() |
0 commit comments